FIRST Al|

A STUDENT-TO-STUDENT GUIDE

- 1,300+ must-know concepts organized for maximum yield -
- Updated throughout, with 35 new high-yield facts -
- 1000+ color photos and illustrations, many new or revised -

Student-proven exam strategies with new learning science section \bullet

TAO LE = VIKAS BHUSHAN = MATTHEW SOCHAT YASH CHAVDA = ANDREW ZUREICK

FIRST AID ${ }_{\text {THR }}^{\text {Fit }}$

USMLE
 STEP 1 2018

TAO LE, MD, MHS

Associate Clinical Professor
Chief, Section of Allergy and Immunology
Department of Medicine
University of Louisville School of Medicine

MATTHEW SOCHAT, MD

Fellow, Department of Hematology/Oncology
St. Louis University School of Medicine

YASH CHAVDA, DO

Resident, Department of Emergency Medicine St. Barnabas Hospital, Bronx

VIKAS BHUSHAN, MD
Boracay

MEHBOOB KALANI, MD

Resident, Department of Internal Medicine
Allegheny Health Network Medical Education Consortium

Mc

Graw
Hil
Education
New York / Chicago / San Francisco / Athens / London / Madrid / Mexico City
Milan / New Delhi / Singapore / Sydney / Toronto

Copyright © 2018 by Tao Le and Vikas Bhushan. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-26-011613-7
MHID: 1-26-011613-1
The material in this eBook also appears in the print version of this title: ISBN: 978-1-26-011612-0, MHID: 1-26-011612-3.
eBook conversion by codeMantra
Version 1.0
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Notice

Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Dedication

To the contributors to this and past editions, who took time to share their knowledge, insight, and humor for the benefit of students and physicians everywhere.

1GzYdyAad2MokAC44NtmccFldPzUzncbim

Donate for good in bitcoin

Contents

Contributing Authors vii
General Acknowledgments xiii
Associate Authors viii
How to Contribute xvii
Faculty Advisors ix
How to Use This Book xix
Preface xi
Selected USMLE Laboratory Values XX
Special Acknowledgments xii
First Aid Checklist for the USMLE Step 1 xxii

- SECTION I GUIDE TO EFFICIENT EXAM PREPARATION 1
Introduction 2 Test-Taking Strategies 22
USMLE Step 1—The Basics 2 Clinical Vignette Strategies 23
Defining Your Goal 12
If You Think You Failed 24
Learning Strategies 13
Testing Agencies 24
Timeline for Study References 25
Study Materials 20

Biochemistry 3395123
$\begin{array}{lr}\text { Immunology } & 95 \\ \text { Microbiology } & 123\end{array}$

Pharmacology 227
Public Health Sciences 251
Approaching the Organ Systems 270 Neurology and Special Senses 473
Cardiovascular 273
Psychiatry 537
Endocrine 319
Renal 561
Gastrointestinal 351
Reproductive 593
Hematology and Oncology 395
Respiratory 641
Musculoskeletal, Skin, and Connective Tissue 433
Rapid Review 669
D SECTION IV TOP-RATED REVIEW RESOURCES 689
How to Use the Database 690
Cell Biology and Histology 694
Question Banks 692Question Books692
Web and Mobile Apps692
Comprehensive693
Anatomy, Embryology, and Neuroscience693
Behavioral Science 694
Biochemistry 694
Index 731
About the Editors 793Microbiology and Immunology695
Pathology 695
Pharmacology 696
Physiology 696
Abbreviations and Symbols 699
Image Acknowledgments 707

Contributing Authors

MAJED H. ALGHAMDI, MBBS

King Abdulaziz University College of Medicine

VIJAY BALAKRISHNAN

Emory University School of Medicine
Class of 2018

BRIAN BALLARD

Michigan State University School of Osteopathic Medicine Class of 2018

HUMOOD BOQAMBAR

Royal College of Surgeons in Ireland Class of 2018

TARUNPREET DHALIWAL

St. George's University School of Medicine
Class of 2018
RACHEL L. KUSHNER, MSc
Mercer University School of Medicine Class of 2018

LAUREN N. LESSOR
St. George's University School of Medicine MD/PhD Candidate, Class of 2018

JONATHAN LI

University of Michigan Medical School
Class of 2018

Image and Illustration Team

ARTEMISA GOGOLLARI, MD

PhD Candidate
University for Health Sciences, Medical Informatics, and Technology, Austria

MATTHEW HO ZHI GUANG

University College Dublin (MD), Dana Farber Cancer Institute (PhD) MD/PhD Candidate

VICTOR JOSE MARTINEZ LEON, MD
Central University of Venezuela

SCOTT MOORE, DO

Assistant Professor of Medical Laboratory Sciences Weber State University

JUN YEN NG, MBBS

Princess Alexandra Hospital

CONNIE QIU

Lewis Katz School of Medicine at Temple University MD/PhD Candidate, Class of 2021

KALLI A. SARIGIANNIS

Oakland University William Beaumont School of Medicine Class of 2018

SARAH SCHIMANSKY, MB BCh BAO

Resident, Department of Ophthalmology Gloucestershire Hospitals NHS Foundation Trust

JESSE D. SENGILLO

SUNY Downstate College of Medicine
Class of 2018
ISABELLA T. WU
Tulane University School of Medicine Class of 2019

VAISHNAVI VAIDYANATHAN

University of Missouri-Kansas City School of Medicine Class of 2018

AIDA K. SARCON

St. George's University School of Medicine Class of 2018

RENATA VELAPATIÑO, MD

San Martin de Porres University School of Medicine Hospitalist, Clinica Internacional

Associate Authors

ANUP CHALISE, MBBS

Nepal Medical College and Teaching Hospital Class of 2017

CATHY CHEN

University of Mississippi School of Medicine Class of 2019

MATTHEW S. DELFINER

Resident, Internal Medicine
Temple University Hospital

RICHARD A. GIOVANE, MD

University of Alabama
Department of Family Medicine

JOSEPH G. MONIR

University of Florida College of Medicine Class of 2018

Image and Illustration Team

BENJAMIN F. COMORA

Alabama College of Osteopathic Medicine DO/MBA Candidate

NAKEYA KHOZEMA DEWASWALA, MBBS

Lokmanya Tilak Muncipal Medical College
Class of 2016

ALEX MULLEN

University of Mississippi School of Medicine Class of 2019

VASILY OVECHKO

Pirogov Russian National Research Medical University Class of 2019

ERIKA J. PARISI

Frank H. Netter MD School of Medicine at Quinnipiac University Class of 2018

JOHN POWER

Icahn School of Medicine at Mount Sinai Class of 2018

MIGUEL ROVIRA

University of Michigan Medical School
Class of 2018

ANTONIO N. YAGHY, MD

University of Balamand School of Medicine

Faculty Advisors

MEESHA AHUJA, MD

Psychiatrist
Rhode Island Hospital

DIANA ALBA, MD

Clinical Instructor
University of California, San Francisco

MARK A.W. ANDREWS, PhD

Lake Erie College of Osteopathic Medicine at Seton Hill Greensburg, Pennsylvania

MARIA ANTONELLI, MD

Assistant Professor, Division of Rheumatology
MetroHealth Medical Center, Case Western Reserve University

HERMAN SINGH BAGGA, MD

Urologist, Allegheny Health Network
University of Pittsburgh Medical Center, Passavant

SHIN C. BEH, MD

Assistant Professor, Department of Neurology \& Neurotherapeutics UT Southwestern Medical Center at Dallas

PAULETTE BERND, PhD

Professor, Department of Pathology and Cell Biology
Columbia University College of Physicians and Surgeons

ANISH BHATT, MD

Clinical Fellow
University of California, San Francisco

SHELDON CAMPBELL, MD, PhD

Professor of Laboratory Medicine
Yale School of Medicine

BROOKS D. CASH, MD

Professor of Medicine, Division of Gastroenterology
University of South Alabama School of Medicine

SHIVANI VERMA CHMURA, MD

Adjunct Clinical Faculty, Department of Psychiatry Stanford University School of Medicine

JAIMINI CHAUHAN-JAMES, MD

Psychiatrist
NYC Health + Hospitals

PETER V. CHIN-HONG, MD

Professor, Department of Medicine
University of California, San Francisco School of Medicine

BRADLEY COLE, MD

Assistant Professor
Loma Linda University School of Medicine

LINDA S. COSTANZO, PhD

Professor, Physiology \& Biophysics
Virginia Commonwealth University School of Medicine

ANTHONY L. DeFRANCO, PhD

Professor, Department of Microbiology and Immunology University of California, San Francisco School of Medicine

CHARLES S. DELA CRUZ, MD, PhD

Associate Professor, Department of Pulmonary and Critical Care Medicine Yale School of Medicine

CONRAD FISCHER, MD

Associate Professor, Medicine, Physiology, and Pharmacology Touro College of Medicine

JEFFREY J. GOLD, MD

Associate Professor, Department of Neurology
Assistant Professor, University of California, San Diego School of Medicine

RAYUDU GOPALAKRISHNA, PhD

Associate Professor, Department of Integrative Anatomical Sciences Keck School of Medicine of University of Southern California

RYAN C.W. HALL, MD

Assistant Professor, Department of Psychiatry University of South Florida

LOUISE HAWLEY, PhD

Immediate Past Professor and Chair, Department of Microbiology Ross University School of Medicine

JEFFREY W. HOFMANN, MD, PhD

Resident, Department of Pathology
University of California, San Francisco School of Medicine

BRIAN C. JENSEN, MD

Assistant Professor of Medicine and Pharmacology University of North Carolina Health Care

CLARK KEBODEAUX, PharmD

Clinical Assistant Professor, Pharmacy Practice and Science University of Kentucky College of Pharmacy

MICHAEL R. KING, MD

Instructor, Department of Pediatric Anesthesiology Northwestern University Feinberg School of Medicine

THOMAS KOSZTOWSKI, MD

Spine Instructor
The Warren Alpert Medical School of Brown University

KRISTINE KRAFTS, MD

Assistant Professor, Department of Basic Sciences University of Minnesota School of Medicine

GERALD LEE, MD

Assistant Professor, Departments of Pediatrics and Medicine Emory University School of Medicine

KACHIU C. LEE, MD, MPH

Assistant Clinical Professor, Department of Dermatology Brown University, Providence, Rhode Island

WARREN LEVINSON, MD, PhD

Professor, Department of Microbiology and Immunology University of California, San Francisco School of Medicine

PETER MARKS, MD, PhD

Center for Biologics Evaluation and Research
US Food and Drug Administration

J. RYAN MARTIN, MD

Assistant Professor of Obstetrics, Gynecology, and Reproductive Sciences Yale School of Medicine

DOUGLAS A. MATA, MD, MPH
Brigham Education Institute and Brigham and Women's Hospital Harvard Medical School

SOROUSH RAIS-BAHRAMI, MD

Assistant Professor, Departments of Urology and Radiology University of Alabama at Birmingham School of Medicine

SASAN SAKIANI, MD

Fellow, Transplant Hepatology
Cleveland Clinic

ROBERT A. SASSO, MD

Professor of Clinical Medicine
Ross University School of Medicine

MELANIE SCHORR, MD

Assistant in Medicine
Massachusetts General Hospital

NATHAN W. SKELLEY, MD

Assistant Professor, Department of Orthopaedic Surgery
University of Missouri, The Missouri Orthopaedic Institute

SHEENA STANARD, MD, MHS

Assistant Professor, Department of Obstetrics and Gynecology University of Rochester School of Medicine and Dentistry

HOWARD M. STEINMAN, PhD

Assistant Dean, Biomedical Science Education Albert Einstein College of Medicine

MARY STEINMANN, MD

Assistant Professor, Department of Psychiatry University of Utah School of Medicine

RICHARD P. USATINE, MD

Professor, Dermatology and Cutaneous Surgery University of Texas Health Science Center San Antonio

PRASHANT VAISHNAVA, MD

Assistant Professor, Department of Medicine Mount Sinai Hospital and Icahn School of Medicine

J. MATTHEW VELKEY, PhD

Assistant Dean, Basic Science Education Duke University School of Medicine

BRIAN WALCOTT, MD

Clinical Instructor, Department of Neurological Surgery University of California, San Francisco

TISHA WANG, MD

Associate Clinical Professor, Department of Medicine David Geffen School of Medicine at UCLA

SYLVIA WASSERTHEIL-SMOLLER, PhD

Professor Emerita, Department of Epidemiology and Population Health Albert Einstein College of Medicine

ADAM WEINSTEIN, MD

Assistant Professor, Pediatric Nephrology and Medical Education Geisel School of Medicine at Dartmouth

ABHISHEK YADAV, MBBS, MSc

Associate Professor of Anatomy
Geisinger Commonwealth School of Medicine

KRISTAL YOUNG, MD

Clinical Instructor, Department of Cardiology Huntington Hospital, Pasadena, California

Preface

With the 28th edition of First Aid for the USMLE Step 1, we continue our commitment to providing students with the most useful and up-to-date preparation guide for the USMLE Step 1. This edition represents an outstanding revision in many ways, including:

- 35 entirely new high-yield topics reflecting evolving trends in the USMLE Step 1.
- Extensive text revisions, new mnemonics, clarifications, and corrections curated by a team of more than 40 medical student and resident physician authors who excelled on their Step l examinations and verified by a team of expert faculty advisors and nationally recognized USMLE instructors.
- A new section on learning and memory science in Section I, Guide to Efficient Exam Preparation.
- Updated with $35+$ new full-color photos to help visualize various disorders, descriptive findings, and basic science concepts. Additionally, revised imaging photos have been labeled and optimized to show both normal anatomy and pathologic findings.
- Updated study tips on the opening page of each chapter.
- Improved integration of clinical images and illustrations to better reinforce and learn key anatomic concepts.
- Improved organization of text, figures, and tables throughout for quick review of high-yield topics.
- Updated with 50+ new and revised diagrams and illustrations as part of our ongoing collaboration with USMLE-Rx (MedIQ Learning, LLC).
- Reorganized Rapid Review section to present high-yield concepts by topic and with page numbers to the corresponding text.
- Revitalized coverage of current, high-yield print and digital resources in Section IV with clearer explanations of their relevance to USMLE Step 1 review.
- Real-time Step 1 updates and corrections can be found exclusively on our blog, www.firstaidteam.com.

We invite students and faculty to share their thoughts and ideas to help us continually improve First Aid for the USMLE Step 1 through our blog and collaborative editorial platform. (See How to Contribute, p. xvii.)

Louisville Tao Le
Boracay Vikas Bhushan
St. Louis Matthew Sochat
New York City Yash Chavda
Ann Arbor Andrew Zureick
Pittsburgh Mehboob Kalani
San Francisco Kimberly Kallianos

Special Acknowledgments

This has been a collaborative project from the start. We gratefully acknowledge the thousands of thoughtful comments, corrections, and advice of the many medical students, international medical graduates, and faculty who have supported the authors in our continuing development of First Aid for the USMLE Step 1.

We provide special acknowledgment and thanks to the following individuals who made exemplary contributions to this edition through our voting, proofreading, and crowdsourcing platform: Huzaifa Ahmad, Ram Baboo, Kashif Badar, Nwamaka Bob-Ume, Paige Estave, Nathaniel Fitch, Panagiotis Kaparaliotis, Elaine Luther, Sarah Hamid Mian, Prashank Shree Neupane, Keyhan Piranviseh, Cindy Tsui, and Ankeet Vakharia.

For support and encouragement throughout the process, we are grateful to Thao Pham, Jinky Flang, and Jonathan Kirsch, Esq. Thanks to Louise Petersen for organizing and supporting the project. Thanks to our publisher, McGrawHill, for the valuable assistance of its staff, including Bob Boehringer, Christina Thomas, Jim Shanahan, Laura Libretti, and Jeffrey Herzich.

We are also very grateful to Dr. Fred Howell and Dr. Robert Cannon of Textensor Ltd for providing us extensive customization and support for their powerful Annotate.co collaborative editing platform (www.annotate.co), which allows us to efficiently manage thousands of contributions. Thanks to Dr. Richard Usatine and Dr. Kristine Krafts for their outstanding image contributions. Thanks also to Jean-Christophe Fournet (www.humpath.com), Dr. Ed Uthman, and Dr. Frank Gaillard (www.radiopaedia.org) for generously allowing us to access some of their striking photographs. Thank you to Dr. Brenda Zureick for her ophthalmology review. For faculty contributions, we thank Dr. Aditya Bardia, Dr. Christina Ciaccio, Dr. Stuart Flynn, Dr. Vicki Park, Dr. Jeannine Rahimian, Dr. Joseph Schindler, and Dr. Stephen Thung.

For exceptional editorial leadership, enormous thanks to Christine Diedrich, Emma Underdown, and Catherine Johnson. Thank you to our USMLE-Rx/ScholarRx team of editors, Linda Davoli, Jacqueline Mahon, Janene Matragrano, Erika Nein, Isabel Nogueira, Sally Rineker, Rebecca Stigall, Ashley Vaughn, and Hannah Warnshuis. Many thanks to Tara Price for page design and all-around InDesign expertise. Thank you to Ruthie Whittaker for assistance in reorganizing the Rapid Review section. Special thanks to our indexer Dr. Anne Fifer. We are also grateful to our medical illustrator, Hans Neuhart, for his creative work on the new and updated illustrations. Lastly, tremendous thanks to Rainbow Graphics, especially David Hommel and Donna Campbell, for remarkable ongoing editorial and production support under time pressure.

Louisville	Tao Le
Boracay	Vikas Bhushan
St. Louis	Matthew Sochat
New York City	Yash Chavda
Ann Arbor	Andrew Zureick
Pittsburgh	Mehboob Kalani
San Francisco	Kimberly Kallianos

General Acknowledgments

Each year we are fortunate to receive the input of thousands of medical students and graduates who provide new material, clarifications, and potential corrections through our website and our collaborative editing platform. This has been a tremendous help in clarifying difficult concepts, correcting errata from the previous edition, and minimizing new errata during the revision of the current edition. This reflects our long-standing vision of a true, student-to-student publication. We have done our best to thank each person individually below, but we recognize that errors and omissions are likely. Therefore, we will post an updated list of acknowledgments at our website, www.firstaidteam.com/bonus/. We will gladly make corrections if they are brought to our attention.

For submitting contributions and corrections, many thanks to Mohammad Abbasi, Ibrahim Abdelfattah, Mostafa Ahmed Abdellah, Omar Abdelrahim Alawadi, Sufyan Abdul Mujeeb, Omar Abu Slieh, Khalil Abu Zaina, Muhamed Abubacker, Ayman Abunimer, Terumbur Abwa, Jesus Mauricio Acero, Raghav Acharya, Rojan Adhikari, Anisha Adhikari, Shivani Adhyaru, Kristopher Aghemo, Cassandra Ahmed, Adiel Aizenberg, Dolani Ajanaku, Mythri AK, Ahmad Akhtar, Murad AI Masri, Mejbel Alazemi, Isam Albaba, Camilo José Albert Fernández, Khalil Ali, Muhammed Alikhan, Mohamed Ali, Murad Almasri, Luai Alsakkaf, Vivian V Altiery De Jesus, Fazilhan Altintas, Alvaro Alvarez, Farah Amer, Christopher Anderson, Gilberto Aquino, Jay Argue, Khashayar Arianpour, Fernando Daniel Arias, Lama Assi, Rizwan Attiq, Scarlett Austin, Carlos Andres Avila, Zaki Azam, Sara Azeem, Parag Badami, Nadia Badar, Louis Baeseman, Karsyn Bailey, Bryce Baird, Devin Baith, Matthew Balatbat, Vyshnavy Balendra, Ugur Berkay Balkanci, Josiah Ballantine, Muhammad Yasir Baloch, Melissa Banez, Hari Prasad Baral, Saira Bari, Elan Baskir, Jacqueline Bekhit, Leah Beland, Jackson Bell, Elizabeth Benge, Lauren Benning, Hussein Berjaoui, Maresa Dorothee Berns, Kulsajan Bhatia, Saravjit S. Bhatti, Navpreet Bhurji, M. Yaasen Bhutta, Jacques Bijon, Safal Bijukshe, Jeffrey Black, Christer Blindheim, Luigi Bonini, Peter Boucas, Mary Boulanger, Alexandre Boulos, Chantal Brand, Zachary Britstone, Aaron Brown, Conor Buckley, Natassia Buckridge, Omar Bukhari, Welland Burnside, Pavel Burskii, Avi BurskyTammam, David Buziashvili, Michael Byers, Adam Cadesky, Elizabeth Cai, Alexandra Calingo, Andrei Callejas, Francisco Caraballo, Jorge Carrasco, Esteban Casasola, Gabriel Castano, Yoly Angelina Castellanos, Marco A Castillo, Gabriel Castro Gueits, Rorigo Cavalcante, Natalie Cazeau, Harold Viviano Cedeño, Jesse Chait, Ingita Chand, Eric Chang, Fong-Wan Chau Zhou, Jaimini Chauhan, Mit Chauhan, Maureen Chavez, Mehmood Cheema, Christopher Chhoun, Youna Choi, Rebecca D. Chou, Erika Chow, Mahbub Chowdhury, Elizabeth Ann Chu, Jessica Chung, Katherine Chung, Benjamin Ciccarelli, Joseph Cioffi, John Coda, Zack Cohen, Lee Colaianni, Nahimarys Colón Hernández, Julijana Conic, Jeffrey Cooney, Erica Corredera, Cody Couperus, Eric Cox, Caitlin Crosier, Matthew Culbert, John Cummins, Abdul Dada, Christopher Dallo, Parnaz Daneshpajouhnejad, Jason Darr, Camille Davis, Solomon Dawson, James Dee, Matthew Derakhshesh, Rajat Dhand, Shreena Dhawan, Vijay Dhillon, Angel Joel Diaz Martinez, Luboslav Dimitrov, Lennox Din, Soraya Djadjo, Mustafa Rıdvan Dönmez, Hima Doppalapudi, Landry Dorsett, Morgan Drucker, Elena Duca, Wesley Durand, Aaron Dwan, Marc Egerman, Christopher El Mouhayyar, David Ellenbogen, Mahmoud Elmahdy, Ashley Ermann, Yashar Eshman, Mikael Fadoul, Joseph

Fahmy, Giselle Falconi, Matthew Farajzadeh, Behnam Faridian, Amelia Fatsi, Rachel Fayne, Anthony Febres, Jin Feng, Brittany Fera, Leila Ferreira, Anthony Findley, Eitan Fleischman, Thomas Flynn, Allison Forrest, Adisson Fortunel, Brandon Fram, Daniel Franco, Gabriel Franta, Jacob Fried, Yaakov Fried, Luis Alberto Ribeiro Froes Jr., Virginia Fuenmayor, Sudha Gade, Emily Gall, Max Galvan, Nick Gamboa, Dan Ganz, Fabian Garcia, Melanie Garcia, Okubit Gebreyonas, Nicholas Geiger, David Gelbart, Bill Gentry, Dylan Gerlach, Brielle Gerry, Nina Gertsvolf, Sara Ghoneim, Jake Gibbons, Gobind Gill, Victoria Gonzales, Alberto Gonzalez, Mounica Gooty, Barbara Gordon, Sophie Gottesman, Manjeet Goyal, Kylie Grady, Zacharia Grami, Mark Greenhill, Jora Singh Grewal, Harry Griffin, Maria Grig, Vincent Grzywacz, Jinglin Gu, Leidy Laura Guerrero Hernández, James Guirguis, Nikhil Gupta, Deepak Gupta, Zarar Hafeez, Ramez Maher Halaseh, Erik Haley, Mohanad Hamandi, Saffa Hamde, Mohammad Hamidi, Nicola Hampel, Alexandra Handy, Christine Hanish, Mary Hanna, Laura Harding, Maxwell Harley, Glenn R. Harris, Hasanain Hasan, Danial Hayek, Corrie Hays, Luke He, Jackson Hearn, Leif Helland, Ariana Hess, Joyce Ho, Walter Hodges, Tara Hogan, Brian Huang, Naureen Huda, Daniel Huff, Robert Huis in't Veld, Frank Hurd, Zaid Hussain, Jordan Huxall, Elizabeth Hwang, Taylin Im, Mimoza Isufi, Frank Jackson, Banafsheh Jalalian, Abbas Jama, Nader Jamaleddine, David Janese, Jesse Jaremek, Ranjit Jasraj, Parth Javia, Kyu-Jin Jeon, Benjamin Hans Jeuk, Eric Jiang, Alfredo Joffre, Hollis Johanson, Ryan Johnson, Sarah Johnson, Gavin Jones, Gregory Jordan, Josefina Fernandez, Michael Joseph, Pavel Kacnov, Preethi Kamath, Irina Kanzafarova, Komal Kapoor, Egishe Karapetyan, Nikoloz Karazanashvili, Shalemar Ann Kasan, Matt Kasson, Orest Kayder, Chelsae Keeney, Kristen Kelly, Danielle Keyes, Fahad Khan, Tamer Khashab, Susie Kim, Ann Kim, Rachel Kim, Nikhar Kinger, Mark Kirane, Tamara Kliot, Walter Klyce, Sammy Knefati, Christopher Kocharians, Sam Kociola, Karthikram Komanduri, Nicholas Kondoleon, David Kowal, Robert Kowtoniuk, Leonardo Kozian, Oleksandr Kozlov, Alec Krosser, Judah Kupferman, Stephanie Kuschel, Stephanie Kwan, Nikola Kyuchukov, Ton La, Michael Landolfi, Wells LaRiviere, Matthew Lee, Sean Lee, Sun Yong Lee, Michael Lee, Daniel Leisman, Jacob Leroux, Solomon Levin, David Li, Yedda Li, Jonathan Lieberman, Viktor Limanskiy, Meng-Chen Vanessa Lin, David Liu, Serena Liu, Jason Livingstone, Mavis Lobo, José López, Zhuo Luan, Marcela Marie Luna, Nicolas Luzino, Miles Maassen, Emily MacDuffie, Robertson Mackenzie, Jonathan Macleod, Evan Madill, Sergio Magaña, Marielle Mahan, Hossen Mahmud, Nodari Maisuradze, Abdallah Malas, Genesis Maldonado, Madiha A. Malik, Margaret Maloney, Hassan Mandil, Taylor Maney, Navyata Mangu, Kori Mansfield, Lina Marenco, John Marinelli, Laurel Mast, Micah Mathai, Anita Mathew, Candler Mathews, Fasil Mathews, John Mayfield, Guillermo Maza, Lina Mazin, Benjamin McCormick, Luis Medina, Romy Megahed, Laura I Mendez Morente, Felipe Alonso Mercado, Haley Mertens, Raman Michael, Amanda Miller, Joseph Mininni, Andria Marcela Miranda Chada, Thomas Mitchell, Sarah Mizrachi, Ghady Moafa, Pezhman Mobasher, Mahmoud Mohamed, Syed Mohammad, Denelle Mohammed, Sarah Mohtadi, Agnes Mokrzycki, Guarina Molina, Austin Momii, Eric Mong, Edgar Moradel, Andreina Moreno, Zachary Mortensen, Rachel Moss, Zachary Mostel, Turna Mukherjee, Greg Muller, Nirav Mungalpara, John Myers, Louai Naddaf, Merna Naji, Rohit Nallani, Aram Namavar, Alex Nantsios, Anthony Naquin, Abeeha Naqvi, Haider Naqvi, Samir Narula, Suraj Narvekar, Iraj Nasrabadi, Steven Nevers, Norman Ng, Samuel Ng, Raye Ng, Brandon Nguyen, Brian Nguyen, Chi-Tam Nguyen, Doris Nguyen, Michael Nguyen, Vanessa Nguyen, Timothy Nguyen, Hosea Njoku, Jason Nosrati, Yoav Nudell, Agnes Nyeck, Onyeka Olisemeka, Foluwakemi Olufehinti, Oluyinka Olutoye II, Abdillahi Omar, Nuhah Omar, Michael O'Shea, Zonghao Pan, Abdullah Panchbhaya, Niranjan Pandey, Saurabh Pandit, Khang Wen Pang, Rajbir Singh Pannu, Brian Park, Anishinder Parkash, Om Parkash, Jordan Parker, Matt Partan, Aaron Parzuchowski, Arpan Patel, Dharti Patel, Harshkumar Patel, Neel Patel, Tejas Patel, Vanisha Patel, Yesha Patel, Vrutant Patel, Dwani Patel, Jayesh Patel, Savan Patel, Dipesh Patel, Shiv U. Patel, Jay Patel, Thomas Paterniti, Priya Pathak, Saikrishna Patibandla, Iqra Patoli, Fernando Pellerano, Luke Perry, Romela Petrosyan, Jimmy Tam Huy Pham, Suzanne Piccione, Saran Pillai, Vivek Podder, Dmitry Pokhvashchev, Marc Polanik, Chelsea Powell, Andrew Puckett, Abdulhameed Qashqary, Carlos Quinonez, Joshua Radparvar, Shahrose Rahman, Alia Raja, Vinaya Rajan, Shayan Rakhit, Ferza Raks, Devan Ramachandran, Bashar Ramadan, Gokul Ramani, Shandilya Ramdas, Jose Ramos, Rakin Rashid, Mikhail Rassokhin, Mohsin Raza, Yunus Raza,

Dheevena Reddy, Lenisse Miguelina Reyes Reyes, Peter Rezkalla, Beatriz Rivera, Dalianne Rivera, Chelsea Roberts, Moshe Roberts, Lydia Robles, Alexander Rodriguez, Daniel Rodriguez Benzo, Daniel Enrique Rodríguez Benzo, Evgeny Romanov, Lukas Ronner, Geoffrey Rosen, Max Rosenthal, Yuan Ross, Lindsay Rothfield, Cody Russell, Anas Saad, Rorita Sadhu, Anna Sadovnikova, Dev Sahni, Kamal Sahu, Hemamalini Sakthivel, Abid Saleem, Ololade Saliu, Julienne Sanchez, Mason Sanders, Roshun Sangani, Michael Santarelli, Theodore Schoenfeldt, Kyle Scott, Arshiya Sehgal, Anand Sewak, Congzhou Sha, Nazila Shafagati, Anna Shah, Nauman Shah, Shaili Shah, Ahmed Shah, Abdulla Shaheen, Milton Shapiro, Kanika Sharma, Elizabeth Shay, Derek Sheen, Daniel Sherwood, David Shieh, Scott Shuldiner, Sunober Siddiqi, Gabriel Silva, Matthew Simhon, Bhart Singal, Amadeldin Singer, Amitoj Singh, Chandandeep Singh, Shivreet Singh, Steven Siragusa, Ramzi Y. Skaik, Christina Small, Conor Smith, Destini Smith, Will Smith, Austen Smith, Benjamin Smood, Hannah Snyder, Anubhav Sood, Benjamin Rojas Soosiah, Wilfredo Soto-Fuentes, Matthew Spano, Phalguni Srivastava, Tina Stanco, Josiah Strawser, Thomas Strobel, Annie Suarez, Zoilo Karim Suarez Yeb, Akhil Sureen, Gorica Svalina, Kayley Swope, Laura Szczesniak, Aboud Tahanis, Jayul Tailor, Austin Tam, Ming Yao Jonavan Tan, Olive Tang, Asna Tasleem, Sara Tavarez, Claudia Tejera, Anand Tekriwal, Priyesh Thakurathi, Vaishakh Tharavath, Chris Thomas, Lanice Thomas, Karima Thompson, John Tiang-Leung, Alvin Trieu, Michelle Trieu, Birva Trivedi, Katie Truong, Akshit Tuli, Marcia E. Uddoh, Nneamaka Ukatu, Johnson Ukken, Claire Unruh, Adelynn Vadrar, Andrew Valliyil, Vivek Vallurupalli, Blanca Vargas, Vandana Vekariya, Erick Candido Velasquez Centellas, Michael Venincasa, Michael Villalba, Marcos Villarreal, Phuong Vo, Steven Vuu, William Waddell, Holden Wagstaff, Nicholas Walther, Tony Wang, Jason L. Wang, Jonathan Warczak, Jacob Warner, Eric Wei, Paul Wei, Ronald Weir, Garrett Welle, Matthew Wells, Allison Williams, Michael Winter, Adriana Wong, Donald Wright, Brian Wu, Lawrence Wu, Michael Wydeko, Catherine Xie, Tamar Yacoel, Dong-han Yao, Alexander Yevtukh, Jaemin Yim, Raquel Yokoda, Sadaf Younis, Christopher Yun, Nicholas Yurko, Mubarak Hassan Yusuf, Pavel Zagadailov, Alireza Zandifar, Batool Zehra, Xue Zhang, Eric Zhang, Angie Zhang, Jasmine Zhao, Mohammad Zmaili, Spyridon Zouridis, Andrew Zovath, and Kathleen Zuniga.

This page intentionally left blank

How to Contribute

This version of First Aid for the USMLE Step 1 incorporates thousands of contributions and improvements suggested by student and faculty advisors. We invite you to participate in this process. Please send us your suggestions for:

- Study and test-taking strategies for the USMLE Step 1
- New facts, mnemonics, diagrams, and clinical images
- High-yield topics that may appear on future Step 1 exams
- Personal ratings and comments on review books, question banks, apps, videos, and courses

For each new entry incorporated into the next edition, you will receive up to a $\$ 20$ Amazon.com gift card as well as personal acknowledgment in the next edition. Significant contributions will be compensated at the discretion of the authors. Also, let us know about material in this edition that you feel is low yield and should be deleted.

All submissions including potential errata should ideally be supported with hyperlinks to a dynamically updated Web resource such as UpToDate, AccessMedicine, and ClinicalKey.

We welcome potential errata on grammar and style if the change improves readability. Please note that First Aid style is somewhat unique; for example, we have fully adopted the AMA Manual of Style recommendations on eponyms ("We recommend that the possessive form be omitted in eponymous terms") and on abbreviations (no periods with eg, ie, etc).

The preferred way to submit new entries, clarifications, mnemonics, or potential corrections with a valid, authoritative reference is via our website: www.firstaidteam.com.

This website will be continuously updated with validated errata, new high-yield content, and a new online platform to contribute suggestions, mnemonics, diagrams, clinical images, and potential errata.

Alternatively, you can email us at: firstaidteam@yahoo.com.
Contributions submitted by May 15, 2018, receive priority consideration for the 2019 edition of First Aid for the USMLE Step 1. We thank you for taking the time to share your experience and apologize in advance that we cannot individually respond to all contributors as we receive thousands of contributions each year.

All contributions become property of the authors and are subject to editing and reviewing. Please verify all data and spellings carefully. Contributions should be supported by at least two high-quality references.

Check our website first to avoid duplicate submissions. In the event that similar or duplicate entries are received, only the first complete entry received with valid, authoritative references will be credited. Please follow the style, punctuation, and format of this edition as much as possible.

D JOIN THE FIRST AID TEAM

The First Aid author team is pleased to offer part-time and full-time paid internships in medical education and publishing to motivated medical students and physicians. Internships range from a few months (eg, a summer) up to a full year. Participants will have an opportunity to author, edit, and earn academic credit on a wide variety of projects, including the popular First Aid series.

For 2018, we are actively seeking passionate medical students and graduates with a specific interest in improving our medical illustrations, expanding our database of medical photographs, and developing the software that supports our crowdsourcing platform. We welcome people with prior experience and talent in these areas. Relevant skills include clinical imaging, digital photography, digital asset management, information design, medical illustration, graphic design, and software development.

Please email us at firstaidteam@yahoo.com with a CV and summary of your interest or sample work.

How to Use This Book

CONGRATULATIONS: You now possess the book that has guided nearly two million students to USMLE success for over 25 years. With appropriate care, the binding should last the useful life of the book. Keep in mind that putting excessive flattening pressure on any binding will accelerate its failure. If you purchased a book that you believe is defective, please immediately return it to the place of purchase. If you encounter ongoing issues, you can also contact Customer Service at our publisher, McGraw-Hill Education, at https://www.mheducation.com/contact.html.

START EARLY: Use this book as early as possible while learning the basic medical sciences. The first semester of your first year is not too early! Devise a study plan by reading Section I: Guide to Efficient Exam Preparation, and make an early decision on resources to use by checking Section IV: Top-Rated Review Resources. Note that First Aid is neither a textbook nor a comprehensive review book, and it is not a panacea for inadequate preparation.

CONSIDER FIRST AID YOUR ANNOTATION HUB: Annotate material from other resources, such as class notes or comprehensive textbooks, into your book. This will keep all the high-yield information you need in one place. Other tips on keeping yourself organized:

- For best results, use fine-tipped ballpoint pens (eg, BIC Pro+, Uni-Ball Jetstream Sports, Pilot Drawing Pen, Zebra F-301). If you like gel pens, try Pentel Slicci, and for markers that dry almost immediately, consider Staedtler Triplus Fineliner, Pilot Drawing Pen, and Sharpies.
- Consider using pens with different colors of ink to indicate different sources of information (eg, blue for USMLE-Rx Step 1 Qmax, green for UWorld Step 1 Qbank).
- Choose highlighters that are bright and dry quickly to minimize smudging and bleeding through the page (eg, Tombow Kei Coat, Sharpie Gel).
- Many students de-spine their book and get it 3-hole-punched. This will allow you to insert materials from other sources, including curricular materials.

INTEGRATE STUDY WITH CASES, FLASH CARDS, AND QUESTIONS: To broaden your learning strategy, consider integrating your First Aid study with case-based reviews (eg, First Aid Cases for the USMLE Step 1), flash cards (eg, First Aid Flash Facts), and practice questions (eg, the USMLE-Rx Step 1 Qmax). Read the chapter in the book, then test your comprehension by using cases, flash cards, and questions that cover the same topics. Maintain access to more comprehensive resources (eg, First Aid for the Basic Sciences: General Principles and Organ Systems and First Aid Express videos) for deeper review as needed.

PRIME YOUR MEMORY: Return to your annotated Sections II and III several days before taking the USMLE Step 1. The book can serve as a useful way of retaining key associations and keeping high-yield facts fresh in your memory just prior to the exam. The Rapid Review section includes high-yield topics to help guide your studying.

CONTRIBUTE TO FIRST AID: Reviewing the book immediately after your exam can help us improve the next edition. Decide what was truly high and low yield and send us your comments. Feel free to send us scanned images from your annotated First Aid book as additional support. Of course, always remember that all examinees are under agreement with the NBME to not disclose the specific details of copyrighted test material.

Selected USMLE Laboratory Values

* = Included in the Biochemical Profile (SMA-12)

Blood, Plasma, Serum	Reference Range	SI Reference Intervals
*Alanine aminotransferase (ALT, GPT at $30^{\circ} \mathrm{C}$)	8-20 U/L	8-20 U/L
Amylase, serum	25-125 U/L	25-125 U/L
*Aspartate aminotransferase (AST, GOT at $30^{\circ} \mathrm{C}$)	8-20 U/L	8-20 U/L
Bilirubin, serum (adult) Total // Direct	$0.1-1.0 \mathrm{mg} / \mathrm{dL} / / 0.0-0.3 \mathrm{mg} / \mathrm{dL}$	2-17 $\mu \mathrm{mol} / \mathrm{L} / / 0-5 \mu \mathrm{~mol} / \mathrm{L}$
*Calcium, serum (Total)	$8.4-10.2 \mathrm{mg} / \mathrm{dL}$	$2.1-2.8 \mathrm{mmol} / \mathrm{L}$
*Cholesterol, serum (Total)	Rec: $<200 \mathrm{mg} / \mathrm{dL}$	$<5.2 \mathrm{mmol} / \mathrm{L}$
*Creatinine, serum (Total)	$0.6-1.2 \mathrm{mg} / \mathrm{dL}$	53-106 $\mu \mathrm{mol} / \mathrm{L}$
Electrolytes, serum Sodium $\left(\mathrm{Na}^{+}\right)$ Chloride (Cl^{-}) * Potassium (K^{+}) Bicarbonate (HCO^{3-}) Magnesium (Mg^{2+})	136-145 mEq/L 95-105 mEq/L $3.5-5.0 \mathrm{mEq} / \mathrm{L}$ $22-28 \mathrm{mEq} / \mathrm{L}$ $1.5-2 \mathrm{mEq} / \mathrm{L}$	136-145 mmol/L $95-105 \mathrm{mmol} / \mathrm{L}$ $3.5-5.0 \mathrm{mmol} / \mathrm{L}$ $22-28 \mathrm{mmol} / \mathrm{L}$ $0.75-1.0 \mathrm{mmol} / \mathrm{L}$
Gases, arterial blood (room air) $\begin{aligned} & \mathrm{P}_{\mathrm{O}_{2}} \\ & \mathrm{P}_{\mathrm{CO}_{2}} \\ & \mathrm{pH} \end{aligned}$	$\begin{aligned} & 75-105 \mathrm{~mm} \mathrm{Hg} \\ & 33-45 \mathrm{~mm} \mathrm{Hg} \\ & 7.35-7.45 \end{aligned}$	$\begin{aligned} & 10.0-14.0 \mathrm{kPa} \\ & 4.4-5.9 \mathrm{kPa} \\ & {\left[\mathrm{H}^{+}\right] 36-44 \mathrm{nmol} / \mathrm{L}} \end{aligned}$
* Glucose, serum	Fasting: 70-110 mg/dL 2-h postprandial: $<120 \mathrm{mg} / \mathrm{dL}$	$\begin{gathered} 3.8-6.1 \mathrm{mmol} / \mathrm{L} \\ <6.6 \mathrm{mmol} / \mathrm{L} \end{gathered}$
Growth hormone - arginine stimulation	Fasting: $<5 \mathrm{ng} / \mathrm{mL}$ provocative stimuli: $>7 \mathrm{ng} / \mathrm{mL}$	$\begin{aligned} & <5 \mu \mathrm{~g} / \mathrm{L} \\ & >7 \mu \mathrm{~g} / \mathrm{L} \end{aligned}$
Osmolality, serum	275-295 mOsm/kg	275-295 mOsm/kg
*Phosphatase (alkaline), serum (p-NPP at $30^{\circ} \mathrm{C}$)	20-70 U/L	20-70 U/L
*Phosphorus (inorganic), serum	$3.0-4.5 \mathrm{mg} / \mathrm{dL}$	$1.0-1.5 \mathrm{mmol} / \mathrm{L}$
Prolactin, serum (hPRL)	$<20 \mathrm{ng} / \mathrm{mL}$	$<20 \mu \mathrm{~g} / \mathrm{L}$
*Proteins, serum Total (recumbent) Albumin Globulins	$\begin{aligned} & 6.0-7.8 \mathrm{~g} / \mathrm{dL} \\ & 3.5-5.5 \mathrm{~g} / \mathrm{dL} \\ & 2.3-3.5 \mathrm{~g} / \mathrm{dL} \end{aligned}$	$\begin{aligned} & 60-78 \mathrm{~g} / \mathrm{L} \\ & 35-55 \mathrm{~g} / \mathrm{L} \\ & 23-35 \mathrm{~g} / \mathrm{L} \end{aligned}$
*Urea nitrogen, serum (BUN)	7-18 mg/dL	$1.2-3.0 \mathrm{mmol} / \mathrm{L}$
*Uric acid, serum	$3.0-8.2 \mathrm{mg} / \mathrm{dL}$	$0.18-0.48 \mathrm{mmol} / \mathrm{L}$

(continues)

Cerebrospinal Fluid	Reference Range	SI Reference Intervals
Glucose	40-70 mg/dL	$2.2-3.9 \mathrm{mmol} / \mathrm{L}$
Hematologic		
Erythrocyte count	Male: 4.3-5.9 million/mm ${ }^{3}$ Female: $3.5-5.5$ million $/ \mathrm{mm}^{3}$	$\begin{aligned} & 4.3-5.9 \times 10^{12} / \mathrm{L} \\ & 3.5-5.5 \times 10^{12} / \mathrm{L} \end{aligned}$
Erythrocyte sedimentation rate (Westergen)	Male: $0-15 \mathrm{~mm} / \mathrm{h}$ Female: $0-20 \mathrm{~mm} / \mathrm{h}$	$\begin{aligned} & 0-15 \mathrm{~mm} / \mathrm{h} \\ & 0-20 \mathrm{~mm} / \mathrm{h} \end{aligned}$
Hematocrit	Male: 41-53\% Female: 36-46\%	$\begin{aligned} & 0.41-0.53 \\ & 0.36-0.46 \end{aligned}$
Hemoglobin, blood	Male: $13.5-17.5 \mathrm{~g} / \mathrm{dL}$ Female: $12.0-16.0 \mathrm{~g} / \mathrm{dL}$	$\begin{aligned} & 2.09-2.71 \mathrm{mmol} / \mathrm{L} \\ & 1.86-2.48 \mathrm{mmol} / \mathrm{L} \end{aligned}$
Hemoglobin, plasma	$1-4 \mathrm{mg} / \mathrm{dL}$	0.16-0.62 $\mu \mathrm{mol} / \mathrm{L}$
Leukocyte count and differential Leukocyte count Segmented neutrophils Band forms Eosinophils Basophils Lymphocytes Monocytes	$\begin{aligned} & 4,500-11,000 / \mathrm{mm}^{3} \\ & 54-62 \% \\ & 3-5 \% \\ & 1-3 \% \\ & 0-0.75 \% \\ & 25-33 \% \\ & 3-7 \% \end{aligned}$	$\begin{aligned} & 4.5-11.0 \times 10^{9} / \mathrm{L} \\ & 0.54-0.62 \\ & 0.03-0.05 \\ & 0.01-0.03 \\ & 0-0.0075 \\ & 0.25-0.33 \\ & 0.03-0.07 \end{aligned}$
Mean corpuscular hemoglobin	25.4-34.6 pg/cell	0.39-0.54 fmol/cell
Mean corpuscular volume	$80-100 \mu \mathrm{~m}^{3}$	80-100 fL
Partial thromboplastin time (activated)	25-40 seconds	25-40 seconds
Platelet count	150,000-400,000/mm ${ }^{3}$	$150-400 \times 10^{9} / \mathrm{L}$
Prothrombin time	11-15 seconds	11-15 seconds
Reticulocyte count	0.5-1.5\% of red cells	0.005-0.015
Sweat		
Chloride	$0-35 \mathrm{mmol} / \mathrm{L}$	$0-35 \mathrm{mmol} / \mathrm{L}$
Urine		
Creatine clearance	Male: 97-137 mL/min Female: 88-128 mL/min	
Osmolality	$50-1,400 \mathrm{mOsmol} / \mathrm{kg} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$	
Proteins, total	$<150 \mathrm{mg} / 24 \mathrm{~h}$	$<0.15 \mathrm{~g} / 24 \mathrm{~h}$

First Aid Checklist for the USMLE Step 1

This is an example of how you might use the information in Section I to prepare for the USMLE Step 1. Refer to corresponding topics in Section I for more details.

Years Prior

\square Select top-rated review resources as study guides for first-year medical school courses.Ask for advice from those who have recently taken the USMLE Step 1.

Months Prior

\square Review computer test format and registration information.Register six months in advance. Carefully verify name and address printed on scheduling permit. Call Prometric or go online for test date ASAP.Define goals for the USMLE Step 1 (eg, comfortably pass, beat the mean, ace the test).
\square Set up a realistic timeline for study. Cover less crammable subjects first. Review subject-by-subject emphasis and clinical vignette format.Simulate the USMLE Step 1 to pinpoint strengths and weaknesses in knowledge and test-taking skills.Evaluate and choose study methods and materials (eg, review books, question banks).

Weeks Prior

\square Simulate the USMLE Step 1 again. Assess how close you are to your goal.Pinpoint remaining weaknesses. Stay healthy (exercise, sleep).Verify information on admission ticket (eg, location, date).

One Week Prior

Remember comfort measures (loose clothing, earplugs, etc).Work out test site logistics such as location, transportation, parking, and lunch.Call Prometric and confirm your exam appointment.
One Day Prior

Relax.Lightly review short-term material if necessary. Skim high-yield facts.
\square Get a good night's sleep.Make sure the name printed on your photo ID appears EXACTLY the same as the name printed on your scheduling permit.

Day of Exam

Relax. Eat breakfast. Minimize bathroom breaks during the exam by avoiding excessive morning caffeine.Analyze and make adjustments in test-taking technique.

After the Exam

Celebrate, regardless.
Send feedback to us on our website at www.firstaidteam.com.

SECTION I

Guide to Efficient Exam Preparation

"I don't love studying. I hate studying. I like learning. Learning is
"Finally, from so little sleeping and so much reading, his brain dried up and he went completely out of his mind."
-Miguel de Cervantes Saavedra, Don Quixote
"Sometimes the questions are complicated and the answers are simple."
-Dr. Seuss
"He who knows all the answers has not been asked all the questions."
-Confucius
"It's what you learn after you know it all that counts."
-John Wooden
"A goal without a plan is just a wish."
-Antoine de Saint-Exupéry
"I was gratified to be able to answer promptly, and I did. I said I didn't know."
-Mark Twain
$>$ Introduction
>USMLE Step 1—The Basics 2

- INTRODUCTION

Relax.
This section is intended to make your exam preparation easier, not harder. Our goal is to reduce your level of anxiety and help you make the most of your efforts by helping you understand more about the United States Medical Licensing Examination, Step l (USMLE Step 1). As a medical student, you are no doubt familiar with taking standardized examinations and quickly absorbing large amounts of material. When you first confront the USMLE Step l, however, you may find it all too easy to become sidetracked from your goal of studying with maximal effectiveness. Common mistakes that students make when studying for Step 1 include the following:

- Starting to study (including First Aid) too late
- Starting to study intensely too early and burning out
- Starting to prepare for boards before creating a knowledge foundation
- Using inefficient or inappropriate study methods
- Buying the wrong resources or buying too many resources
- Buying only one publisher's review series for all subjects
- Not using practice examinations to maximum benefit
- Not understanding how scoring is performed or what the score means
- Not using review books along with your classes
- Not analyzing and improving your test-taking strategies
- Getting bogged down by reviewing difficult topics excessively
- Studying material that is rarely tested on the USMLE Step 1
- Failing to master certain high-yield subjects owing to overconfidence
- Using First Aid as your sole study resource
- Trying to prepare for it all alone

In this section, we offer advice to help you avoid these pitfalls and be more productive in your studies.

- USMLE STEP 1-THE BASICS

The USMLE Step 1 is the first of three examinations that you must pass in order to become a licensed physician in the United States. The USMLE is a joint endeavor of the National Board of Medical Examiners (NBME) and the Federation of State Medical Boards (FSMB). The USMLE serves as the single examination system for US medical students and international medical graduates (IMGs) seeking medical licensure in the United States.

The Step 1 exam includes test items drawn from the following content areas ${ }^{1}$:

DISCIPLINE

Aging
Anatomy
Behavioral Sciences
Biochemistry
Biostatistics and Epidemiology
Genetics
Immunology
Microbiology
Molecular and Cell Biology
Nutrition
Pathology
Pharmacology
Physiology

ORGAN SYSTEM

Behavioral Health \& Nervous
Systems/Special Senses
Biostatistics \& Epidemiology/
Population Health/
Social Sciences
Blood \& Lymphoreticular System
Cardiovascular System
Endocrine System
Gastrointestinal System
General Principles of Foundational Science
Immune System
Multisystem Processes \& Disorders
Musculoskeletal, Skin, \&
Subcutaneous Tissue
Renal/Urinary System
Reproductive System
Respiratory System

How Is the Computer-Based Test (CBT) Structured?

The CBT Step l exam consists of one "optional" tutorial/simulation block and seven "real" question blocks of up to 40 questions per block with no more than 280 questions in total, timed at 60 minutes per block. A short ll-question survey follows the last question block. The computer begins the survey with a prompt to proceed to the next block of questions.

Once an examinee finishes a particular question block on the CBT, he or she must click on a screen icon to continue to the next block. Examinees cannot go back and change their answers to questions from any previously completed block. However, changing answers is allowed within a block of questions as long as the block has not been ended and if time permits.

What Is the CBT Like?

Given the unique environment of the CBT, it's important that you become familiar ahead of time with what your test-day conditions will be like. In fact, you can easily add up to 15 minutes to your break time! This is because the 15 -minute tutorial offered on exam day may be skipped if you are already familiar with the exam procedures and the testing interface. The 15 minutes is then added to your allotted break time of 45 minutes for a total of 1 hour of potential break time. You can download the tutorial from the USMLE website and do it before test day. This tutorial interface is very similar to the one you will use in the exam; learn it now and you can skip taking it during the exam, giving you up to 15 extra minutes of break time. You can also gain experience

[^0]
- Keyboard shortcuts:

- A, B, etc—letter choices
- Enter or spacebar-move to next question
- Esc—exit pop-up Lab and Exhibit windows
- Alt-T—countdown timers for current session and overall test
> - Heart sounds are tested via media questions. Make sure you know how different heart diseases sound on auscultation.

[^1]- Familiarize yourself with the commonly tested lab values (eg, Hgb, WBC, platelets, $\left.\mathrm{Na}^{+}, \mathrm{K}^{+}\right)$.
- Illustrations on the test include:
- Gross specimen photos
- Histology slides
- Medical imaging (eg, x-ray, (T, MRI)
- Electron micrographs
- Line drawings
with the CBT format by taking the 120 practice questions (3 blocks with 40 questions each) available online or by signing up for a practice session at a test center.

For security reasons, examinees are not allowed to bring any personal electronic equipment into the testing area. This includes both digital and analog watches, iPods, tablets, calculators, cell phones, and electronic paging devices. Examinees are also prohibited from carrying in their books, notes, pens/pencils, and scratch paper. Food and beverages are also prohibited in the testing area. The testing centers are monitored by audio and video surveillance equipment. However, most testing centers allot each examinee a small locker outside the testing area in which he or she can store snacks, beverages, and personal items.

Questions are typically presented in multiple choice format, with 4-5 possible answer options. There is a countdown timer on the lower left corner of the screen as well. There is also a button that allows the examinee to mark a question for review. If a given question happens to be longer than the screen (which occurs very rarely), a scroll bar will appear on the right, allowing the examinee to see the rest of the question. Regardless of whether the examinee clicks on an answer choice or leaves it blank, he or she must click the "Next" button to advance to the next question.

The USMLE features a small number of media clips in the form of audio and/or video. There may even be a question with a multimedia heart sound simulation. In these questions, a digital image of a torso appears on the screen, and the examinee directs a digital stethoscope to various auscultation points to listen for heart and breath sounds. The USMLE orientation materials include several practice questions in these formats. During the exam tutorial, examinees are given an opportunity to ensure that both the audio headphones and the volume are functioning properly. If you are already familiar with the tutorial and planning on skipping it, first skip ahead to the section where you can test your headphones. After you are sure the headphones are working properly, proceed to the exam.

The examinee can call up a window displaying normal laboratory values. In order to do so, he or she must click the "Lab" icon on the top part of the screen. Afterward, the examinee will have the option to choose between "Blood," "Cerebrospinal," "Hematologic," or "Sweat and Urine." The normal values screen may obscure the question if it is expanded. The examinee may have to scroll down to search for the needed lab values. You might want to memorize some common lab values so you spend less time on questions that require you to analyze these.

The CBT interface provides a running list of questions on the left part of the screen at all times. The software also permits examinees to highlight or cross out information by using their mouse. There is a "Notes" icon on the top part of the screen that allows students to write notes to themselves for review at a later time. Finally, the USMLE has recently added new functionality including text magnification and reverse color (white text on black background). Being
familiar with these features can save time and may help you better view and organize the information you need to answer a question.

For those who feel they might benefit, the USMLE offers an opportunity to take a simulated test, or "CBT Practice Session" at a Prometric center. Students are eligible to register for this three-and-one-half-hour practice session after they have received their scheduling permit.

The same USMLE Step 1 sample test items (120 questions) available on the USMLE website, www.usmle.org, are used at these sessions. No new items will be presented. The practice session is available at a cost of $\$ 75$ and is divided into a short tutorial and three l-hour blocks of ~ 40 test items each. Students receive a printed percent-correct score after completing the session. No explanations of questions are provided.

You may register for a practice session online at www.usmle.org. A separate scheduling permit is issued for the practice session. Students should allow two weeks for receipt of this permit.

How Do I Register to Take the Exam?

Prometric test centers offer Step 1 on a year-round basis, except for the first two weeks in January and major holidays. The exam is given every day except Sunday at most centers. Some schools administer the exam on their own campuses. Check with the test center you want to use before making your exam plans.

US students can apply to take Step 1 at the NBME website. This application allows you to select one of 12 overlapping three-month blocks in which to be tested (eg, April-May-June, June-July-August). Choose your three-month eligibility period wisely. If you need to reschedule outside your initial threemonth period, you can request a one-time extension of eligibility for the next contiguous three-month period, and pay a rescheduling fee. The application also includes a photo ID form that must be certified by an official at your medical school to verify your enrollment. After the NBME processes your application, it will send you a scheduling permit.

The scheduling permit you receive from the NBME will contain your USMLE identification number, the eligibility period in which you may take the exam, and two additional numbers. The first of these is known as your "scheduling number." You must have this number in order to make your exam appointment with Prometric. The second number is known as the "candidate identification number," or CIN. Examinees must enter their CINs at the Prometric workstation in order to access their exams. However, you will not be allowed to bring your permit into the exam and will be asked to copy your CIN onto your scratch paper. Prometric has no access to the codes. Do not lose your permit! You will not be allowed to take the exam unless you present this permit along with an unexpired, government-issued photo ID that includes your signature (such as a driver's license or passport). Make sure the name on your photo ID exactly matches the name that appears on your scheduling permit.

- Ctrl-Alt-Delete are the keys of death during the exam. Don't touch them at the same time!

You can take a shortened CBT practice test at
a Prometric center.

- The Prometric Web site will display a calendar with open test dates.
- The confirmation emails that Prometric and NBME send are not the same as the scheduling permit.

Test scheduling is done on a "first-come, first-served" basis. It's important to call and schedule an exam date as soon as you receive your scheduling permit.

Once you receive your scheduling permit, you may access the Prometric website or call Prometric's toll-free number to arrange a time to take the exam. You may contact Prometric two weeks before the test date if you want to confirm identification requirements. Although requests for taking the exam may be completed more than six months before the test date, examinees will not receive their scheduling permits earlier than six months before the eligibility period. The eligibility period is the three-month period you have chosen to take the exam. Most medical students choose the April-June or June-August period. Because exams are scheduled on a "first-come, firstserved" basis, it is recommended that you contact Prometric as soon as you receive your permit. After you've scheduled your exam, it's a good idea to confirm your exam appointment with Prometric at least one week before your test date. Prometric will provide appointment confirmation on a print-out and by email. Be sure to read the 2018 USMLE Bulletin of Information for further details.

What If I Need to Reschedule the Exam?

You can change your test date and/or center by contacting Prometric at 1-800-MED-EXAM (1-800-633-3926) or www.prometric.com. Make sure to have your CIN when rescheduling. If you are rescheduling by phone, you must speak with a Prometric representative; leaving a voicemail message will not suffice. To avoid a rescheduling fee, you will need to request a change at least 31 calendar days before your appointment. Please note that your rescheduled test date must fall within your assigned three-month eligibility period.

When Should I Register for the Exam?

You should plan to register as far in advance as possible ahead of your desired test date (eg, six months), but, depending on your particular test center, new dates and times may open closer to the date. Scheduling early will guarantee that you will get either your test center of choice or one within a 50 -mile radius of your first choice. For most US medical students, the desired testing window is in June, since most medical school curricula for the second year end in May or June. Thus, US medical students should plan to register before January in anticipation of a June test date. The timing of the exam is more flexible for IMGs, as it is related only to when they finish exam preparation. Talk with upperclassmen who have already taken the test so you have reallife experience from students who went through a similar curriculum, then formulate your own strategy.

Where Can I Take the Exam?

Your testing location is arranged with Prometric when you call for your test date (after you receive your scheduling permit). For a list of Prometric locations nearest you, visit www.prometric.com.

How Long Will I Have to Wait Before I Get My Scores?

The USMLE reports scores in three to four weeks, unless there are delays in score processing. Examinees will be notified via email when their scores are available. By following the online instructions, examinees will be able to view, download, and print their score report online for ~ 120 days after score notification, after which scores can only be obtained through requesting an official USMLE transcript. Additional information about score timetables and accessibility is available on the official USMLE website.

What About Time?

Time is of special interest on the CBT exam. Here's a breakdown of the exam schedule:

15 minutes	Tutorial (skip if familiar with test format and features)
7 hours	Seven 60-minute question blocks
45 minutes	Break time (includes time for lunch)

The computer will keep track of how much time has elapsed on the exam. However, the computer will show you only how much time you have remaining in a given block. Therefore, it is up to you to determine if you are pacing yourself properly (at a rate of approximately one question per 90 seconds).

The computer does not warn you if you are spending more than your allotted time for a break. You should therefore budget your time so that you can take a short break when you need one and have time to eat. You must be especially careful not to spend too much time in between blocks (you should keep track of how much time elapses from the time you finish a block of questions to the time you start the next block). After you finish one question block, you'll need to click to proceed to the next block of questions. If you do not click within 30 seconds, you will automatically be entered into a break period.

Break time for the day is 45 minutes, but you are not required to use all of it, nor are you required to use any of it. You can gain extra break time (but not extra time for the question blocks) by skipping the tutorial or by finishing a block ahead of the allotted time. Any time remaining on the clock when you finish a block gets added to your remaining break time. Once a new question block has been started, you may not take a break until you have reached the end of that block. If you do so, this will be recorded as an "unauthorized break" and will be reported on your final score report.

Finally, be aware that it may take a few minutes of your break time to "check out" of the secure resting room and then "check in" again to resume testing, so plan accordingly. The "check-in" process may include fingerprints, pocket checks, and metal detector scanning. Some students recommend pocketless clothing on exam day to streamline the process.

- Gain extra break time by skipping the tutorial or finishing a block early.

- Be careful to watch the clock on your break time.

- Nearly three fourths of Step 1 questions begin with a description of a patient.

If I Freak Out and Leave, What Happens to My Score?

Your scheduling permit shows a CIN that you will need to enter to start your exam. Entering the CIN is the same as breaking the seal on a test book, and you are considered to have started the exam when you do so. However, no score will be reported if you do not complete the exam. In fact, if you leave at any time from the start of the test to the last block, no score will be reported. The fact that you started but did not complete the exam, however, will appear on your USMLE score transcript. Even though a score is not posted for incomplete tests, examinees may still get an option to request that their scores be calculated and reported if they desire; unanswered questions will be scored as incorrect.

The exam ends when all question blocks have been completed or when their time has expired. As you leave the testing center, you will receive a printed test-completion notice to document your completion of the exam. To receive an official score, you must finish the entire exam.

What Types of Questions Are Asked?

All questions on the exam are one-best-answer multiple choice items. Most questions consist of a clinical scenario or a direct question followed by a list of five or more options. You are required to select the single best answer among the options given. There are no "except," "not," or matching questions on the exam. A number of options may be partially correct, in which case you must select the option that best answers the question or completes the statement. Additionally, keep in mind that experimental questions may appear on the exam, which do not affect your score.

How Is the Test Scored?

Each Step 1 examinee receives an electronic score report that includes the examinee's pass/fail status, a three-digit test score, and a graphic depiction of the examinee's performance by discipline and organ system or subject area. The actual organ system profiles reported may depend on the statistical characteristics of a given administration of the examination.

The USMLE score report is divided into two sections: performance by discipline and performance by organ system. Each of the questions (minus experimental questions) is tagged according to any or all relevant content areas. Your performance in each discipline and each organ system is represented by a line of X's, where the width of the line is related to the confidence interval for your performance, which is often a direct consequence of the total number of questions for each discipline/system. If any lines have an asterisk (*) at the far right, this means your performance was exemplary in that area-not necessarily representing a perfect score, but often close to it (see Figure 1).

The NBME provides a three-digit test score based on the total number of items answered correctly on the examination, which corresponds to a

FIGURE 1. Sample USMLE Step 1 Performance Profile.

INFORMATION PROVIDED FOR EXAMINEE USE ONLY

The Performance Profile below is provided solely for the benefit of the examinee.
These profiles are developed as self-assessment tools for examinees only and will not be reported or verified to any third party

USMLE STEP 1 PERFORMANCE PROFILE

	Lower Performance	Borderline Performance	\qquad
PHYSICIAN TASK	$\mathbf{x} \times \mathbf{x x x x x}$		
MK: Applying Foundational Science Concepts			
PC: Diagnosis			
PC: Management			
PBLI: Evidence-Based Medicine			
DISCIPLINE			
Behavioral Sciences			X $\times \times x$
Biochemistry \& Nutrition			xxxxxxxxxxx*
Genetics			
Gross Anatomy \& Embryology			xxxxxxxx*
Histology \& Cell Biology			$\mathbf{x x \times x \times x \times \mathrm { x }}$
Microbiology \& Immunology			x $\times \times \times$
Pathology			x $\times \times \times \times \times \times \times \mathrm{x}$
Pharmacology			
Physiology			$\mathbf{x x x x} \times \mathbf{x} \times \mathbf{x} \times$
SYSTEM			
General Principles			Kxxxxxxxxxxxxxx
Blood \& Lymphoreticular and Immune Systems			
Behavioral Health \& Nervous Systems/Special Senses			
Musculoskeletal, Skin, \& Subcutaneous Tissue			
Cardiovascular System			xxxxxxxxx ${ }^{\text {* }}$
Respiratory and Renal/Urinary Systems			
Gastrointestinal System			$\mathbf{x x x x x x}$
Reproductive \& Endocrine Systems			$\mathbf{x} \times \times$
Multisystem Processes \& Disorders			xxxxxxxxxxxxxxx*
Biostatistics \& Epidemiology/Population Health			xxxxxxxxxxxxxxxxxxxx

particular percentile (see Figure 2). Your three-digit score will be qualified by the mean and standard deviation of US and Canadian medical school firsttime examinees. The translation from the lines of X's and number of asterisks you receive on your report to the three-digit score is unclear, but higher threedigit scores are associated with more asterisks.

Since some questions may be experimental and are not counted, it is possible to get different scores for the same number of correct answers. In 2016, the mean score was 228 with a standard deviation of 21 .

A score of 192 or higher is required to pass Step l. The NBME does not report the minimum number of correct responses needed to pass, but estimates that it is roughly $60-70 \%$. The NBME may adjust the minimum passing score in the future, so please check the USMLE website or www.firstaidteam.com for updates.

According to the USMLE, medical schools receive a listing of total scores and pass/fail results plus group summaries by discipline and organ system. Students can withhold their scores from their medical school if they wish. Official USMLE transcripts, which can be sent on request to residency programs, include only total scores, not performance profiles.

- The mean Step 1 score for US medical students continues to rise, from 200 in 1991 to 228 in 2016.

FI G U R E 2. Score and Percentile for First-time Step 1 Takers.

$N=69,359$ including US and Canadian medical school students testing between January 1, 2014-December 31, 2016. www.usmle.org. Accessed October 1, 2017.

Consult the USMLE website or your medical school for the most current and accurate information regarding the examination.

What Does My Score Mean?

The most important point with the Step 1 score is passing versus failing. Passing essentially means, "Hey, you're on your way to becoming a fully licensed doc." As Table 1 shows, the majority of students pass the exam, so remember, we told you to relax.

TA B LE 1. Passing Rates for the 2015-2016 USMLE Step 1. ${ }^{2}$

	$\mathbf{2 0 1 5}$		$\mathbf{2 0 1 6}$	
	No. Tested	$\%$ Passing	No. Tested	$\%$ Passing
Allopathic lst takers	20,213	96%	20,122	96%
Repeaters	898	68%	1,000	64%
Allopathic total	21,111	94%	21,122	94%
Osteopathic lst takers	3,185	93%	3,398	94%
Repeaters	37	65%	56	75%
Osteopathic total	3,222	93%	3,454	93%
Total US/Canadian	24,333	94%	24,576	94%
IMG lst takers	15,030	78%	15,031	78%
Repeaters	2,719	38%	2,575	39%
IMG total	17,749	72%	17,606	72%
Total Step 1 examinees	42,082	85%	42,182	88%

Beyond that, the main point of having a quantitative score is to give you a sense of how well you've done on the exam and to help schools and residencies rank their students and applicants, respectively.

Official NBME/USMLE Resources

The NBME offers a Comprehensive Basic Science Examination (CBSE) for practice that is a shorter version of the Step l. The CBSE contains four blocks of 50 questions each and covers material that is typically learned during the basic science years. Scores range from 45 to 95 and correlate with a Step 1 equivalent (see Table 2). The standard error of measurement is approximately 3 points, meaning a score of 80 would estimate the student's proficiency is somewhere between 77 and 83 . In other words, the actual Step 1 score could be predicted to be between 218 and 232. Of course, these values do not correlate exactly, and they do not reflect different test preparation methods. Many schools use this test to gauge whether a student is expected to pass Step l. If this test is offered by your school, it is usually conducted at the end of regular didactic time before any dedicated Step 1 preparation. If you do not encounter the CBSE before your dedicated study time, you need not worry about taking it. Use the information to help set realistic goals and timetables for your success.

The NBME also offers six forms of Comprehensive Basic Science SelfAssessment (CBSSA). Students who prepared for the exam using this webbased tool reported that they found the format and content highly indicative of questions tested on the actual exam. In addition, the CBSSA is a fair predictor of USMLE performance (see Table 3). The test interface, however, does not match the actual USMLE test interface, so practicing with these forms alone is not advised.

The CBSSA exists in two formats: standard-paced and self-paced, both of which consist of four sections of 50 questions each (for a total of 200 multiple choice items). The standard-paced format allows the user up to 65 minutes to complete each section, reflecting time limits similar to the actual exam. By contrast, the self-paced format places a 4:20 time limit on answering all multiple choice questions. Every few years, a new form is released and an older one is retired, reflecting changes in exam content. Therefore, the newer exams tend to be more similar to the actual Step 1, and scores from these exams tend to provide a better estimation of exam day performance.

Keep in mind that this bank of questions is available only on the web. The NBME requires that users \log on, register, and start the test within 30 days of registration. Once the assessment has begun, users are required to complete the sections within 20 days. Following completion of the questions, the CBSSA provides a performance profile indicating the user's relative strengths and weaknesses, much like the report profile for the USMLE Step l exam. The profile is scaled with an average score of 500 and a standard deviation of 100. In addition to the performance profile, examinees will be informed of the number of questions answered incorrectly. You will have the ability to review the text of the incorrect question with the correct answer. Explanations for

TABLE 2. CBSE to USMLE Score Prediction.

CBSE Score	Step 1 Equivalent
≥ 94	≥ 260
92	255
90	250
88	245
86	240
84	235
82	230
80	225
78	220
76	215
74	210
72	205
70	200
68	195
66	190
64	185
62	180
60	175
58	170
56	165
54	160
52	155
50	150
48	145
46	140
≤ 44	≤ 135

[^2]
TABLE 3. CBSSA to USMLE Score

 Prediction.| CBSSA
 Score | Approximate
 USMLE Step 1 Score |
| :---: | :---: |
| 150 | 155 |
| 200 | 165 |
| 250 | 175 |
| 300 | 186 |
| 350 | 196 |
| 400 | 207 |
| 450 | 217 |
| 500 | 228 |
| 550 | 238 |
| 600 | 248 |
| 650 | 259 |
| 700 | 269 |
| 750 | 280 |
| 800 | 290 |

[^3][^4]the correct answer, however, will not be provided. The NBME charges $\$ 60$ for assessments with expanded feedback. The fees are payable by credit card or money order. For more information regarding the CBSE and the CBSSA, visit the NBME's website at www.nbme.org.

The NBME scoring system is weighted for each assessment exam. While some exams seem more difficult than others, the score reported takes into account these inter-test differences when predicting Step 1 performance. Also, while many students report seeing Step 1 questions "word-for-word" out of the assessments, the NBME makes special note that no live USMLE questions are shown on any NBME assessment.

Lastly, the International Foundations of Medicine (IFOM) offers a Basic Science Examination (BSE) practice exam at participating Prometric test centers for $\$ 200$. Students may also take the self-assessment test online for $\$ 35$ through the NBME's website. The IFOM BSE is intended to determine an examinee's relative areas of strength and weakness in general areas of basic science - not to predict performance on the USMLE Step 1 exam - and the content covered by the two examinations is somewhat different. However, because there is substantial overlap in content coverage and many IFOM items were previously used on the USMLE Step l, it is possible to roughly project IFOM performance onto the USMLE Step l score scale. More information is available at http://www.nbme.org/ifom/.

DEFINING YOUR GOAL

It is useful to define your own personal performance goal when approaching the USMLE Step l. Your style and intensity of preparation can then be matched to your goal. Furthermore, your goal may depend on your school's requirements, your specialty choice, your grades to date, and your personal assessment of the test's importance. Do your best to define your goals early so that you can prepare accordingly.

The value of the USMLE Step 1 score in selecting residency applicants remains controversial, and some have called for less emphasis to be placed on the score when selecting or screening applicants. ${ }^{3}$ For the time being, however, it continues to be an important part of the residency application, and it is not uncommon for some specialties to implement filters that screen out applicants who score below a certain cutoff. This is more likely to be seen in competitive specialties (eg, orthopedic surgery, ophthalmology, dermatology, otolaryngology). Independent of your career goals, you can maximize your future options by doing your best to obtain the highest score possible (see Figure 3). At the same time, your Step 1 score is only one of a number of factors that are assessed when you apply for residency. In fact, many residency programs value other criteria such as letters of recommendation, third-year clerkship grades, honors, and research experience more than a high score on Step 1. Fourth-year medical students who have recently completed the residency application process can be a valuable resource in this regard.

FIGURE 3. Median USMLE Step 1 Score by Specialty for Matched US Seniors.a, ${ }^{\text {a,b }}$

. Charting outcomes in the match. https://www.nrmp.org/wp-content/uploads/2016/09/Charting-Outcomes-US-Allopathic-Seniors-2016.pdf. Published September 1, 2016. Accessed October 1, 2017. Ophthalmology data from SF Match Residency and Fellowship Matching Services. Ophthalmology residency. https://www.sfmatch.org/PDFFilesDisplay/Ophthalmology_Residency_Stats_2017.pdf. Accessed October 1, 2017.

LEARNING STRATEGIES

Many students feel overwhelmed during the preclinical years and struggle to find an effective learning strategy. Table 4 lists several learning strategies you can try and their estimated effectiveness for Step 1 preparation based on the literature (see References). These are merely suggestions, and it's important to take your learning preferences into account. Your comprehensive learning approach will contain a combination of strategies (eg, elaborative interrogation followed by practice testing, mnemonics review using spaced repetition, etc). Regardless of your choice, the foundation of knowledge you build during your basic science years is the most important resource for success on the USMLE Step 1.

HIGH EFFICACY

Practice Testing

Also called "retrieval practice," practice testing has both direct and indirect benefits to the learner. ${ }^{4}$ Effortful retrieval of answers does not only identify weak spots - it directly strengthens long-term retention of material. ${ }^{5}$ The more effortful the recall, the better the long-term retention. This advantage has been shown to result in higher test scores and GPAs. ${ }^{6}$ In fact, research has shown a positive correlation between the number of boards-style practice questions completed and Step 1 scores among medical students. ${ }^{7}$

Practice testing should be done with "interleaving" (mixing of questions from different topics in a single session). Question banks often allow you to intermingle topics. Interleaved practice helps learners develop their ability to focus on the relevant concept when faced with many possibilities. Practicing topics in massed fashion (eg, all cardiology, then all dermatology) may seem intuitive, but there is strong evidence that interleaving correlates with longer-

- The foundation of knowledge you build during your basic science years is the most important resource for success on the USMLE Step 1.

- Research has shown a positive correlation between the number of boards-style practice questions completed and Step 1 scores among medical students.

TABLE 4. Effective Learning Strategies.

EFFICACY	STRATEGY	EXAMPLE RESOURCES
High efficacy	Practice testing	UWorld Qbank NBME Self-Assessments USMLE-Rx QMax Kaplan Qbank
	Distributed practice	USMLE-Rx Flash Facts Anki Firecracker Memorang Osmosis
Moderate efficacy	Mnemonics	Pre-made: SketchyMedical Picmonic Self-made: Mullen Memory
	Elaborative interrogation/ self-explanation	
	Concept mapping	Coggle FreeMind XMind MindNode
Low efficacy	Rereading	
	Highlighting/underlining	
	Summarization	

term retention and increased student achievement, especially on tasks that involve problem solving. ${ }^{5}$

In addition to using question banks, you can test yourself by arranging your notes in a question-answer format (eg, via flash cards). Testing these Q\&As in random order allows you to reap the benefit of interleaved practice. Bear in mind that the utility of practice testing comes from the practice of information retrieval, so simply reading through Q\&As will attenuate this benefit.

Distributed Practice

Also called "spaced repetition," distributed practice is the opposite of massed practice or "cramming." Learners review material at increasingly spaced out intervals (days to weeks to months). Massed learning may produce more shortterm gains and satisfaction, but learners who use distributed practice have better mastery and retention over the long term. ${ }^{5,9}$

Flash cards are a simple way to incorporate both distributed practice and practice testing. Studies have linked spaced repetition learning with flash cards
to improved long-term knowledge retention and higher exam scores. ${ }^{6,8,10}$ Apps with automated spaced-repetition software (SRS) for flash cards exist for smartphones and tablets, so the cards are accessible anywhere. Proceed with caution: there is an art to making and reviewing cards. The ease of quickly downloading or creating digital cards can lead to flash card overload (it is unsustainable to make 50 flash cards per lecture!). Even at a modest pace, the thousands upon thousands of cards are too overwhelming for Step 1 preparation. Unless you have specific high-yield cards (and have checked the content with high-yield resources), stick to pre-made cards by reputable sources that curate the vast amount of knowledge for you.

If you prefer pen and paper, consider using a planner or spreadsheet to organize your study material over time. Distributed practice allows for some forgetting of information, and the added effort of recall over time strengthens the learning.

MODERATE EFFICACY

Mnemonics

A "mnemonic" refers to any device that assists memory, such as acronyms, mental imagery (eg, keywords with or without memory palaces), etc. Keyword mnemonics have been shown to produce superior knowledge retention when compared with rote memorization in many scenarios. However, they are generally more effective when applied to memorization-heavy, keywordfriendly topics and may not be broadly suitable. ${ }^{5}$ Keyword mnemonics may not produce long-term retention, so consider combining mnemonics with distributed, retrieval-based practice (eg, via flash cards with SRS).

Self-made mnemonics may have an advantage when material is simple and keyword friendly. If you can create your own mnemonic that accurately represents the material, this will be more memorable. When topics are complex and accurate mnemonics are challenging to create, pre-made mnemonics may be more effective, especially if you are inexperienced at creating mnemonics. ${ }^{11}$

Elaborative Interrogation/Self-Explanation

Elaborative interrogation ("why" questions) and self-explanation (general questioning) prompt learners to generate explanations for facts. When reading passages of discrete facts, consider using these techniques, which have been shown to be more effective than rereading (eg, improved recall and better problem-solving/diagnostic performance).5,12,13

Concept Mapping

Concept mapping is a method for graphically organizing knowledge, with concepts enclosed in boxes and lines drawn between related concepts.

- Studies have linked spaced repetition learning with flash cards to improved longterm knowledge retention and higher exam scores.
- Elaborative interrogation and selfexplanation prompt learners to generate explanations for facts, which improves recall and problem solving.

Creating or studying concept maps may be more effective than other activities (eg, writing or reading summaries/outlines). However, studies have reached mixed conclusions about its utility, and the small size of this effect raises doubts about its authenticity and pedagogic significance. ${ }^{14}$

LOW EFFICACY

Rereading

While the most commonly used method among surveyed students, rereading has not been shown to correlate with grade point average. ${ }^{9}$ Due to its popularity, rereading is often a comparator in studies on learning. Other strategies that we have discussed (eg, practice testing) have been shown to be significantly more effective than rereading.

Highlighting/Underlining

Because this method is passive, it tends to be of minimal value for learning and recall. In fact, lower-performing students are more likely to use these techniques. ${ }^{9}$ Students who highlight and underline do not learn how to actively recall learned information and thus find it difficult to apply knowledge to exam questions.

Summarization

While more useful for improving performance on generative measures (eg, free recall or essays), summarization is less useful for exams that depend on recognition (eg, multiple choice). Findings on the overall efficacy of this method have been mixed. ${ }^{5}$

- TIMELINE FOR STUDY

Before Starting

Your preparation for the USMLE Step 1 should begin when you enter medical school. Organize and commit to studying from the beginning so that when the time comes to prepare for the USMLE, you will be ready with a strong foundation.

Make a Schedule

After you have defined your goals, map out a study schedule that is consistent with your objectives, your vacation time, the difficulty of your ongoing coursework, and your family and social commitments (see Figure 4). Determine whether you want to spread out your study time or concentrate it into 14 -hour study days in the final weeks. Then factor in your own history in

FI G URE 4. Typical Timeline for the USMLE Step 1.

preparing for standardized examinations (eg, SAT, MCAT). Talk to students at your school who have recently taken Step l. Ask them for their study schedules, especially those who have study habits and goals similar to yours.

Typically, US medical schools allot between four and eight weeks for dedicated Step 1 preparation. The time you dedicate to exam preparation will depend on your target score as well as your success in preparing yourself during the first two years of medical school. Some students reserve about a week at the end of their study period for final review; others save just a few days. When you have scheduled your exam date, do your best to adhere to it. Studies show that a later testing date does not translate into a higher score, so avoid pushing back your test date without good reason. ${ }^{15}$

Make your schedule realistic, and set achievable goals. Many students make the mistake of studying at a level of detail that requires too much time for a comprehensive review - reading Gray's Anatomy in a couple of days is not a realistic goal! Have one catch-up day per week of studying. No matter how well you stick to your schedule, unexpected events happen. But don't let yourself procrastinate because you have catch-up days; stick to your schedule as closely as possible and revise it regularly on the basis of your actual progress. Be careful not to lose focus. Beware of feelings of inadequacy when comparing study schedules and progress with your peers. Avoid others who stress you out. Focus on a few top-rated resources that suit your learning style - not on some obscure books your friends may pass down to you. Accept the fact that you cannot learn it all.

You will need time for uninterrupted and focused study. Plan your personal affairs to minimize crisis situations near the date of the test. Allot an adequate number of breaks in your study schedule to avoid burnout. Maintain a healthy lifestyle with proper diet, exercise, and sleep.

Another important aspect of your preparation is your studying environment. Study where you have always been comfortable studying. Be sure to include everything you need close by (review books, notes, coffee, snacks, etc). If you're the kind of person who cannot study alone, form a study group with other students taking the exam. The main point here is to create a comfortable environment with minimal distractions.

Customize your schedule. Tackle your weakest
section first.

- "Crammable" subjects should be covered later and less crammable subjects earlier.
- Avoid burnout. Maintain proper diet, exercise, and sleep habits.

- Buy review books early (first year) and use while studying for courses.

[^5]
Year(s) Prior

The knowledge you gained during your first two years of medical school and even during your undergraduate years should provide the groundwork on which to base your test preparation. Student scores on NBME subject tests (commonly known as "shelf exams") have been shown to be highly correlated with subsequent Step 1 scores. ${ }^{16}$ Moreover, undergraduate science GPAs as well as MCAT scores are strong predictors of performance on the Step 1 exam. ${ }^{17}$

We also recommend that you buy highly rated review books early in your first year of medical school and use them as you study throughout the two years. When Step 1 comes along, these books will be familiar and personalized to the way in which you learn. It is risky and intimidating to use unfamiliar review books in the final two or three weeks preceding the exam. Some students find it helpful to personalize and annotate First Aid throughout the curriculum.

Months Prior

Review test dates and the application procedure. Testing for the USMLE Step 1 is done on a year-round basis. If you have disabilities or special circumstances, contact the NBME as early as possible to discuss test accommodations (see the Section I Supplement at www.firstaidteam.com/bonus).

Use this time to finalize your ideal schedule. Consider upcoming breaks and whether you want to relax or study. Work backward from your test date to make sure you finish at least one question bank. Also add time to redo missed or flagged questions (which may be half the bank). This is the time to build a structured plan with enough flexibility for the realities of life.

Begin doing blocks of questions from reputable question banks under "real" conditions. Don't use tutor mode until you're sure you can finish blocks in the allotted time. It is important to continue balancing success in your normal studies with the Step l test preparation process.

Weeks Prior (Dedicated Preparation)

Your dedicated prep time may be one week or two months. You should have a working plan as you go into this period. Finish your schoolwork strong, take a day off, and then get to work. Start by simulating a full-length USMLE Step 1 if you haven't yet done so. Consider doing one NBME CBSSA and the free questions from the NBME website. Alternatively, you could choose 7 blocks of randomized questions from a commercial question bank. Make sure you get feedback on your strengths and weaknesses and adjust your studying accordingly. Many students study from review sources or comprehensive programs for part of the day, then do question blocks. Also, keep in mind that reviewing a question block can take upward of two hours. Feedback from CBSSA exams and question banks will help you focus on your weaknesses.

One Week Prior

Make sure you have your CIN (found on your scheduling permit) as well as other items necessary for the day of the examination, including a current driver's license or another form of photo ID with your signature (make sure the name on your ID exactly matches that on your scheduling permit). Confirm the Prometric testing center location and test time. Work out how you will get to the testing center and what parking and traffic problems you might encounter. Drive separately from other students taking the test on the same day, and exchange cell phone numbers in case of emergencies. If possible, visit the testing site to get a better idea of the testing conditions you will face. Determine what you will do for lunch. Make sure you have everything you need to ensure that you will be comfortable and alert at the test site. It may be beneficial to adjust your schedule to start waking up at the same time that you will on your test day. And of course, make sure to maintain a healthy lifestyle and get enough sleep.

One Day Prior

Try your best to relax and rest the night before the test. Double-check your admissions and test-taking materials as well as the comfort measures discussed earlier so that you will not have to deal with such details on the morning of the exam. At this point it will be more effective to review short-term memory material that you're already familiar with than to try to learn new material. The Rapid Review section at the end of this book is high yield for last-minute studying. Remember that regardless of how hard you have studied, you cannot know everything. There will be things on the exam that you have never even seen before, so do not panic. Do not underestimate your abilities.

Many students report difficulty sleeping the night prior to the exam. This is often exacerbated by going to bed much earlier than usual. Do whatever it takes to ensure a good night's sleep (eg, massage, exercise, warm milk, no back-lit screens at night). Do not change your daily routine prior to the exam. Exam day is not the day for a caffeine-withdrawal headache.

Morning of the Exam

On the morning of the Step 1 exam, wake up at your regular time and eat a normal breakfast. If you think it will help you, have a close friend or family member check to make sure you get out of bed. Make sure you have your scheduling permit admission ticket, test-taking materials, and comfort measures as discussed earlier. Wear loose, comfortable clothing. Plan for a variable temperature in the testing center. Arrive at the test site 30 minutes before the time designated on the admission ticket; however, do not come too early, as doing so may intensify your anxiety. When you arrive at the test site, the proctor should give you a USMLE information sheet that will explain critical factors such as the proper use of break time. Seating may be assigned, but ask to be reseated if necessary; you need to be seated in an area that

One week before the test:

- Sleep according to the same schedule you'll use on test day
- Review the CBT tutorial one last time
- Call Prometric to confirm test date and time

[^6]- Arrive at the testing center 30 minutes before your scheduled exam time. If you arrive more than half an hour late, you will not be allowed to take the test.
- If a given review book is not working for you, stop using it no matter how highly rated it may be or how much it costs.
will allow you to remain comfortable and to concentrate. Get to know your testing station, especially if you have never been in a Prometric testing center before. Listen to your proctors regarding any changes in instructions or testing procedures that may apply to your test site.

Finally, remember that it is natural (and even beneficial) to be a little nervous. Focus on being mentally clear and alert. Avoid panic. When you are asked to begin the exam, take a deep breath, focus on the screen, and then begin. Keep an eye on the timer. Take advantage of breaks between blocks to stretch, maybe do some jumping jacks, and relax for a moment with deep breathing or stretching.

After the Test

After you have completed the exam, be sure to have fun and relax regardless of how you may feel. Taking the test is an achievement in itself. Remember, you are much more likely to have passed than not. Enjoy the free time you have before your clerkships. Expect to experience some "reentry" phenomena as you try to regain a real life. Once you have recovered sufficiently from the test (or from partying), we invite you to send us your feedback, corrections, and suggestions for entries, facts, mnemonics, strategies, resource ratings, and the like (see p. xvii, How to Contribute). Sharing your experience will benefit fellow medical students and IMGs.

STUDY MATERIALS

Quality Considerations

Although an ever-increasing number of review books and software are now available on the market, the quality of such material is highly variable. Some common problems are as follows:

- Certain review books are too detailed to allow for review in a reasonable amount of time or cover subtopics that are not emphasized on the exam.
- Many sample question books were originally written years ago and have not been adequately updated to reflect recent trends.
- Some question banks test to a level of detail that you will not find on the exam.

Review Books

In selecting review books, be sure to weigh different opinions against each other, read the reviews and ratings in Section IV of this guide, examine the books closely in the bookstore, and choose carefully. You are investing not only money but also your limited study time. Do not worry about finding the "perfect" book, as many subjects simply do not have one, and different students prefer different formats. Supplement your chosen books with personal notes from other sources, including what you learn from question banks.

There are two types of review books: those that are stand-alone titles and those that are part of a series. Books in a series generally have the same style, and you must decide if that style works for you. However, a given style is not optimal for every subject.

You should also find out which books are up to date. Some recent editions reflect major improvements, whereas others contain only cursory changes. Take into consideration how a book reflects the format of the USMLE Step 1.

Apps

With the explosion of smartphones and tablets, apps are an increasingly popular way to review for the Step 1 exam. The majority of apps are compatible with both iOS and Android. Many popular Step 1 review resources (eg, UWorld, USMLE-Rx) have apps that are compatible with their software. Many popular web references (eg, UpToDate) also now offer app versions. All of these apps offer flexibility, allowing you to study while away from a computer (eg, while traveling).

Practice Tests

Taking practice tests provides valuable information about potential strengths and weaknesses in your fund of knowledge and test-taking skills. Some students use practice examinations simply as a means of breaking up the monotony of studying and adding variety to their study schedule, whereas other students rely almost solely on practice. You should also subscribe to one or more high-quality question banks. In addition, students report that many current practice-exam books have questions that are, on average, shorter and less clinically oriented than those on the current USMLE Step 1.

Additionally, some students preparing for the Step 1 exam have started to incorporate case-based books intended primarily for clinical students on the wards or studying for the Step 2 CK exam. First Aid Cases for the USMLE Step 1 aims to directly address this need.

After taking a practice test, spend time on each question and each answer choice whether you were right or wrong. There are important teaching points in each explanation. Knowing why a wrong answer choice is incorrect is just as important as knowing why the right answer is correct. Do not panic if your practice scores are low as many questions try to trick or distract you to highlight a certain point. Use the questions you missed or were unsure about to develop focused plans during your scheduled catch-up time.

Textbooks and Course Syllabi

Limit your use of textbooks and course syllabi for Step 1 review. Many textbooks are too detailed for high-yield review and include material that is generally not tested on the USMLE Step 1 (eg, drug dosages, complex chemical structures). Syllabi, although familiar, are inconsistent across

- Charts and diagrams may be the best approach for physiology and biochemistry, whereas tables and outlines may be preferable for microbiology.
- Most practice exams are shorter and less clinical than the real thing.

[^7]medical schools and frequently reflect the emphasis of individual faculty, which often does not correspond to that of the USMLE Step 1. Syllabi also tend to be less organized than top-rated books and generally contain fewer diagrams and study questions.

TEST-TAKING STRATEGIES

- Practice! Develop your test-taking skills and strategies well before the test date.
time management is an important skill for exam success.

Your test performance will be influenced by both your knowledge and your test-taking skills. You can strengthen your performance by considering each of these factors. Test-taking skills and strategies should be developed and perfected well in advance of the test date so that you can concentrate on the test itself. We suggest that you try the following strategies to see if they might work for you.

Pacing

You have seven hours to complete up to 280 questions. Note that each onehour block contains up to 40 questions. This works out to approximately 90 seconds per question. We recommend following the "l minute rule" to pace yourself. Spend no more than 1 minute on each question. If you are still unsure about the answer after this time, mark the question, make an educated guess, and move on. Following this rule, you should have approximately 20 minutes left after all questions are answered, which you can use to revisit all of your marked questions. Remember that some questions may be experimental and do not count for points (and reassure yourself that these experimental questions are the ones that are stumping you). In the past, pacing errors have been detrimental to the performance of even highly prepared examinees. The bottom line is to keep one eye on the clock at all times!

Dealing with Each Question

There are several established techniques for efficiently approaching multiple choice questions; find what works for you. One technique begins with identifying each question as easy, workable, or impossible. Your goal should be to answer all easy questions, resolve all workable questions in a reasonable amount of time, and make quick and intelligent guesses on all impossible questions. Most students read the stem, think of the answer, and turn immediately to the choices. A second technique is to first skim the answer choices to get a context, then read the last sentence of the question (the lead-in), and then read through the passage quickly, extracting only information relevant to answering the question. This can be particularly helpful for questions with long clinical vignettes. Try a variety of techniques on practice exams and see what works best for you. If you get overwhelmed, remember that a 30 -second time out to refocus may get you back on track.

Guessing

There is no penalty for wrong answers. Thus, no test block should be left with unanswered questions. A hunch is probably better than a random guess. If you have to guess, we suggest selecting an answer you recognize over one with which you are totally unfamiliar.

Changing Your Answer

The conventional wisdom is not to change answers that you have already marked unless there is a convincing and logical reason to do so-in other words, go with your "first hunch." Many question banks tell you how many questions you changed from right to wrong, wrong to wrong, and wrong to right. Use this feedback to judge how good a second-guesser you are. If you have extra time, reread the question stem and make sure you didn't misinterpret the question.

- LINICAL VIGNETTE STRATEGIES

In recent years, the USMLE Step 1 has become increasingly clinically oriented. This change mirrors the trend in medical education toward introducing students to clinical problem solving during the basic science years. The increasing clinical emphasis on Step 1 may be challenging to those students who attend schools with a more traditional curriculum.

What Is a Clinical Vignette?

A clinical vignette is a short (usually paragraph-long) description of a patient, including demographics, presenting symptoms, signs, and other information concerning the patient. Sometimes this paragraph is followed by a brief listing of important physical findings and/or laboratory results. The task of assimilating all this information and answering the associated question in the span of one minute can be intimidating. So be prepared to read quickly and think on your feet. Remember that the question is often indirectly asking something you already know.

Strategy

Remember that Step 1 vignettes usually describe diseases or disorders in their most classic presentation. So look for cardinal signs (eg, malar rash for SLE or nuchal rigidity for meningitis) in the narrative history. Be aware that the question will contain classic signs and symptoms instead of buzzwords. Sometimes the data from labs and the physical exam will help you confirm or reject possible diagnoses, thereby helping you rule answer choices in or out. In some cases, they will be a dead giveaway for the diagnosis.

- Go with your first hunch, unless you are certain that you are a good second-guesser.
- Be prepared to read fast and think on your feet!
- Practice questions that include case histories or descriptive vignettes are critical for Step 1 preparation.
- Step 1 vignettes usually describe diseases or disorders in their most classic presentation.

Making a diagnosis from the history and data is often not the final answer. Not infrequently, the diagnosis is divulged at the end of the vignette, after you have just struggled through the narrative to come up with a diagnosis of your own. The question might then ask about a related aspect of the diagnosed disease. Consider skimming the answer choices and lead-in before diving into a long stem. However, be careful with skimming the answer choices; going too fast may warp your perception of what the vignette is asking.

- IF YOU THINK YOU FAILED

After the test, many examinees feel that they have failed, and most are at the very least unsure of their pass/fail status. There are several sensible steps you can take to plan for the future in the event that you do not achieve a passing score. First, save and organize all your study materials, including review books, practice tests, and notes. Familiarize yourself with the reapplication procedures for Step 1, including application deadlines and upcoming test dates.

Make sure you know both your school's and the NBME's policies regarding retakes. The NBME allows a maximum of six attempts to pass each Step examination. ${ }^{18}$ You may take Step 1 no more than three times within a 12 -month period. Your fourth and subsequent attempts must be at least 12 months after your first attempt at that exam and at least six months after your most recent attempt at that exam.

The performance profiles on the back of the USMLE Step 1 score report provide valuable feedback concerning your relative strengths and weaknesses. Study these profiles closely. Set up a study timeline to strengthen gaps in your knowledge as well as to maintain and improve what you already know. Do not neglect high-yield subjects. It is normal to feel somewhat anxious about retaking the test, but if anxiety becomes a problem, seek appropriate counseling.

- TESTING AGENCIES

[^8]\author{

- Educational Commission for Foreign Medical Graduates (ECFMG) 3624 Market Street
 Philadelphia, PA 19104-2685
 (215) 386-5900
 Fax: (215) 386-9196
 Email: info@ecfmg.org
 www.ecfmg.org
}

REFERENCES

1. United States Medical Licensing Examination. Available from: http:// www.usmle.org/bulletin/exam-content. Accessed September 25, 2017.
2. United States Medical Licensing Examination. 2016 Performance Data. Available from: http://www.usmle.org/performance-data/default.aspx\#2015 step-l. Accessed September 25, 2017.
3. Prober CG, Kolars JC, First LR, et al. A plea to reassess the role of United States Medical Licensing Examination Step 1 scores in residency selection. Acad Med. 2016;91(1):12-15.
4. Roediger HL, Butler AC. The critical role of retrieval practice in long-term retention. Trends Cogn Sci. 2011;15(1):20-27.
5. Dunlosky J, Rawson KA, Marsh EJ, et al. Improving students' learning with effective learning techniques: promising directions from cognitive and educational psychology. Psychol Sci Publ Int. 2013;14(1):4-58.
6. Larsen DP, Butler AC, Lawson AL, et al. The importance of seeing the patient: test-enhanced learning with standardized patients and written tests improves clinical application of knowledge. Adv Health Sci Educ. 2013;18(3):409-425.
7. Panus PC, Stewart DW, Hagemeier NE, et al. A subgroup analysis of the impact of self-testing frequency on examination scores in a pathophysiology course. Am J Pharm Educ. 2014;78(9):165.
8. Deng F, Gluckstein JA, Larsen DP. Student-directed retrieval practice is a predictor of medical licensing examination performance. Perspect Med Educ. 2015;4(6):308-313.
9. McAndrew M, Morrow CS, Atiyeh L, et al. Dental student study strategies: are self-testing and scheduling related to academic performance? J Dent Educ. 2016;80(5):542-552.
10. Augustin M. How to learn effectively in medical school: test yourself, learn actively, and repeat in intervals. Yale J Biol Med. 2014;87(2):207-212.
11. Bellezza FS. Mnemonic devices: classification, characteristics, and criteria. Rev Educ Res. 1981;51(2):247-275.
12. Dyer J-O, Hudon A, Montpetit-Tourangeau K, et al. Example-based learning: comparing the effects of additionally providing three different integrative learning activities on physiotherapy intervention knowledge. BMC Med Educ. 2015;15:37.
13. Chamberland M, Mamede S, St-Onge C, et al. Self-explanation in learning clinical reasoning: the added value of examples and prompts. Med Educ. 2015;49(2):193-202.
14. Nesbit JC, Adesope OO. Learning with concept and knowledge maps: a meta-analysis. Rev Educ Res. 2006;76(3):413-448.
15. Pohl CA, Robeson MR, Hojat M, et al. Sooner or later? USMLE Step l performance and test administration date at the end of the second year. Acad Med. 2002;77(10):S17-S19.
16. Holtman MC, Swanson DB, Ripkey DR, et al. Using basic science subject tests to identify students at risk for failing Step 1. Acad Med. 2001;76(10):S48-S51.
17. Basco WT, Way DP, Gilbert GE, et al. Undergraduate institutional MCAT scores as predictors of USMLE Step 1 performance. Acad Med. 2002;77(10):S13-S16.
18. United States Medical Licensing Examination. 2018 USMLE Bulletin of Information. Available from: http://www.usmle.org/pdfs/bulletin/ 2018bulletin.pdf. Accessed September 25, 2017.

SECTION I SUPPLEMENT

Special Situations

Please visit www.firstaidteam.com/bonus/ to view this section.

First Aid for the
Osteopathic Medical Student

First Aid for the Podiatric
Medical Student
$>$ First Aid for the
Student Requiring Test Accommodations

SECTION II

High-Yield General Principles

"There comes a time when for every addition of knowledge you forget something that you knew before. It is of the highest importance, therefore, not to have useless facts elbowing out the useful ones."
-Sir Arthur Conan Doyle, A Study in Scarlet
"Never regard study as a duty, but as the enviable opportunity to learn."
-Albert Einstein
"Live as if you were to die tomorrow. Learn as if you were to live forever."
-Gandhi

D How to Use the Database	30
> Biochemistry	33
- Immunology	95
> Microbiology	123
> Pathology	205
> Pharmacology	227
> Public Health	
Sciences	251

- HOW TO USE THE DATABASE

The 2018 edition of First Aid for the USMLE Step 1 contains a revised and expanded database of basic science material that students, student authors, and faculty authors have identified as high yield for board review. The information is presented in a partially organ-based format. Hence, Section II is devoted to the foundational principles of biochemistry, microbiology, immunology, basic pathology, basic pharmacology, and public health sciences. Section III focuses on organ systems, with subsections covering the embryology, anatomy and histology, physiology, clinical pathology, and clinical pharmacology relevant to each. Each subsection is then divided into smaller topic areas containing related facts. Individual facts are generally presented in a three-column format, with the Title of the fact in the first column, the Description of the fact in the second column, and the Mnemonic or Special Note in the third column. Some facts do not have a mnemonic and are presented in a two-column format. Others are presented in list or tabular form in order to emphasize key associations.

The database structure used in Sections II and III is useful for reviewing material already learned. These sections are not ideal for learning complex or highly conceptual material for the first time.

The database of high-yield facts is not comprehensive. Use it to complement your core study material and not as your primary study source. The facts and notes have been condensed and edited to emphasize the essential material, and as a result, each entry is "incomplete" and arguably "over-simplified." Often, the more you research a topic, the more complex it becomes, with certain topics resisting simplification. Work with the material, add your own notes and mnemonics, and recognize that not all memory techniques work for all students.

We update the database of high-yield facts annually to keep current with new trends in boards emphasis, including clinical relevance. However, we must note that inevitably many other high-yield topics are not yet included in our database.

We actively encourage medical students and faculty to submit high-yield topics, well-written entries, diagrams, clinical images, and useful mnemonics so that we may enhance the database for future students. We also solicit recommendations of alternate tools for study that may be useful in preparing for the examination, such as charts, flash cards, apps, and online resources (see How to Contribute, p. xvii).

Image Acknowledgments

All images and diagrams marked with 圆 are © USMLE-Rx.com (MedIQ Learning, LLC) and reproduced here by special permission. All images marked with [iv are © Dr. Richard P. Usatine, author of The Color Atlas of Family Medicine, The Color Atlas of Internal Medicine, and The Color Atlas of Pediatrics, and are reproduced here by special permission (www. usatinemedia.com). Images and diagrams marked with 圃 are adapted or reproduced with permission of other sources as listed on page 707. Images and diagrams with no acknowledgment are part of this book.

Disclaimer

The entries in this section reflect student opinions of what is high yield. Because of the diverse sources of material, no attempt has been made to trace or reference the origins of entries individually. We have regarded mnemonics as essentially in the public domain. Errata will gladly be corrected if brought to the attention of the authors, either through our online errata submission form at www.firstaidteam.com or directly by email to firstaidteam@yahoo.com.

HIGH-YIELD PRINCIPLES IN

Biochemistry

"Biochemistry is the study of carbon compounds that crawl."
-Mike Adams
"We think we have found the basic mechanism by which life comes from life."
-Francis H. C. Crick
"The biochemistry and biophysics are the notes required for life; they conspire, collectively, to generate the real unit of life, the organism."
-Ursula Goodenough

This high-yield material includes molecular biology, genetics, cell biology, and principles of metabolism (especially vitamins, cofactors, minerals, and single-enzyme-deficiency diseases). When studying metabolic pathways, emphasize important regulatory steps and enzyme deficiencies that result in disease, as well as reactions targeted by pharmacologic interventions. For example, understanding the defect in Lesch-Nyhan syndrome and its clinical consequences is higher yield than memorizing every intermediate in the purine salvage pathway. Do not spend time on hard-core organic chemistry, mechanisms, or physical chemistry. Detailed chemical structures are infrequently tested; however, many structures have been included here to help students learn reactions and the important enzymes involved. Familiarity with the biochemical techniques that have medical relevance-such as ELISA, immunoelectrophoresis, Southern blotting, and PCR-is useful. Review the related biochemistry when studying pharmacology or genetic diseases as a way to reinforce and integrate the material.

$>$ Molecular	34
Cellular	46
Laboratory Techniques	52
Genetics	56
Nutrition	65
Metabolism	72

BIOCHEMISTRY-MOLECULAR

Chromatin structure

DNA exists in the condensed, chromatin form to fit into the nucleus. DNA loops twice around a histone octamer to form a nucleosome ("beads on a string"). Hl binds to the nucleosome and to "linker DNA," thereby stabilizing the chromatin fiber.
Phosphate groups give DNA a \ominus charge. Lysine and arginine give histones a \oplus charge.
In mitosis, DNA condenses to form chromosomes. DNA and histone synthesis occurs during S phase.
Mitochondria have their own DNA, which is circular and does not utilize histones.

Heterochromatin Condensed, appears darker on EM (labeled

Euchromatin

DNA methylation

Histone methylation

Less condensed, appears lighter on EM (labeled E in A). Transcriptionally active, sterically accessible.
Changes the expression of a DNA segment without changing the sequence. Involved with genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis.

Usually causes reversible transcriptional \downarrow acetylation. suppression, but can also cause activation depending on location of methyl groups.
Histone acetylation Relaxes DNA coiling, allowing for transcription. Histone Acetylation makes DNA Active.

HeteroChromatin $=$ Highly Condensed.
Barr bodies (inactive X chromosomes) may be visible on the periphery of nucleus.
$E u=$ true, "truly transcribed."
Euchromatin is Expressed.

DNA is methylated in imprinting.
Methylation within gene promoter (CpG islands) typically represses gene transcription. CpG Methylation Makes DNA Mute.

Histone Methylation Mostly Makes DNA Mute.

[^9]De novo pyrimidine and purine synthesis

Various immunosuppressive, antineoplastic, and antibiotic drugs function by interfering with nucleotide synthesis:

Pyrimidine synthesis:

- Leflunomide: inhibits dihydroorotate dehydrogenase
- Methotrexate (MTX), trimethoprim (TMP), and pyrimethamine: inhibit dihydrofolate reductase (\downarrow deoxythymidine monophosphate [dTMP]) in humans, bacteria, and protozoa, respectively
- 5-fluorouracil (5-FU) and its prodrug capecitabine: form 5-F-dUMP, which inhibits thymidylate synthase ($\downarrow \mathrm{dTMP}$)

Purine synthesis:

- 6-mercaptopurine (6-MP) and its prodrug azathioprine: inhibit de novo purine synthesis
- Mycophenolate and ribavirin: inhibit inosine monophosphate dehydrogenase

Purine and pyrimidine synthesis:

- Hydroxyurea: inhibits ribonucleotide reductase

CPS1 $=$ mltochondria (urea cycle)
CPS2 $=$ сyTWOsol

Purine salvage deficiencies

Genetic code features

Unambiguous	Each codon specifies only 1 amino acid.	
Degenerate/ redundant	Most amino acids are coded by multiple codons. Wobble - codons that differ in 3rd, "wobble" position may code for the same tRNA/amino acid. Specific base pairing is usually required only in the first 2 nucleotide positions of mRNA codon.	Exceptions: methionine (AUG) and tryptophan (UGG) encoded by only l codon.
Commaless, nonoverlapping	Read from a fixed starting point as a continuous sequence of bases.	Exceptions: some viruses.
Universal	Genetic code is conserved throughout evolution.	Exception in humans: mitochondria.

DNA replication

Origin of replication A	Particular consensus sequence of base pairs in genome where DNA replication begins. May be single (prokaryotes) or multiple (eukaryotes).	AT-rich sequences (such as TATA box regions) are found in promoters and origins of replication.
Replication fork [B]	Y-shaped region along DNA template where leading and lagging strands are synthesized.	
Helicase C	Unwinds DNA template at replication fork.	Helicase Halves DNA.
Single-stranded binding proteins	Prevent strands from reannealing.	
DNA topoisomerases \square	Create a single- or double-stranded break in the helix to add or remove supercoils.	In eukaryotes: irinotecan/topotecan inhibit topoisomerase (TOP) I, etoposide/teniposide inhibit TOP II. In prokaryotes: fluoroquinolones inhibit TOP II (DNA gyrase) and TOP IV.
Primase F	Makes an RNA primer on which DNA polymerase III can initiate replication.	
DNA polymerase III G	Prokaryotes only. Elongates leading strand by adding deoxynucleotides to the 3^{\prime} end. Elongates lagging strand until it reaches primer of preceding fragment. $3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity "proofreads" each added nucleotide.	DNA polymerase III has $5^{\prime} \rightarrow 3^{\prime}$ synthesis and proofreads with $3^{\prime} \rightarrow 5^{\prime}$ exonuclease. Drugs blocking DNA replication often have a modified $3^{\prime} \mathrm{OH}$, thereby preventing addition of the next nucleotide ("chain termination").
DNA polymerase IH	Prokaryotic only. Degrades RNA primer; replaces it with DNA.	Same functions as DNA polymerase III, also excises RNA primer with $5^{\prime} \rightarrow 3^{\prime}$ exonuclease.
DNA ligase \square	Catalyzes the formation of a phosphodiester bond within a strand of double-stranded DNA.	Joins Okazaki fragments. Ligase Links DNA.
Telomerase	Eukaryotes only. A reverse transcriptase (RNAdependent DNA polymerase) that adds DNA (TTAGGG) to 3^{\prime} ends of chromosomes to avoid loss of genetic material with every duplication.	Often dysregulated in cancer cells, allowing unlimited replication. Telomerase TAGs for Greatness and Glory.

Mutations in DNA	Severity of damage: silent \ll missense $<$ nonsense $<$ frameshift. For point (silent, missense, and nonsense) mutations: - Transition-purine to purine (eg, A to G) or pyrimidine to pyrimidine (eg, C to T). - Transversion - purine to pyrimidine (eg, A to T) or pyrimidine to purine (eg, C to G).	
Silent	Nucleotide substitution but codes for same (synonymous) amino acid; often base change in 3rd position of codon (tRNA wobble).	
Missense	Nucleotide substitution resulting in changed amino acid (called conservative if new amino acid is similar in chemical structure).	Sickle cell disease (substitution of glutamic acid with valine).
Nonsense	Nucleotide substitution resulting in early stop codon (UAG, UAA, UGA). Usually results in nonfunctional protein.	Stop the nonsense!
Frameshift	Deletion or insertion of a number of nucleotides not divisible by 3 , resulting in misreading of all nucleotides downstream. Protein may be shorter or longer, and its function may be disrupted or altered.	Duchenne muscular dystrophy, Tay-Sachs disease.
Splice site	Mutation at a splice site \rightarrow retained intron in the mRNA \rightarrow protein with impaired or altered function.	Rare cause of cancers, dementia, epilepsy, some types of β-thalassemia.

Lac operon

Classic example of a genetic response to an environmental change. Glucose is the preferred metabolic substrate in E coli, but when glucose is absent and lactose is available, the lac operon is activated to switch to lactose metabolism. Mechanism of shift:

- Low glucose $\rightarrow \uparrow$ adenylate cyclase activity $\rightarrow \uparrow$ generation of cAMP from ATP \rightarrow activation of catabolite activator protein (CAP) $\rightarrow \uparrow$ transcription.
- High lactose \rightarrow unbinds repressor protein from repressor/operator site $\rightarrow \uparrow$ transcription.

DNA repair
$\left.\begin{array}{|lll}\hline \text { Single strand } & \text { Nucleotide excision } \\ \text { repair }\end{array} \begin{array}{l}\text { Specific endonucleases release the } \\ \text { oligonucleotides containing damaged bases; } \\ \text { DNA polymerase and ligase fill and reseal the } \\ \text { gap, respectively. Repairs bulky helix-distorting } \\ \text { lesions. Occurs in Gl phase of cell cycle. }\end{array} \quad \begin{array}{c}\text { Defective in xeroderma pigmentosum (inability } \\ \text { to repair DNA pyrimidine dimers caused by } \\ \text { UV exposure). } \\ \text { Findings: dry skin, extreme light sensitivity, skin } \\ \text { cancer. }\end{array}\right]$

Start and stop codons

mRNA start codons	AUG (or rarely GUG).	AUG inAUGurates protein synthesis.
Eukaryotes	Codes for methionine, which may be removed before translation is completed.	
Prokaryotes	Codes for N-formylmethionine (fMet).	fMet stimulates neutrophil chemotaxis.
mRNA stop codons	UGA, UAA, UAG.	$\mathrm{UGA}=\mathrm{U}$ Go Away.
		$\mathrm{UAA}=\mathrm{U}$ Are Away.
	$\mathrm{UAG}=\mathrm{U}$ Are Gone.	

Functional organization of a eukaryotic gene	Transcription start (mRNA synthesized $5^{\prime} \rightarrow 3^{\prime}$)									
	DNA coding strand 5		AAT box TATA box			Exon 2	Polyadenylation signal			
			CAAT TATAAT	Exon 1	GT AG		GT AG	Exon 3 AATAAA	3^{\prime}	
			Promoter	5^{\prime} UTR	Intron 1	Intron 2		3' UTR 圂		
Regulation of gene expression										
Promoter	Site where RNA polymerase II and multiple other transcription factors bind to DNA upstream from gene locus (AT-rich upstream sequence with TATA and CAAT boxes).				Promoter mutation commonly results in dramatic \downarrow in level of gene transcription.					
Enhancer	DNA locus where regulatory proteins ("activators") bind \rightarrow increasing expression of a gene on the same chromosome.				Enhancers and silencers may be located close to, far from, or even within (in an intron) the gene whose expression it regulates.					
Silencer	DNA locus where regulatory proteins ("repressors") bind \rightarrow decreasing expression of a gene on the same chromosome.									
RNA polymerases										
Eukaryotes	RNA polymerase I makes rRNA, the most common (rampant) type; present only in nucleolus. RNA polymerase II makes mRNA (largest RNA massive). mRNA is read 5^{\prime} to 3^{\prime}. RNA polymerase III makes 5S rRNA, tRNA (smallest RNA, tiny). No proofreading function, but can initiate chains. RNA polymerase II opens DNA at promoter site.				I, II, and III are numbered in the same order that their products are used in protein synthesis: rRNA, mRNA, then tRNA. α-amanitin, found in Amanita phalloides (death cap mushrooms), inhibits RNA polymerase II. Causes severe hepatotoxicity if ingested. Actinomycin D inhibits RNA polymerase in both prokaryotes and eukaryotes.					
Prokaryotes	1 RNA polymerase (multisubunit complex) makes all 3 kinds of RNA.				Rifampin inhibits DNA-dependent RNA polymerase in prokaryotes.					

RNA processing (eukaryotes)

Initial transcript is called heterogeneous nuclear RNA (hnRNA). hnRNA is then modified and becomes mRNA.
The following processes occur in the nucleus:

- Capping of 5^{\prime} end (addition of 7-methylguanosine cap)
- Polyadenylation of 3' end (≈ 200 A's)
- Splicing out of introns

Capped, tailed, and spliced transcript is called mRNA.
mRNA is transported out of the nucleus into the cytosol, where it is translated.
mRNA quality control occurs at cytoplasmic processing bodies (P-bodies), which contain exonucleases, decapping enzymes, and microRNAs; mRNAs may be degraded or stored in P-bodies for future translation.
Poly-A polymerase does not require a template. AAUAAA = polyadenylation signal.

Splicing of pre-mRNA

Primary transcript combines with small nuclear ribonucleoproteins ($s n$ RNPs) and other proteins to form spliceosome.

Cleavage at 5^{\prime} splice site; lariatshaped (loop) intermediate is generated.

Cleavage at 3^{\prime} splice site; lariat is released to precisely remove intron and join 2 exons.

$+$

Introns vs exons

microRNAs

Exons contain the actual genetic information coding for protein.
Introns are intervening noncoding segments of DNA.
Different exons are frequently combined by alternative splicing to produce a larger number of unique proteins.
Alternative splicing can produce a variety of protein products from a single hnRNA sequence (eg, transmembrane vs secreted Ig, tropomyosin variants in muscle, dopamine receptors in the brain).

MicroRNAs (miRNAs) are small, conserved, noncoding RNA molecules that posttranscriptionally regulate gene expression by targeting the 3^{\prime} untranslated region of specific mRNAs for degradation or translational repression. Abnormal expression of miRNAs contributes to certain malignancies (eg, by silencing an mRNA from a tumor suppressor gene).

Initiation	Eukaryotic initiation factors (eIFs) identify either the 5' cap or an internal ribosome entry site (IRES). IRES can be located at many places in an mRNA (most often 5^{\prime} UTR). The eIFs then help assemble the 40S ribosomal subunit with the initiator tRNA and are released when the mRNA and the ribosomal 60 S subunit assemble with the complex. Requires GTP.	Eukaryotes: $40 \mathrm{~S}+60 \mathrm{~S} \rightarrow 80 \mathrm{~S}$ (Even). PrOkaryotes: $30 \mathrm{~S}+50 \mathrm{~S} \rightarrow 70 \mathrm{~S}$ (Odd). Synthesis occurs from N-terminus to C-terminus. ATP-tRNA Activation (charging). GTP-tRNA Gripping and Going places (translocation). Think of "going APE":
Elongation	1. Aminoacyl-tRNA binds to A site (except for initiator methionine), requires an elongation factor and GTP 2. rRNA ("ribozyme") catalyzes peptide bond formation, transfers growing polypeptide to amino acid in A site 3. Ribosome advances 3 nucleotides toward 3' end of mRNA, moving peptidyl tRNA to P site (translocation)	A site = incoming Aminoacyl-tRNA. P site $=$ accommodates growing Peptide. E site $=$ holds Empty tRNA as it Exits.
Termination	Release factor recognizes stop codon and halts translation \rightarrow completed polypeptide is released from ribosome. Requires GTP.	

Posttranslational modifications

Trimming Removal of N - or C-terminal propeptides from zymogen to generate mature protein (eg, trypsinogen to trypsin).
Covalent alterations Phosphorylation, glycosylation, hydroxylation, methylation, acetylation, and ubiquitination.

Chaperone protein

Intracellular protein involved in facilitating and/or maintaining protein folding. For example, in yeast, heat shock proteins (eg, HSP60) are expressed at high temperatures to prevent protein denaturing/misfolding.

BIOCHEMISTRY-CELLULAR

Cell cycle phases
Checkpoints control transitions between phases of cell cycle. This process is regulated by cyclins, cyclin-dependent kinases (CDKs), and tumor suppressors. M phase (shortest phase of cell cycle) includes mitosis (prophase, prometaphase, metaphase, anaphase, telophase) and cytokinesis (cytoplasm splits in two). G_{1} and G_{0} are of variable duration.

REGULATION OF CELL CYCLE		
Cyclin-dependent kinases	Constitutive and inactive.	$2 X X$
Cyclins	Regulatory proteins that control cell cycle events; phase specific; activate CDKs.	
Cyclin-CDK complexes	Phosphorylate other proteins to coordinate cell cycle progression; must be activated and inactivated at appropriate times for cell cycle to progress.	
Tumor suppressors	p53 induces p21, which inhibits CDKs \rightarrow hypophosphorylation (activation) of Rb \rightarrow inhibition of $\mathrm{G}_{1}-\mathrm{S}$ progression. Mutations in tumor suppressor genes can result in unrestrained cell division (eg, Li-Fraumeni syndrome). Growth factors (eg, insulin, PDGF, EPO, EGF) bind tyrosine kinase receptors to transition the cell from G_{1} to S phase.	
CELL TYPES		
Permanent	Remain in G_{0}, regenerate from stem cells.	Neurons, skeletal and cardiac muscle, RBCs.
Stable (quiescent)	Enter G_{1} from G_{0} when stimulated.	Hepatocytes, lymphocytes, PCT, periosteal cells.
Labile	Never go to G_{0}, divide rapidly with a short G_{1}. Most affected by chemotherapy.	Bone marrow, gut epithelium, skin, hair follicles, germ cells.

Rough endoplasmic reticulum

Site of synthesis of secretory (exported) proteins and of N -linked oligosaccharide addition to many proteins.
Nissl bodies (RER in neurons)—synthesize peptide neurotransmitters for secretion.
Free ribosomes-unattached to any membrane; site of synthesis of cytosolic and organellar proteins.

Mucus-secreting goblet cells of the small intestine and antibody-secreting plasma cells are rich in RER.

Smooth endoplasmic reticulum

Site of steroid synthesis and detoxification of drugs and poisons. Lacks surface ribosomes.

Liver hepatocytes and steroid hormoneproducing cells of the adrenal cortex and gonads are rich in SER.

Cell trafficking

Signal recognition particle (SRP)
Abundant, cytosolic ribonucleoprotein that traffics proteins from the ribosome to the RER. Absent or dysfunctional SRP \rightarrow proteins accumulate in the cytosol.

Vesicular trafficking proteins

COPI: Golgi \rightarrow Golgi (retrograde); cis-Golgi \rightarrow ER.
COPII: ER \rightarrow cis-Golgi (anterograde).
"Two (COPII) steps forward (anterograde); one (COPI) step back (retrograde)."
Clathrin: trans-Golgi \rightarrow lysosomes; plasma membrane \rightarrow endosomes (receptormediated endocytosis [eg, LDL receptor activity]).

Golgi is the distribution center for proteins and lipids from the ER to the vesicles and plasma membrane. Modifies N -oligosaccharides on asparagine. Adds O-oligosaccharides on serine and threonine. Adds mannose-6-phosphate to proteins for trafficking to lysosomes.
Endosomes are sorting centers for material from outside the cell or from the Golgi, sending it to lysosomes for destruction or back to the membrane/Golgi for further use.

I-cell disease (inclusion cell disease/mucolipidosis type II) -inherited lysosomal storage disorder; defect in N -acetylglucosaminyl-l-phosphotransferase \rightarrow failure of the Golgi to phosphorylate mannose residues (\downarrow mannose- 6 -phosphate) on glycoproteins \rightarrow proteins are secreted extracellularly rather than delivered to lysosomes. Results in coarse facial features, gingival hyperplasia, clouded corneas, restricted joint movements, claw hand deformities, kyphoscoliosis, and high plasma levels of lysosomal enzymes. Often fatal in childhood.

Peroxisome

Membrane-enclosed organelle involved in:

- β-oxidation of very-long-chain fatty acids (VLCFA)
- α-oxidation (strictly peroxisomal process)
- Catabolism of branched-chain fatty acids, amino acids, and ethanol
- Synthesis of cholesterol, bile acids, and plasmalogens (important membrane phospholipid, especially in white matter of brain)
Zellweger syndrome-autosomal recessive disorder of peroxisome biogenesis due to mutated PEX genes. Hypotonia, seizures, hepatomegaly, early death.
Refsum disease-autosomal recessive disorder of α-oxidation \rightarrow phytanic acid not metabolized to pristanic acid. Scaly skin, ataxia, cataracts/night blindness, shortening of 4th toe, epiphyseal dysplasia. Treatment: diet, plasmapheresis.
Adrenoleukodystrophy-X-linked recessive disorder of β-oxidation \rightarrow VLCFA buildup in adrenal glands, white (leuko) matter of brain, testes. Progressive disease that can lead to adrenal gland crisis, coma, and death.

Proteasome Barrel-shaped protein complex that degrades damaged or ubiquitin-tagged proteins. Defects in the ubiquitin-proteasome system have been implicated in some cases of Parkinson disease.

Cytoskeletal elements A network of protein fibers within the cytoplasm that supports cell structure, cell and organelle movement, and cell division.

TYPE OF FILAMENT	PREDOMINANT FUNCTION	EXAMPLES
Microfilaments	Muscle contraction, cytokinesis	Actin, microvilli.
Intermediate filaments	Maintain cell structure	Vimentin, desmin, cytokeratin, lamins, glial fibrillary acidic protein (GFAP), neurofilaments.
Microtubules	Movement, cell division	Cilia, flagella, mitotic spindle, axonal trafficking, centrioles.

Microtubule

Cylindrical outer structure composed of a helical array of polymerized heterodimers of α - and β-tubulin. Each dimer has 2 GTP bound. Incorporated into flagella, cilia, mitotic spindles. Grows slowly, collapses quickly. Also involved in slow axoplasmic transport in neurons.
Molecular motor proteins-transport cellular cargo toward opposite ends of microtubule tracks.

- Dynein—retrograde to microtubule $(+\rightarrow-)$. Negative end Near Nucleus
- Kinesin—anterograde to microtubule $(-\rightarrow+)$. Positive end Points to Periphery

Cilia structure

Sodium-potassium pump

9 doublet +2 singlet arrangement of microtubules \boldsymbol{A}.
Basal body (base of cilium below cell membrane) consists of 9 microtubule triplets B with no central microtubules.
Axonemal dynein-ATPase that links peripheral 9 doublets and causes bending of cilium by differential sliding of doublets.
Gap junctions enable coordinated ciliary movement.

Kartagener syndrome (1° ciliary dyskinesia) immotile cilia due to a dynein arm defect. Autosomal recessive. Results in \downarrow male and female fertility due to immotile sperm and dysfunctional fallopian tube cilia, respectively; \uparrow risk of ectopic pregnancy. Can cause bronchiectasis, recurrent sinusitis, chronic ear infections, conductive hearing loss, and situs inversus (eg, dextrocardia on CXR (C). (Kartagener's restaurant: take-out only, there's no dynein "dine-in").

$\mathrm{Na}^{+}-\mathrm{K}^{+}$ATPase is located in the plasma membrane with ATP site on cytosolic side. For each ATP consumed, $3 \mathrm{Na}^{+}$go out of the cell (pump phosphorylated) and $2 \mathrm{~K}^{+}$come into the cell (pump dephosphorylated).
Plasma membrane is an asymmetric lipid bilayer containing cholesterol, phospholipids, sphingolipids, glycolipids, and proteins.

Pumpkin = pump \mathbf{K}^{+}in.
Ouabain (a cardiac glycoside) inhibits by binding to K^{+}site.
Cardiac glycosides (digoxin and digitoxin) directly inhibit the $\mathrm{Na}^{+}-\mathrm{K}^{+}$ATPase, which leads to indirect inhibition of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchange $\rightarrow \uparrow\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} \rightarrow \uparrow$ cardiac contractility.

Collagen	Most abundant protein in the human body. Extensively modified by posttranslational modification. Organizes and strengthens extracellular matrix.	Be (So Totally) Cool, Read Books.
Type I	Most common (90\%) -Bone (made by osteoblasts), Skin, Tendon, dentin, fascia, cornea, late wound repair.	Type I: bone. \downarrow production in osteogenesis imperfecta type I.
Type II	Cartilage (including hyaline), vitreous body, nucleus pulposus.	Type II: cartwolage.
Type III	Reticulin-skin, blood vessels, uterus, fetal tissue, granulation tissue.	Type III: deficient in the uncommon, vascular type of Ehlers-Danlos syndrome (ThreE D).
Type IV	Basement membrane, basal lamina, lens.	Type IV: under the floor (basement membrane). Defective in Alport syndrome; targeted by autoantibodies in Goodpasture syndrome.

Collagen synthesis and structure

(1) Synthesis-translation of collagen α chains (preprocollagen)-usually Gly-X-Y (X and Y are proline or lysine). Glycine content best reflects collagen synthesis (collagen is $1 / 3$ glycine).
(2) Hydroxylation-hydroxylation of specific proline and lysine residues. Requires vitamin C; deficiency \rightarrow scurvy.
(3) Glycosylation-glycosylation of pro- α-chain hydroxylysine residues and formation of procollagen via hydrogen and disulfide bonds (triple helix of 3 collagen α chains). Problems forming triple helix \rightarrow osteogenesis imperfecta.
(4) Exocytosis-exocytosis of procollagen into extracellular space.
(3) Proteolytic processing-cleavage of disulfide-rich terminal regions of procollagen \rightarrow insoluble tropocollagen. Problems with cleavage \rightarrow Ehlers-Danlos syndrome.
(6) Cross-linking-reinforcement of many staggered tropocollagen molecules by covalent lysine-hydroxylysine cross-linkage (by copper-containing lysyl oxidase) to make collagen fibrils. Problems with cross-linking \rightarrow Ehlers-Danlos syndrome, Menkes disease.

Osteogenesis imperfecta

Genetic bone disorder (brittle bone disease) caused by a variety of gene defects (most commonly COL1A1 and COL1A2).
Most common form is autosomal dominant with \downarrow production of otherwise normal type I collagen. Manifestations can include:

- Multiple fractures with minimal trauma A B; may occur during the birth process
- Blue sclerae C due to the translucent connective tissue over choroidal veins
- Some forms have tooth abnormalities, including opalescent teeth that wear easily due to lack of dentin (dentinogenesis imperfecta)
- Hearing loss (abnormal ossicles)

May be confused with child abuse.
Treat with bisphosphonates to \downarrow fracture risk.
Patients can't BITE:
Bones = multiple fractures
$\mathrm{I}($ eye $)=$ blue sclerae
Teeth $=$ dental imperfections
Ear $=$ hearing loss

Ehlers-Danlos syndrome

Faulty collagen synthesis causing hyperextensible skin \boldsymbol{A}, hypermobile joints \mathbf{B}, and tendency to bleed (easy bruising).
Multiple types. Inheritance and severity vary. Can be autosomal dominant or recessive. May be associated with joint dislocation, berry and aortic aneurysms, organ rupture.
Hypermobility type (joint instability): most common type.
Classical type (joint and skin symptoms): caused by a mutation in type V collagen (eg, COL5Al, COL5A2).
Vascular type (fragile tissues including vessels [eg, aorta], muscles, and organs that are prone to rupture): deficient type III procollagen.

Menkes disease
X-linked recessive connective tissue disease caused by impaired copper absorption and transport due to defective Menkes protein (ATP7A). Leads to \downarrow activity of lysyl oxidase (copper is a necessary cofactor) \rightarrow defective collagen. Results in brittle, "kinky" hair, growth retardation, and hypotonia.

Elastin Stretchy protein within skin, lungs, large arteries, elastic ligaments, vocal cords, ligamenta flava

Rich in nonhydroxylated proline, glycine, and lysine residues, vs the hydroxylated residues of collagen.
Tropoelastin with fibrillin scaffolding.
Cross-linking takes place extracellularly and gives elastin its elastic properties.
Broken down by elastase, which is normally inhibited by α_{1}-antitrypsin.
α_{1}-Antitrypsin deficiency results in unopposed elastase activity, which can cause emphysema.
Changes with aging: \downarrow dermal collagen and elastin, \downarrow synthesis of collagen fibrils; crosslinking remains normal.
Marfan syndrome—autosomal dominant connective tissue disorder affecting skeleton, heart, and eyes. FBNl gene mutation on chromosome 15 results in defective fibrillin, a glycoprotein that forms a sheath around elastin. Findings: tall with long extremities; pectus carinatum (more specific) or pectus excavatum; hypermobile joints; long, tapering fingers and toes (arachnodactyly); cystic medial necrosis of aorta; aortic incompetence and dissecting aortic aneurysms; floppy mitral valve. Subluxation of lenses, typically upward and temporally. (Look up at a ceiling fan.)

BIOCHEMISTRY—LABORATORY TECHNIQUES

Polymerase chain Molecular biology lab procedure used to amplify a desired fragment of DNA. Useful as a diagnostic reaction tool (eg, neonatal HIV, herpes encephalitis).

(1) Denaturation-DNA is heated to $\sim 95^{\circ} \mathrm{C}$ to separate the strands.
(2) Annealing-Sample is cooled to $\sim 55^{\circ} \mathrm{C}$. DNA primers, a heat-stable DNA polymerase (Taq), and deoxynucleotide triphosphates (dNTPs) are added. DNA primers anneal to the specific sequence to be amplified on each strand.
(3) Elongation-Temperature is increased to $\sim 72^{\circ} \mathrm{C}$. DNA polymerase attaches dNTPs to the strand to replicate the sequence after each primer.
Heating and cooling cycles continue until the DNA sample size is sufficient.

A genome editing tool, derived from bacteria. Composed of an endonuclease (Cas9, which cleaves dsDNA) and a guide RNA (gRNA) sequence that binds to a complementary target DNA sequence. Cell DNA repair machinery (nonhomologous end joining) fills in the gap introduced by the system (knock-out) or a donor DNA can be added to the system to fill the gap (knock-in). The gRNA can be designed to target any DNA sequence.

Blotting procedures

Flow cytometry

Laboratory technique to assess size, granularity, and protein expression (immunophenotype) of individual cells in a sample.

Cells are tagged with antibodies specific to surface or intracellular proteins. Antibodies are then tagged with a unique fluorescent dye. Sample is analyzed one cell at a time by focusing a laser on the cell and measuring light scatter and intensity of fluorescence.

Data are plotted either as histogram (one measure) or scatter plot (any two measures, as shown). In illustration:

- Cells in left lower quadrant Θ for both CD8 and CD3.
- Cells in right lower quadrant \oplus for CD8 and Θ for CD3. Right lower quadrant is empty because all CD8-expressing cells also express CD3.
- Cells in left upper quadrant \oplus for CD3 and Θ for CD8.
- Cells in right upper quadrant \oplus for CD8 and CD3 (red + blue \rightarrow purple).

Commonly used in workup of hematologic abnormalities (eg, paroxysmal nocturnal hemoglobinuria, fetal RBCs in mother's blood) and immunodeficiencies (eg, CD4 cell count in HIV).

Microarrays

Thousands of nucleic acid sequences are arranged in grids on glass or silicon. DNA or RNA probes are hybridized to the chip, and a scanner detects the relative amounts of complementary binding. Used to profile gene expression levels of thousands of genes simultaneously to study certain diseases and treatments. Able to detect single nucleotide polymorphisms (SNPs) and copy number variations (CNV s) for a variety of applications including genotyping, clinical genetic testing, forensic analysis, cancer mutations, and genetic linkage analysis.

Immunologic test used to detect the presence of either a specific antigen (eg, HBsAg) or antibody (eg, anti-HBs) in a patient's blood sample. Detection involves the use of an antibody linked to an enzyme. Added substrate reacts with enzyme, producing a detectable signal. Can have high sensitivity and specificity, but is less specific than Western blot.
Direct ELISA tests for the antigen directly, while indirect ELISA tests for the antibody (thus indirectly testing for the antigen).

Karyotyping

A process in which metaphase chromosomes are stained, ordered, and numbered according to morphology, size, arm-length ratio, and banding pattern (arrows in A point to extensive abnormalities in a cancer cell).
Can be performed on a sample of blood, bone marrow, amniotic fluid, or placental tissue. Used to diagnose chromosomal imbalances (eg, autosomal trisomies, sex chromosome disorders).

Fluorescence in situ hybridization

Fluorescent DNA or RNA probe binds to specific gene site of interest on chromosomes (arrows in A point to abnormalities in a cancer cell, whose karyotype is seen above; each fluorescent color represents a chromosomespecific probe).
Used for specific localization of genes and direct visualization of chromosomal anomalies at the molecular level.

- Microdeletion-no fluorescence on a chromosome compared to fluorescence at
 the same locus on the second copy of that chromosome
- Translocation-fluorescence signal that corresponds to one chromosome is found in a different chromosome (two white arrows in A show fragments of chromosome 17 that have translocate to chromosome 19)
- Duplication -a second copy of a chromosome, resulting in a trisomy or tetrasomy (two blue arrows show duplicated chromosomes 8 , resulting in a tetrasomy)
-

Gene expression modifications

Cre-lox system	Can inducibly manipulate genes at specific developmental points (eg, to study a gene whose deletion causes embryonic death).
RNA interference	dsRNA is synthesized that is complementary to the mRNA sequence of interest. When transfected into human cells, dsRAA separates and promotes degradation of target mRNA, "knocking down" gene expression.

Knock-out = removing a gene, taking it out.
Knock-in = inserting a gene.
Random insertion-constitutive. Targeted insertion-conditional.

BIOCHEMISTRY—GENETICS

Genetic terms

TERM	DEFINITION	EXAMPLE
Codominance	Both alleles contribute to the phenotype of the heterozygote.	Blood groups $\mathrm{A}, \mathrm{B}, \mathrm{AB} ; \alpha_{1}$-antitrypsin deficiency; HLA groups.
Variable expressivity	Patients with the same genotype have varying phenotypes.	2 patients with neurofibromatosis type 1 (NFl) may have varying disease severity.
Incomplete penetrance	Not all individuals with a mutant genotype show the mutant phenotype. \% penetrance \times probability of inheriting genotype $=$ risk of expressing phenotype.	BRCAl gene mutations do not always result in breast or ovarian cancer.
Pleiotropy	One gene contributes to multiple phenotypic effects.	Untreated phenylketonuria (PKU) manifests with light skin, intellectual disability, and musty body odor.
Anticipation	Increased severity or earlier onset of disease in succeeding generations.	Trinucleotide repeat diseases (eg, Huntington disease).
Loss of heterozygosity	If a patient inherits or develops a mutation in a tumor suppressor gene, the complementary allele must be deleted/mutated before cancer develops. This is not true of oncogenes.	Retinoblastoma and the "two-hit hypothesis," Lynch syndrome (HNPCC), Li-Fraumeni syndrome.
Dominant negative mutation	Exerts a dominant effect. A heterozygote produces a nonfunctional altered protein that also prevents the normal gene product from functioning.	Mutation of a transcription factor in its allosteric site. Nonfunctioning mutant can still bind DNA, preventing wild-type transcription factor from binding.
Linkage disequilibrium	Tendency for certain alleles at 2 linked loci to occur together more or less often than expected by chance. Measured in a population, not in a family, and often varies in different populations.	

Genetic terms (continued)

TERM	DEFINITION	EXAMPLE
Mosaicism	Presence of genetically distinct cell lines in the same individual. Somatic mosaicism—mutation arises from mitotic errors after fertilization and propagates through multiple tissues or organs. Gonadal mosaicism—mutation only in egg or sperm cells. If parents and relatives do not have the disease, suspect gonadal (or germline) mosaicism.	McCune-Albright syndrome-due to mutation affecting G-protein signaling. Presents with unilateral café-au-lait spots A with ragged edges, polyostotic fibrous dysplasia (bone is replaced by collagen and fibroblasts), and at least one endocrinopathy (eg, precocious puberty). Lethal if mutation occurs before fertilization (affecting all cells), but survivable in patients with mosaicism.
Locus heterogeneity	Mutations at different loci can produce a similar phenotype.	Albinism.
Allelic heterogeneity	Different mutations in the same locus produce the same phenotype.	β-thalassemia.
Heteroplasmy	Presence of both normal and mutated $m t D N A$, resulting in variable expression in mitochondrially inherited disease.	mtDNA passed from mother to all children.
Uniparental disomy	Offspring receives 2 copies of a chromosome from 1 parent and no copies from the other parent. HeterodIsomy (heterozygous) indicates a meiosis I error. IsodIsomy (homozygous) indicates a meiosis II error or postzygotic chromosomal duplication of one of a pair of chromosomes, and loss of the other of the original pair.	Uniparental is euploid (correct number of chromosomes). Most occurrences of uniparental disomy (UPD) \rightarrow normal phenotype. Consider UPD in an individual manifesting a recessive disorder when only one parent is a carrier. Examples: Prader-Willi and Angelman syndromes.

Hardy-Weinberg population genetics

	$p A$	qa
pA	AA	Aa
	$p \times p=p^{2}$	$p \times q$
qa	Aa	a ${ }^{\text {a }}$
	$p \times q$	$q \times q=q^{2}$

If a population is in Hardy-Weinberg equilibrium and if p and q are the frequencies of separate alleles, then: $\mathrm{p}^{2}+2 \mathrm{pq}+\mathrm{q}^{2}=1$ and $\mathrm{p}+\mathrm{q}=1$, which implies that:
$p^{2}=$ frequency of homozygosity for allele A $q^{2}=$ frequency of homozygosity for allele a
$2 \mathrm{pq}=$ frequency of heterozygosity (carrier frequency, if an autosomal recessive disease).
The frequency of an X-linked recessive disease in males $=\mathrm{q}$ and in females $=\mathrm{q}^{2}$.

Hardy-Weinberg law assumptions include:

- No mutation occurring at the locus
- Natural selection is not occurring
- Completely random mating
- No net migration

Disorders of imprinting Imprinting-one gene copy is silenced by methylation, and only the other copy is expressed \rightarrow parent-of-origin effects.

Prader-Willi syndrome	Maternally derived genes are silenced (imprinted). Disease occurs when the Paternal allele is deleted or mutated. Results in hyperphagia, obesity, intellectual disability, hypogonadism, and hypotonia.	Associated with a mutation or deletion of chromosome 15 of paternal origin. 25% of cases due to maternal uniparental disomy.
AngelMan syndrome	Paternally derived UBE3A gene is silenced (imprinted). Disease occurs when the Maternal allele is deleted or mutated. Results in inappropriate laughter ("happy puppet"), seizures, ataxia, and severe intellectual disability.	Associated with mutation or deletion of the UBE3A gene on the maternal copy of chromosome 15. 5% of cases due to paternal uniparental disomy.

Autosomal recessive

X-linked recessive

X-linked dominant

Mitochondrial inheritance

Often due to defects in structural genes. Many generations, both males and females are affected.

Often due to enzyme deficiencies. Usually seen in only 1 generation.

Often pleiotropic (multiple apparently unrelated effects) and variably expressive (different between individuals). Family history crucial to diagnosis. With one affected (heterozygous) parent, on average, $1 / 2$ of children affected.

Commonly more severe than dominant disorders; patients often present in childhood.
\uparrow risk in consanguineous families.
With 2 carrier (heterozygous) parents, on average: $1 / 4$ of children will be affected (homozygous), $1 / 2$ of children will be carriers, and $1 / 4$ of children will be neither affected nor carriers.

Commonly more severe in males. Females usually must be homozygous to be affected.

Sons of heterozygous mothers have a 50% chance of being affected. No male-to-male transmission. Skips generations.

Transmitted through both parents. Mothers transmit to 50% of daughters and sons; fathers transmit to all daughters but no sons.

Transmitted only through the mother. All offspring of affected females may show signs of disease.

Hypophosphatemic rickets-formerly known as vitamin D-resistant rickets. Inherited disorder resulting in \uparrow phosphate wasting at proximal tubule. Results in rickets-like presentation. Other examples: fragile X syndrome, Alport syndrome.

Variable expression in a population or even within a family due to heteroplasmy.

Mitochondrial myopathies-rare disorders; often present with myopathy, lactic acidosis, and CNS disease, eg, MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). 2° to failure in oxidative phosphorylation. Muscle biopsy often shows "ragged red fibers" (due to accumulation of diseased mitochondria).

Leber hereditary optic neuropathy-cell death in optic nerve neurons \rightarrow subacute bilateral vision loss in teens/young adults, 90% males. Usually permanent.

[^10]| Autosomal dominant \quadAchondroplasia, autosomal dominant polycystic kidney disease, familial adenomatous polyposis,
 diseases
 familial hypercholesterolemia, hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu |
| :--- |
| syndrome), hereditary spherocytosis, Huntington disease, Li-Fraumeni syndrome, Marfan syndrome, |
| multiple endocrine neoplasias, myotonic muscular dystrophy, neurofibromatosis type l (von |
| Recklinghausen disease), neurofibromatosis type 2, tuberous sclerosis, von Hippel-Lindau disease. |

Autosomal recessive diseases

Albinism, autosomal recessive polycystic kidney disease (ARPKD), cystic fibrosis, Friedreich ataxia, glycogen storage diseases, hemochromatosis, Kartagener syndrome, mucopolysaccharidoses (except Hunter syndrome), phenylketonuria, sickle cell anemia, sphingolipidoses (except Fabry disease), thalassemias, Wilson disease.

Cystic fibrosis

genetics	Autosomal recessive; defect in CFTR gene on chromosome 7; commonly a deletion of Phe508. Most common lethal genetic disease in Caucasian population.
Pathophysiology	CFTR encodes an ATP-gated Cl^{-}channel that secretes Cl^{-}in lungs and GI tract, and reabsorbs Cl^{-}in sweat glands. Most common mutation \rightarrow misfolded protein \rightarrow protein retained in RER and not transported to cell membrane, causing $\downarrow \mathrm{Cl}^{-}\left(\right.$and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ secretion; \uparrow intracellular Cl^{-} results in compensatory $\uparrow \mathrm{Na}^{+}$reabsorption via epithelial Na^{+}channels $\rightarrow \uparrow \mathrm{H}_{2} \mathrm{O}$ reabsorption \rightarrow abnormally thick mucus secreted into lungs and GI tract. $\uparrow \mathrm{Na}^{+}$reabsorption also causes more negative transepithelial potential difference.
diagnosis	$\uparrow \mathrm{Cl}^{-}$concentration in pilocarpine-induced sweat test is diagnostic. Can present with contraction alkalosis and hypokalemia (ECF effects analogous to a patient taking a loop diuretic) because of ECF $\mathrm{H}_{2} \mathrm{O} / \mathrm{Na}^{+}$losses and concomitant renal $\mathrm{K}^{+} / \mathrm{H}^{+}$wasting. \uparrow immunoreactive trypsinogen (newborn screening).
complications	Recurrent pulmonary infections (eg, S aureus [early infancy], P aeruginosa [adolescence]), chronic bronchitis and bronchiectasis \rightarrow reticulonodular pattern on CXR, opacification of sinuses. Pancreatic insufficiency, malabsorption with steatorrhea, fat-soluble vitamin deficiencies (A, D, E, K), biliary cirrhosis, liver disease. Meconium ileus in newborns. Infertility in men (absence of vas deferens, spermatogenesis may be unaffected) and subfertility in women (amenorrhea, abnormally thick cervical mucus). Nasal polyps, clubbing of nails.
treatment	Multifactorial: chest physiotherapy, albuterol, aerosolized dornase alfa (DNase), and hypertonic saline facilitate mucus clearance. Azithromycin used as anti-inflammatory agent. Ibuprofen slows disease progression. In patients with Phe 508 deletion: combination of lumacaftor (corrects misfolded proteins and improves their transport to cell surface) and ivacaftor (opens Cl^{-}channels \rightarrow improved chloride transport).

X-linked recessive disorders

Ornithine transcarbamylase deficiency, Fabry disease, Wiskott-Aldrich syndrome, Ocular albinism, G6PD deficiency, Hunter syndrome, Bruton agammaglobulinemia, Hemophilia A and B, Lesch-Nyhan syndrome, Duchenne (and Becker) muscular dystrophy.
X-inactivation (lyonization)-female carriers variably affected depending on the pattern of inactivation of the X chromosome carrying the mutant vs normal gene.

Oblivious Female Will Often Give Her Boys Her x -Linked Disorders Females with Turner syndrome $(45, \mathrm{XO})$ are more likely to have an X-linked recessive disorder.

Muscular dystrophies

Rett syndrome

Sporadic disorder seen almost exclusively in girls (affected males die in utero or shortly after birth). Most cases are caused by de novo mutation of MECP2 on X chromosome. Symptoms of Rett syndrome usually appear between ages $1-4$ and are characterized by regression (Retturn) in motor, verbal, and cognitive abilities; ataxia; seizures; growth failure; and stereotyped handwringing.

Fragile X syndrome

X-linked dominant inheritance. Trinucleotide repeat in FMR1 gene \rightarrow hypermethylation $\rightarrow \downarrow$ expression. Most common cause of inherited intellectual disability and 2nd most common cause of genetically associated mental deficiency (after Down syndrome). Findings: post-pubertal macroorchidism (enlarged testes), long face with a large jaw, large everted ears, autism, mitral valve prolapse.

Trinucleotide repeat expansion $\left[(C G G)_{\mathrm{n}}\right]$ occurs during oogenesis.

Trinucleotide repeat expansion diseases

Huntington disease, myotonic dystrophy, fragile X syndrome, and Friedreich ataxia.
May show genetic anticipation (disease severity \uparrow and age of onset \downarrow in successive generations).

Try (trinucleotide) hunting for my fragile cagefree eggs (X).

DISEASE	TRINUCLEOTIE REPEAT	MODE OF INHERITANCE	MNEMONIC
Huntington disease	$(\text { CAG })_{n}$	AD	Caudate has \downarrow ACh and GABA
Myotonic dystrophy	$(\mathrm{CTG})_{n}$	AD	Cataracts, Toupee (early balding in men), Gonadal atrophy
Fragile X syndrome	$(\mathrm{CGG})_{n}$	XD	Chin (protruding), Giant Gonads
Friedreich ataxia	$(\mathrm{GAA})_{n}$	AR	Ataxic GAAit

Autosomal trisomies

Down syndrome (trisomy 21)

Edwards syndrome (trisomy 18)

Patau syndrome (trisomy 13)

Serum markers			
Trisomy	21	18	13
1st trimester			
β-hCG	\uparrow	\downarrow	\downarrow
PAPP-A	\downarrow	\downarrow	\downarrow
2nd trimester			
AFP	\downarrow	\downarrow	N
β-hCG	\uparrow	\downarrow	N
Estriol	\downarrow	\downarrow	N
Inhibin A	\dagger	$\mathrm{N} \downarrow$	N

$\mathrm{N}=$ normal.

Findings: intellectual disability, flat facies, prominent epicanthal folds, single palmar crease, gap between lst 2 toes, duodenal atresia, Hirschsprung disease, congenital heart disease (eg, atrioventricular septal defect), Brushfield spots. Associated with early-onset Alzheimer disease (chromosome 21 codes for amyloid precursor protein) and \uparrow risk of ALL and AML.
95\% of cases due to meiotic nondisjunction (\uparrow with advanced maternal age; from 1:1500 in women <20 to $1: 25$ in women >45 years old). 4% of cases due to unbalanced Robertsonian translocation, most typically between chromosomes 14 and 21 . Only 1% of cases are due to postfertilization mitotic error.
Findings: PRINCE Edward-Prominent occiput, Rocker-bottom feet, Intellectual disability, Nondisjunction, Clenched fists (with overlapping fingers), low-set Ears, micrognathia (small jaw), congenital heart disease. Death usually occurs by age 1 .

Findings: severe intellectual disability, rockerbottom feet, microphthalmia, microcephaly, cleft liP/Palate, holoProsencephaly, Polydactyly, cutis aPlasia, congenital heart disease, Polycystic kidney disease. Death usually occurs by age 1 .

Incidence 1:700.
Drinking age (21).
Most common viable chromosomal disorder and most common cause of genetic intellectual disability.
First-trimester ultrasound commonly shows \uparrow nuchal translucency and hypoplastic nasal bone.
The 5 A's of Down syndrome:

- Advanced maternal age
- Atresia (duodenal)
- Atrioventricular septal defect
- Alzheimer disease (early onset)
- AML/ALL

Incidence 1:8000.
Election age (18).
2nd most common autosomal trisomy resulting in live birth (most common is Down syndrome).

Incidence 1:15,000.
Puberty (13).

Genetic disorders by chromosome	CHROMOSOME	Selected examples
	3	von Hippel-Lindau disease, renal cell carcinoma
	4	ADPKD (PKD2), achondroplasia, Huntington disease
	5	Cri-du-chat syndrome, familial adenomatous polyposis
	6	Hemochromatosis (HFE)
	7	Williams syndrome, cystic fibrosis
	9	Friedreich ataxia, tuberous sclerosis (TSCl)
	11	Wilms tumor, β-globin gene defects (eg, sickle cell disease, β-thalassemia), MEN1
	13	Patau syndrome, Wilson disease, retinoblastoma (RB1), BRCA2
	15	Prader-Will syndrome, Angelman syndrome, Marfan syndrome
	16	ADPKD (PKDI), α-globin gene defects (eg, α-thalassemia), tuberous sclerosis (TSC2)
	17	Neurofibromatosis type 1, BRCA1, p53
	18	Edwards syndrome
	21	Down syndrome
	22	Neurofibromatosis type 2, DiGeorge syndrome (22ql1)
	X	Fragile X syndrome, X-linked agammaglobulinemia, Klinefelter syndrome (XXY)

Robertsonian translocation

Chromosomal translocation that commonly involves chromosome pairs $13,14,15,21$, and 22. One of the most common types of translocation. Occurs when the long arms of 2 acrocentric chromosomes (chromosomes with centromeres near their ends) fuse at the centromere and the 2 short arms are lost.
Balanced translocations normally do not cause any abnormal phenotype. Unbalanced translocations can result in miscarriage, stillbirth, and chromosomal imbalance (eg, Down syndrome, Patau syndrome).

Cri-du-chat syndrome Congenital deletion on short arm of Cri du chat $=$ cry of the cat. chromosome 5 ($46, \mathrm{XX}$ or $\mathrm{XY}, 5 \mathrm{p}-$).
Findings: microcephaly, moderate to severe intellectual disability, high-pitched crying/ meowing, epicanthal folds, cardiac abnormalities (VSD).

Williams syndrome

Congenital microdeletion of long arm of chromosome 7 (deleted region includes elastin gene). Findings: distinctive "elfin" facies, intellectual disability, hypercalcemia (\uparrow sensitivity to vitamin D), well-developed verbal skills, extreme friendliness with strangers, cardiovascular problems (eg, supravalvular aortic stenosis, renal artery stenosis). Think Will Ferrell in Elf.

22q11 deletion syndromes

Microdeletion at chromosome 22qll \rightarrow variable presentations including Cleft palate, Abnormal facies, Thymic aplasia \rightarrow T-cell deficiency, Cardiac defects, and Hypocalcemia 2° to parathyroid aplasia.
DiGeorge syndrome-thymic, parathyroid, and cardiac defects.
Velocardiofacial syndrome-palate, facial, and cardiac defects.

CATCH-22.
Due to aberrant development of 3rd and 4th branchial (pharyngeal) pouches.

- BIOCHEMISTRY—NUTRITION

Vitamins: fat soluble A, D, E, K. Absorption dependent on gut and pancreas. Toxicity more common than for water-soluble vitamins because fat-soluble vitamins accumulate in fat.

Malabsorption syndromes with steatorrhea (eg, cystic fibrosis and celiac disease) or mineral oil intake can cause fat-soluble vitamin deficiencies.

Vitamins: water soluble

B_{1} (thiamine: TPP)
B_{2} (riboflavin: FAD, FMN)
B_{3} (niacin: NAD^{+})
B_{5} (pantothenic acid: CoA)
B_{6} (pyridoxine: PLP)
B_{7} (biotin)
B_{9} (folate)
B_{12} (cobalamin)
C (ascorbic acid)

All wash out easily from body except B_{12} and B_{9} (folate). B_{12} stored in liver for $\sim 3-4$ years. B_{9} stored in liver for ~ 3-4 months.
B-complex deficiencies often result in dermatitis, glossitis, and diarrhea.
Can be coenzymes (eg, ascorbic acid) or precursors to organic cofactors (eg, FAD, NAD^{+}).

Vitamin A	Also called retinol.	
function	Antioxidant; constituent of visual pigments (retinal); essential for normal differentiation of epithelial cells into specialized tissue (pancreatic cells, mucus-secreting cells); prevents squamous metaplasia. Used to treat measles and acute promyelocytic leukemia (APL).	Retinol is vitamin A , so think retin- A (used topically for wrinkles and Acne). Found in liver and leafy vegetables. Use oral isotretinoin to treat severe cystic acne. Use all-trans retinoic acid to treat acute promyelocytic leukemia.
Defricency	Night blindness (nyctalopia); dry, scaly skin (xerosis cutis); corneal degeneration (keratomalacia); Bitot spots (foamy appearance) on conjunctiva \boldsymbol{A}; immunosuppression.	
ExCess	Acute toxicity-nausea, vomiting, vertigo, and blurred vision. Chronic toxicity-alopecia, dry skin (eg, scaliness), hepatic toxicity and enlargement, arthralgias, and pseudotumor cerebri. Teratogenic (cleft palate, cardiac abnormalities), therefore a Θ pregnancy test and two forms of contraception are required before isotretinoin (vitamin A derivative) is prescribed.	Isotretinoin is teratogenic.

Vitamin B_{1}	Also called thiamine.	
function	In thiamine pyrophosphate (TPP), a cofactor for several dehydrogenase enzyme reactions: - Pyruvate dehydrogenase (links glycolysis to TCA cycle) - α-ketoglutarate dehydrogenase (TCA cycle) - Transketolase (HMP shunt) - Branched-chain ketoacid dehydrogenase	Think ATP: α-ketoglutarate dehydrogenase, Transketolase, and Pyruvate dehydrogenase. Spell beriberi as BerlBerl to remember vitamin B_{1}. Wernicke-Korsakoff syndrome-confusion, ophthalmoplegia, ataxia (classic triad) + confabulation, personality change, memory
Defliency	Impaired glucose breakdown \rightarrow ATP depletion worsened by glucose infusion; highly aerobic tissues (eg, brain, heart) are affected first. In alcoholic or malnourished patients, give thiamine before dextrose to \downarrow risk of precipitating Wernicke encephalopathy. Diagnosis made by \uparrow in RBC transketolase activity following vitamin B_{1} administration.	loss (permanent). Damage to medial dorsal nucleus of thalamus, mammillary bodies. Dry beriberi-polyneuropathy, symmetrical muscle wasting. Wet beriberi-high-output cardiac failure (dilated cardiomyopathy), edema.

Vitamin B_{2}	Also called riboflavin.	
Function	Component of flavins FAD and FMN, used as cofactors in redox reactions, eg, the succinate dehydrogenase reaction in the TCA cycle.	FAD and FMN are derived from riboFlavin $\left(B_{2} \approx 2\right.$ ATP $)$.
DEFICIENCY	Cheilosis (inflammation of lips, scaling and fissures at the corners of the mouth $)$, Corneal vascularization.	The 2 C's of B2.

Vitamin B_{3}	Also called niacin.	Constituent of $\mathrm{NAD}^{+}, \mathrm{NADP}^{+}$(used in redox reactions). Derived from tryptophan. Synthesis requires vitamins B_{2} and B_{6}. Used to treat dyslipidemia; lowers levels of VLDL and raises levels of HDL.
FUNction		

Vitamin \mathbf{B}_{5}	Also called pantothenic acid.
Function	Essential component of coenzyme $\mathrm{A}(\mathrm{CoA}$, a cofactor for acyl transfers) and fatty acid synthase.
Dermatitis, enteritis, alopecia, adrenal insufficiency.	B_{5} is "pento"thenic acid.
Defliency	

Vitamin \mathbf{B}_{6}	Also called pyridoxine.
FUNCTION	Converted to pyridoxal phosphate (PLP), a cofactor used in transamination (eg, ALT and AST), decarboxylation reactions, glycogen phosphorylase. Synthesis of cystathionine, heme, niacin, histamine, and neurotransmitters including serotonin, epinephrine, norepinephrine (NE), dopamine, and GABA.
DEFIIENCY	Convulsions, hyperirritability, peripheral neuropathy (deficiency inducible by isoniazid and oral contraceptives), sideroblastic anemias (due to impaired hemoglobin synthesis and iron excess).

Vitamin B_{7}	Also called biotin.	
function	Cofactor for carboxylation enzymes (which add a l-carbon group): - Pyruvate carboxylase: pyruvate (3C) \rightarrow oxaloacetate (4C) - Acetyl-CoA carboxylase: acetyl-CoA (2C) \rightarrow malonyl-CoA (3C) - Propionyl-CoA carboxylase: propionyl-CoA (3C) \rightarrow methylmalonyl-CoA (4C)	
defliency	Relatively rare. Dermatitis, enteritis, alopecia. Caused by antibiotic use or excessive ingestion of raw egg whites.	"Avidin in egg whites avidly binds biotin."
Vitamin B_{9}	Also called folate.	
function	Converted to tetrahydrofolic acid (THF), a coenzyme for l-carbon transfer/methylation reactions. Important for the synthesis of nitrogenous bases in DNA and RNA.	Found in leafy green vegetables. Absorbed in jejunum. Folate from foliage. Small reserve pool stored primarily in the liver.
Deficiency	Macrocytic, megaloblastic anemia; hypersegmented polymorphonuclear cells (PMNs); glossitis; no neurologic symptoms (as opposed to vitamin B_{12} deficiency). Labs: \uparrow homocysteine, normal methylmalonic acid levels. Seen in alcoholism and pregnancy.	Deficiency can be caused by several drugs (eg, phenytoin, sulfonamides, methotrexate). Supplemental maternal folic acid at least l month prior to conception and during early pregnancy to \downarrow risk of neural tube defects. Give vitamin B_{9} for the 9 months of pregnancy.

Vitamin B_{12}	Also called cobalamin.	
function	Cofactor for methionine synthase (transfers CH_{3} groups as methylcobalamin) and methylmalonyl-CoA mutase. Important for DNA synthesis.	Found in animal products. Synthesized only by microorganisms. Very large reserve pool (several years) stored primarily in the liver. Deficiency caused by malabsorption (eg, sprue, enteritis, Diphyllobothrium latum, achlorhydria, bacterial overgrowth, alcohol excess), lack of intrinsic factor (eg, pernicious anemia, gastric bypass surgery), absence of terminal ileum (surgical resection, eg, for Crohn disease), or insufficient intake (eg, veganism). Anti-intrinsic factor antibodies diagnostic for pernicious anemia. Folate supplementation can mask the hematologic symptoms of B_{12} deficiency, but not the neurologic symptoms.
deficiency	Macrocytic, megaloblastic anemia; hypersegmented PMNs; paresthesias and subacute combined degeneration (degeneration of dorsal columns, lateral corticospinal tracts, and spinocerebellar tracts) due to abnormal myelin. Associated with \uparrow serum homocysteine and methylmalonic acid levels, along with 2° folate deficiency. Prolonged deficiency \rightarrow irreversible nerve damage.	
Vitamin C	Also called ascorbic acid.	
function	Antioxidant; also facilitates iron absorption by reducing it to Fe^{2+} state. Necessary for hydroxylation of proline and lysine in collagen synthesis. Necessary for dopamine β-hydroxylase, which converts dopamine to NE.	Found in fruits and vegetables. Pronounce "absorbic" acid. Ancillary treatment for methemoglobinemia by reducing Fe^{3+} to Fe^{2+}.
DEFIIIENCY	Scurvy-swollen gums, bruising, petechiae, hemarthrosis, anemia, poor wound healing, perifollicular and subperiosteal hemorrhages, "corkscrew" hair. Weakened immune response.	Vitamin C deficiency causes sCurvy due to a Collagen synthesis defect.
EXCESS	Nausea, vomiting, diarrhea, fatigue, calcium oxalate nephrolithiasis. Can \uparrow iron toxicity in predisposed individuals by increasing dietary iron absorption (ie, can worsen hereditary hemochromatosis or transfusion-related iron overload).	

Vitamin K	Includes phytomenadione, phylloquinone, phyto	ione, menaquinone.
function	Activated by epoxide reductase to the reduced form, which is a cofactor for the γ-carboxylation of glutamic acid residues on various proteins required for blood clotting. Synthesized by intestinal flora.	\mathbf{K} is for Koagulation. Necessary for the maturation of clotting factors II, VII, IX, X , and proteins C and S . Warfarin inhibits vitamin K -dependent synthesis of these factors and proteins.
deficiency	Neonatal hemorrhage with \uparrow PT and \uparrow aPTT but normal bleeding time (neonates have sterile intestines and are unable to synthesize vitamin K). Can also occur after prolonged use of broad-spectrum antibiotics.	Not in breast milk; neonates are given vitamin K injection at birth to prevent hemorrhagic disease of the newborn.

Zinc

FUNCTION

Mineral essential for the activity of $100+$ enzymes. Important in the formation of zinc fingers
(transcription factor motif).

DEFIIENCY | Delayed wound healing, suppressed immunity, hypogonadism, \downarrow adult hair (axillary, facial, pubic), |
| :---: |
| dysgeusia, anosmia, acrodermatitis enteropathica A. May predispose to alcoholic cirrhosis. |

A

Protein-energy malnutrition

Kwashiorkor	Protein malnutrition resulting in skin lesions, edema due to \downarrow plasma oncotic pressure, liver malfunction (fatty change due to \downarrow apolipoprotein synthesis). Clinical picture is small child with swollen abdomen A. Kwashiorkor results from proteindeficient MEALS: Malnutrition Edema Anemia Liver (fatty) Skin lesions (eg, hyperkeratosis, dyspigmentation)		
Marasmus	Malnutrition not causing edema. Diet is deficient in calories but no nutrients are entirely absent. Marasmus results in Muscle wasting B.		

Ethanol metabolism

FOMEpizole-inhibits alcohol dehydrogenase and is an antidote For Overdoses of Methanol or Ethylene glycol.
Disulfiram—inhibits acetaldehyde dehydrogenase (acetaldehyde accumulates, contributing to hangover symptoms), discouraging drinking.
NAD^{+}is the limiting reagent.
Alcohol dehydrogenase operates via zero-order kinetics.
Ethanol metabolism \uparrow NADH/NAD ${ }^{+}$ratio in liver, causing:

- Pyruvate \rightarrow lactate (lactic acidosis)
- Oxaloacetate \rightarrow malate (prevents gluconeogenesis \rightarrow fasting hypoglycemia)
- Dihydroxyacetone phosphate \rightarrow glycerol-
 3-phosphate (combines with fatty acids to make triglycerides \rightarrow hepatosteatosis)
Additionally, \uparrow NADH/NAD ${ }^{+}$ratio disfavors
TCA production of NADH $\rightarrow \uparrow$ utilization of acetyl-CoA for ketogenesis (\rightarrow ketoacidosis) and
lipogenesis $(\rightarrow$ hepatosteatosis).

BIOCHEMISTRY—METABOLISM

Metabolism sites

Mitochondria	Fatty acid oxidation (β-oxidation), acetyl- CoA production, TCA cycle, oxidative phosphorylation, ketogenesis.
Cytoplasm	Glycolysis, HMP shunt, and synthesis of steroids (SER), proteins (ribosomes, RER), fatty acids, cholesterol, and nucleotides.
Both	Heme synthesis, Urea cycle, Gluconeogenesis. HUGs take two (ie, both).

Enzyme terminology	An enzyme's name often describes its function. For example, glucokinase is an enzyme that catalyzes the phosphorylation of glucose using a molecule of ATP. The following are commonly used enzyme descriptors.
Kinase	Catalyzes transfer of a phosphate group from a high-energy molecule (usually ATP) to a substrate (eg, phosphofructokinase).
Phosphorylase	Adds inorganic phosphate onto substrate without using ATP (eg, glycogen phosphorylase).
Phosphatase	Removes phosphate group from substrate (eg, fructose-l,6-bisphosphatase).
Dehydrogenase	Catalyzes oxidation-reduction reactions (eg, pyruvate dehydrogenase).
Hydroxylase	Adds hydroxyl group (-OH) onto substrate (eg, tyrosine hydroxylase).
Carboxylase	Transfers CO_{2} groups with the help of biotin (eg, pyruvate carboxylase). Relocates a functional group within a molecule (eg, vitamin B_{12}-dependent methylmalonyl-CoA mutase).
Synthase/synthetase	Joins two molecules together using a source of energy (eg, ATP, acetyl CoA, nucleotide sugar).

Rate-determining enzymes of metabolic processes

PRocess	ENZYME	REGULATORS
Glycolysis	Phosphofructokinase-1 (PFK-1)	AMP \oplus, fructose-2,6-bisphosphate \oplus ATP Θ, citrate Θ
Gluconeogenesis	Fructose-1,6-bisphosphatase	Citrate \oplus AMP Θ, fructose-2,6-bisphosphate Θ
TCA cycle	Isocitrate dehydrogenase	$\begin{aligned} & \text { ADP } \oplus \\ & \text { ATP } \Theta, \text { NADH } \Theta \end{aligned}$
Glycogenesis	Glycogen synthase	Glucose-6-phosphate \oplus, insulin \oplus, cortisol \oplus Epinephrine Θ, glucagon Θ
Glycogenolysis	Glycogen phosphorylase	Epinephrine \oplus, glucagon \oplus, AMP \oplus Glucose-6-phosphate Θ, insulin Θ, ATP Θ
HMP shunt	Glucose-6-phosphate dehydrogenase (G6PD)	NADP $^{+} \oplus$ NADPH Θ
De novo pyrimidine synthesis	Carbamoyl phosphate synthetase II	$\begin{aligned} & \text { ATP } \oplus, \operatorname{PRPP} \oplus \\ & \operatorname{UTP} \Theta \end{aligned}$
De novo purine synthesis	Glutamine-phosphoribosylpyrophosphate (PRPP) amidotransferase	AMP Θ, inosine monophosphate (IMP) Θ, GMP Θ
Urea cycle	Carbamoyl phosphate synthetase I	N-acetylglutamate \oplus
Fatty acid synthesis	Acetyl-CoA carboxylase (ACC)	Insulin \oplus, citrate \oplus Glucagon Θ, palmitoyl-CoA Θ
Fatty acid oxidation	Carnitine acyltransferase I	Malonyl-CoA Θ
Ketogenesis	HMG-CoA synthase	
Cholesterol synthesis	HMG-CoA reductase	Insulin \oplus, thyroxine \oplus Glucagon Θ, cholesterol Θ

Summary of pathways

Galactokinase (mild galactosemia)(2) Galactose-1-phosphate uridyltransferase (severe galactosemia)Hexokinase/glucokinase

4 Glucose-6-phosphatase (von Gierke disease)
(5) Glucose-6-phosphate dehydrogenase
(6) Transketolase
(7) Phosphofructokinase-1
(8) Fructose-1,6-bisphosphatase
(9) Fructokinase (essential fructosuria)
(10) Aldolase B (fructose intolerance)
(1) Aldolase B (liver), A (muscle)
(12)

Triose phosphate isomerase
(13) Pyruvate kinase
(14) Pyruvate dehydrogenase
(1) Pyruvate carboxylase
(16) PEP carboxykinase
(1) Citrate synthase
(18) Isocitrate dehydrogenase
(19) α-ketoglutarate dehydrogenase
(20) Carbamoyl phosphate synthetase I
(21) Ornithine transcarbamylase
(22) Propionyl-CoA carboxylase
(28) HMG-CoA reductase

ATP production

Aerobic metabolism of one glucose molecule produces 32 net ATP via malate-aspartate shuttle (heart and liver), 30 net ATP via glycerol-3-phosphate shuttle (muscle).
Anaerobic glycolysis produces only 2 net ATP per glucose molecule.
ATP hydrolysis can be coupled to energetically unfavorable reactions.

Arsenic causes glycolysis to produce zero net ATP.

Activated carriers	Carrier molecule	Chried in activated form
ATP	Phosphoryl groups	
NADH, NADPH, FADH2	Electrons	
CoA, lipoamide	Acyl groups	
Biotin	CO_{2}	
Tetrahydrofolates	l-carbon units	CH_{3} groups
S-adenosylmethionine (SAM)	Aldehydes	
TPP		

Universal electron acceptors

Nicotinamides (NAD^{+}, NADP^{+}from vitamin B_{3}) and flavin nucleotides (FAD^{+}from vitamin B_{2}).
NAD^{+}is generally used in catabolic processes to carry reducing equivalents away as NADH. NADPH is used in anabolic processes (eg, steroid and fatty acid synthesis) as a supply of reducing equivalents.

NADPH is a product of the HMP shunt.
NADPH is used in:

- Anabolic processes
- Respiratory burst
- Cytochrome P-450 system
- Glutathione reductase

Hexokinase vs

 glucokinasePhosphorylation of glucose to yield glucose-6-phosphate is catalyzed by glucokinase in the liver and hexokinase in other tissues. Hexokinase sequesters glucose in tissues, where it is used even when glucose concentrations are low. At high glucose concentrations, glucokinase helps to store glucose in liver.

	Hexokinase	Glucokinase
Location	Most tissues, except liver and pancreatic β cells	Liver, β cells of pancreas
K_{m}	Lower $(\uparrow$ affinity $)$	Higher $(\downarrow$ affinity $)$
$\mathrm{V}_{\text {max }}$	Lower $(\downarrow$ capacity $)$	Higher $(\uparrow$ capacity $)$
Induced by insulin	No	Yes
Feedback-inhibited by glucose-6-phosphate	Yes	No

Glycolysis regulation, Net glycolysis (cytoplasm):
key enzymes
Glucose $+2 \mathrm{P}_{\mathrm{i}}+2 \mathrm{ADP}+2 \mathrm{NAD}^{+} \rightarrow 2$ pyruvate $+2 \mathrm{ATP}+2 \mathrm{NADH}+2 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$.
Equation not balanced chemically, and exact balanced equation depends on ionization state of reactants and products.

REQUIRE ATP	$\text { Glucose } \xrightarrow[\text { Hexokinase/glucokinase }^{\mathrm{a}}]{ } \text { Glucose-6-P }$	Glucose-6-P \ominus hexokinase. Fructose-6-P Θ glucokinase.
		AMP \oplus, fructose-2,6-bisphosphate \oplus. ATP Θ, citrate Θ.
	${ }^{\text {a }}$ Glucokinase in liver and β cells of pancreas; hexokinase in all other tissues.	
PRODUCE ATP	$\text { 1,3-BPG } \underset{\text { Phosphoglycerate kinase }}{\rightleftarrows} \text { 3-PG }$	
	Phosphoenolpyruvate $\xrightarrow[\text { Pyruvate kinase }]{ }$ Pyruvate	Fructose-l,6-bisphosphate \oplus. ATP Θ, alanine Θ.

Regulation by fructose-2,6bisphosphate

Pyruvate dehydrogenase complex

FBPase-2 (fructose bisphosphatase-2) and PFK-2 (phosphofructokinase-2) are the same bifunctional enzyme whose function is reversed by phosphorylation by protein kinase A.
Fasting state: \uparrow glucagon $\rightarrow \uparrow$ cAMP $\rightarrow \uparrow$ protein kinase $\mathrm{A} \rightarrow \uparrow$ FBPase- $2, \downarrow$ PFK-2, less glycolysis, more gluconeogenesis.
Fed state: \uparrow insulin $\rightarrow \downarrow$ cAMP $\rightarrow \downarrow$ protein kinase $\mathrm{A} \rightarrow \downarrow$ FBPase-2, \uparrow PFK-2, more glycolysis, less gluconeogenesis.

Mitochondrial enzyme complex linking glycolysis and TCA cycle. Differentially regulated in fed/fasting states (active in fed state).
Reaction: pyruvate $+\mathrm{NAD}^{+}+\mathrm{CoA} \rightarrow$ acetyl$\mathrm{CoA}+\mathrm{CO}_{2}+\mathrm{NADH}$.
The complex contains 3 enzymes that require 5 cofactors:

1. Thiamine pyrophosphate $\left(\mathrm{B}_{1}\right)$
2. Lipoic acid
3. $\mathrm{CoA}\left(\mathrm{B}_{5}\right.$, pantothenic acid)
4. FAD (B_{2}, riboflavin)
5. $\mathrm{NAD}^{+}\left(\mathrm{B}_{3}\right.$, niacin $)$

Activated by:
$\uparrow \mathrm{NAD}^{+} / \mathrm{NADH}$ ratio
\uparrow ADP
$\uparrow \mathrm{Ca}^{2+}$

The complex is similar to the α-ketoglutarate dehydrogenase complex (same cofactors, similar substrate and action), which converts α-ketoglutarate \rightarrow succinyl-CoA (TCA cycle).

The Lovely Co-enzymes For Nerds.
Arsenic inhibits lipoic acid. Arsenic poisoning clinical findings: imagine a vampire (pigmentary skin changes, skin cancer), vomiting and having diarrhea, running away from a cutie (QT prolongation) with garlic breath.

Pyruvate dehydrogenase complex deficiency	Causes a buildup of pyruvate that gets shunted to lactate (via LDH) and alanine (via ALT). X-linked.
FINDINGS	Neurologic defects, lactic acidosis, \uparrow serum alanine starting in infancy.
TREATMENT	\uparrow intake of ketogenic nutrients (eg, high fat content or \uparrow lysine and leucine).

Pyruvate metabolism

Functions of different pyruvate metabolic pathways (and their associated cofactors):
(1) Alanine aminotransferase (B_{6}): alanine carries amino groups to the liver from muscle
(2) Pyruvate carboxylase (biotin): oxaloacetate can replenish TCA cycle or be used in gluconeogenesis
(3) Pyruvate dehydrogenase $\left(\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{5}\right.$, lipoic acid): transition from glycolysis to the TCA cycle
4
Lactic acid dehydrogenase $\left(B_{3}\right)$: end of anaerobic glycolysis (major pathway in RBCs, WBCs, kidney medulla, lens, testes, and cornea)

TCA cycle (Krebs cycle) Pyruvate \rightarrow acetyl-CoA produces 1 NADH, $1 \mathrm{CO}_{2}$.

The TCA cycle produces $3 \mathrm{NADH}, 1 \mathrm{FADH}_{2}$, $2 \mathrm{CO}_{2}, 1$ GTP per acetyl-CoA $=10 \mathrm{ATP} /$ acetyl-CoA ($2 \times$ everything per glucose). TCA cycle reactions occur in the mitochondria. α-ketoglutarate dehydrogenase complex requires the same cofactors as the pyruvate dehydrogenase complex $\left(B_{1}, B_{2}, B_{3}\right.$, B_{5}, lipoic acid).
Citrate Is Krebs' Starting Substrate For Making Oxaloacetate.

Electron transport chain and oxidative phosphorylation

NADH electrons from glycolysis enter mitochondria via the malate-aspartate or glycerol-3phosphate shuttle. FADH_{2} electrons are transferred to complex II (at a lower energy level than $\mathrm{NADH})$. The passage of electrons results in the formation of a proton gradient that, coupled to oxidative phosphorylation, drives the production of ATP.

$\left.\begin{array}{lcl}\hline \text { ATP PRODUCED VIA ATP SYNTHASE } & & \\ \hline & 1 \text { NADH } \rightarrow 2.5 \text { ATP; } 1 \text { FADH } \rightarrow 1.5 \text { ATP. }\end{array}\right]$

Gluconeogenesis, irreversible enzymes

Pathway Produces Fresh Glucose.

Pyruvate carboxylase
In mitochondria. Pyruvate \rightarrow oxaloacetate.
Phosphoenolpyruvate carboxykinase

Fructose-1,6bisphosphatase
Glucose-6phosphatase

In cytosol. Oxaloacetate
\rightarrow phosphoenolpyruvate.
In cytosol. Fructose-1,6-bisphosphate
\rightarrow fructose-6-phosphate.

In ER. Glucose-6-phosphate \rightarrow glucose.

Requires biotin, ATP. Activated by acetyl-CoA. Requires GTP.

Citrate \oplus, AMP Θ, fructose 2,6-bisphosphate Θ.

Occurs primarily in liver; serves to maintain euglycemia during fasting. Enzymes also found in kidney, intestinal epithelium. Deficiency of the key gluconeogenic enzymes causes hypoglycemia.
(Muscle cannot participate in gluconeogenesis because it lacks glucose-6-phosphatase).
Odd-chain fatty acids yield l propionyl-CoA during metabolism, which can enter the TCA cycle (as succinyl-CoA), undergo gluconeogenesis, and serve as a glucose source. Even-chain fatty acids cannot produce new glucose, since they yield only acetyl-CoA equivalents.

HMP shunt (pentose phosphate pathway)

Provides a source of NADPH from abundantly available glucose-6-P (NADPH is required for reductive reactions, eg, glutathione reduction inside RBCs, fatty acid and cholesterol biosynthesis). Additionally, this pathway yields ribose for nucleotide synthesis. Two distinct phases (oxidative and nonoxidative), both of which occur in the cytoplasm. No ATP is used or produced.
Sites: lactating mammary glands, liver, adrenal cortex (sites of fatty acid or steroid synthesis), RBCs.

REACTIONS	KEY ENZYMES	PRODUCTS
Oxidative (irreversible)		CO_{2} 2 NADPH Ribulose-5-P ${ }_{i}$
Nonoxidative (reversible)	Ribulose-5-P $\mathrm{P}_{\mathrm{i}} \stackrel{$ Phosphopentose isomerase, transketolases $}{\text { Requires } \mathrm{B}_{1}}$	Ribose-5-P. Idehyde-3-phosphate Fructose-6-P

Glucose-6-phosphate dehydrogenase deficiency

NADPH is necessary to keep glutathione reduced, which in turn detoxifies free radicals and peroxides. \downarrow NADPH in RBCs leads to hemolytic anemia due to poor RBC defense against oxidizing agents (eg, fava beans, sulfonamides, nitrofurantoin, primaquine/ chloroquine, antituberculosis drugs). Infection (most common cause) can also precipitate hemolysis; inflammatory response produces free radicals that diffuse into RBCs, causing oxidative damage.

X-linked recessive disorder; most common human enzyme deficiency; more prevalent among African Americans. \uparrow malarial resistance.
Heinz bodies-denatured globin chains precipitate within RBCs due to oxidative stress. Bite cells-result from the phagocytic removal of Heinz bodies by splenic macrophages. Think, "Bite into some Heinz ketchup."

Disorders of fructose metabolism

Essential fructosuria Involves a defect in fructokinase. Autosomal recessive. A benign, asymptomatic condition (fructokinase deficiency is kinder), since fructose is not trapped in cells. Hexokinase becomes 1° pathway for converting fructose to fructose-6-phosphate.
Symptoms: fructose appears in blood and urine.
Disorders of fructose metabolism cause milder symptoms than analogous disorders of galactose metabolism.

Hereditary fructose intolerance

Hereditary deficiency of aldolase B. Autosomal recessive. Fructose-l-phosphate accumulates, causing a \downarrow in available phosphate, which results in inhibition of glycogenolysis and gluconeogenesis. Symptoms present following consumption of fruit, juice, or honey. Urine dipstick will be Θ (tests for glucose only); reducing sugar can be detected in the urine (nonspecific test for inborn errors of carbohydrate metabolism).
Symptoms: hypoglycemia, jaundice, cirrhosis, vomiting.
Treatment: \downarrow intake of both fructose and sucrose (glucose + fructose).

Disorders of galactose metabolism

Galactokinase deficiency

Hereditary deficiency of galactokinase. Galactitol accumulates if galactose is present in diet. Relatively mild condition. Autosomal recessive.
Symptoms: galactose appears in blood (galactosemia) and urine (galactosuria); infantile cataracts. May present as failure to track objects or to develop a social smile. Galactokinase deficiency is kinder (benign condition).
Classic galactosemia Absence of galactose-l-phosphate uridyltransferase. Autosomal recessive. Damage is caused by accumulation of toxic substances (including galactitol, which accumulates in the lens of the eye). Symptoms develop when infant begins feeding (lactose present in breast milk and routine formula) and include failure to thrive, jaundice, hepatomegaly, infantile cataracts, intellectual disability. Can predispose to E coli sepsis in neonates.
Treatment: exclude galactose and lactose (galactose + glucose) from diet.

Fructose is to Aldolase B as Galactose is to UridylTransferase (FAB GUT).
The more serious defects lead to PO_{4}^{3-} depletion.

An alternative method of trapping glucose in the cell is to convert it to its alcohol counterpart, sorbitol, via aldose reductase. Some tissues then convert sorbitol to fructose using sorbitol dehydrogenase; tissues with an insufficient amount/activity of this enzyme are at risk of intracellular sorbitol accumulation, causing osmotic damage (eg, cataracts, retinopathy, and peripheral neuropathy seen with chronic hyperglycemia in diabetes).
High blood levels of galactose also result in conversion to the osmotically active galactitol via aldose reductase.
Liver, Ovaries, and Seminal vesicles have both enzymes (they LOSe sorbitol).

Lens has primarily aldose reductase. Retina, Kidneys, and Schwann cells have only aldose reductase (LuRKS).

Lactase deficiency	Insufficient lactase enzyme \rightarrow dietary lactose intolerance. Lactase functions on the intestinal brush border to digest lactose (in milk and milk products) into glucose and galactose. Primary: age-dependent decline after childhood (absence of lactase-persistent allele), common in people of Asian, African, or Native American descent. Secondary: loss of intestinal brush border due to gastroenteritis (eg, rotavirus), autoimmune disease, etc. Congenital lactase deficiency: rare, due to defective gene. Stool demonstrates \downarrow pH and breath shows \uparrow hydrogen content with lactose hydrogen breath test. Intestinal biopsy reveals normal mucosa in patients with hereditary lactose intolerance.
Bloating, cramps, flatulence, osmotic diarrhea.	
Avoid dairy products or add lactase pills to diet; lactose-free milk.	

Amino acids	Only L-amino acids are found in proteins.
Essential	PVT TIM HaLL: Phenylalanine, Valine, Tyrosine, Threonine, Isoleucine, Methionine, Histidine,
	Leucine, Lysine.
	Glucogenic: Methionine, histidine, valine. I met his valentine, she is so sweet (glucogenic). Glucogenic/ketogenic: Isoleucine, phenylalanine, threonine, tyrosine. Ketogenic: Leucine, Lysine. The onLy pureLy ketogenic amino acids.
Acidic	Aspartic acid, glutamic acid.
Negatively charged at body pH.	
Basic	Arginine, histidine, lysine. Arginine is most basic. Histidine has no charge at body pH. Arginine and histidine are required during periods of growth. Arginine and lysine are \uparrow in histones which bind negatively charged DNA. His lys (lies) are basic.

Urea cycle

Amino acid catabolism results in the formation of common metabolites (eg, pyruvate, acetylCoA), which serve as metabolic fuels. Excess nitrogen generated by this process is converted to urea and excreted by the kidneys.

Ordinarily, Careless Crappers Are Also Frivolous About Urination.

Transport of ammonia by alanine

Hyperammonemia

Can be acquired (eg, liver disease) or hereditary (eg, urea cycle enzyme deficiencies).
Excess NH_{3} depletes glutamate (GABA) in the CNS and α-ketoglutarate \rightarrow inhibition of TCA cycle.
Treatment: limit protein in diet.
May be given to \downarrow ammonia levels:

- Lactulose to acidify the GI tract and trap $\mathrm{NH}_{4}{ }^{+}$for excretion.
- Antibiotics (eg, rifaximin, neomycin) to \downarrow colonic ammoniagenic bacteria.
- Benzoate, phenylacetate, or phenylbutyrate react with glycine or glutamine, forming products that are renally excreted.

Ammonia accumulation-flapping tremor (asterixis), slurring of speech, somnolence, vomiting, cerebral edema, blurring of vision.

Ornithine transcarbamylase deficiency

Most common urea cycle disorder. X-linked recessive (vs other urea cycle enzyme deficiencies, which are autosomal recessive). Interferes with the body's ability to eliminate ammonia. Often evident in the first few days of life, but may present later. Excess carbamoyl phosphate is converted to orotic acid (part of the pyrimidine synthesis pathway).
Findings: \uparrow orotic acid in blood and urine, \downarrow BUN, symptoms of hyperammonemia. No megaloblastic anemia (vs orotic aciduria).

Amino acid derivatives

$\mathrm{BH}_{4}=$ tetrahydrobiopterin

Catecholamine synthesis/tyrosine catabolism

Phenylketonuria

Maple syrup urine disease

Due to \downarrow phenylalanine hydroxylase or \downarrow tetrahydrobiopterin $\left(\mathrm{BH}_{4}\right)$ cofactor (malignant PKU). Tyrosine becomes essential. ${ }^{\uparrow}$ phenylalanine \rightarrow excess phenyl ketones in urine.
Findings: intellectual disability, growth retardation, seizures, fair complexion, eczema, musty body odor.
Treatment: \downarrow phenylalanine and \uparrow tyrosine in diet, tetrahydrobiopterin supplementation.

Maternal PKU-lack of proper dietary therapy during pregnancy. Findings in infant: microcephaly, intellectual disability, growth retardation, congenital heart defects.

Autosomal recessive. Incidence $\approx 1: 10,000$.
Screening occurs 2-3 days after birth (normal at birth because of maternal enzyme during fetal life).
Phenyl ketones-phenylacetate, phenyllactate, and phenylpyruvate.
Disorder of aromatic amino acid metabolism \rightarrow musty body odor.
PKU patients must avoid the artificial sweetener aspartame, which contains phenylalanine.

Blocked degradation of branched amino acids (Isoleucine, Leucine, Valine) due to \downarrow branched-chain α-ketoacid dehydrogenase $\left(\mathrm{B}_{1}\right)$. Causes $\uparrow \alpha$-ketoacids in the blood, especially those of leucine.
Causes severe CNS defects, intellectual disability, and death.
Treatment: restriction of isoleucine, leucine, valine in diet, and thiamine supplementation.

Autosomal recessive.
Presentation: vomiting, poor feeding, urine smells like maple syrup/burnt sugar.
I Love Vermont maple syrup from maple trees (with B_{1} ranches).

Alkaptonuria

Congenital deficiency of homogentisate oxidase in the degradative pathway of tyrosine to fumarate \rightarrow pigment-forming homogentisic acid accumulates in tissue A. Autosomal recessive. Usually benign.
Findings: bluish-black connective tissue, ear cartilage, and sclerae (ochronosis); urine turns black on prolonged exposure to air. May have debilitating arthralgias (homogentisic acid toxic to cartilage).

Types (all autosomal recessive):

- Cystathionine synthase deficiency (treatment: \downarrow methionine, \uparrow cysteine, $\uparrow \mathrm{B}_{6}$, B_{12}, and folate in diet)
- \downarrow affinity of cystathionine synthase for pyridoxal phosphate (treatment: $\uparrow \uparrow \mathrm{B}_{6}$ and \uparrow cysteine in diet)
- Methionine synthase (homocysteine methyltransferase) deficiency (treatment: \uparrow methionine in diet)

All forms result in excess homocysteine. HOMOCYstinuria: $\uparrow \uparrow$ Homocysteine in urine, Osteoporosis, Marfanoid habitus, Ocular changes (downward and inward lens subluxation), Cardiovascular effects (thrombosis and atherosclerosis \rightarrow stroke and MI), kYphosis, intellectual disability. In homocystinuria, lens subluxes "down and in" (vs Marfan, "up and fans out").

Cystinuria

Hereditary defect of renal PCT and intestinal amino acid transporter that prevents reabsorption of Cystine, Ornithine, Lysine, and Arginine (COLA).
Excess cystine in the urine can lead to recurrent precipitation of hexagonal cystine stones \boldsymbol{A}.
Treatment: urinary alkalinization (eg, potassium citrate, acetazolamide) and chelating agents (eg, penicillamine) \uparrow solubility of cystine stones; good hydration.

Autosomal recessive. Common (1:7000).
Urinary cyanide-nitroprusside test is diagnostic.

Cystine is made of 2 cysteines connected by a disulfide bond.

Glycogen regulation by insulin and glucagon/epinephrine

Note: A small amount of glycogen is degraded in lysosomes by $\boldsymbol{\sigma}$-1,4-glucosidase (acid maltase).

Glycogen storage
diseases

At least 15 types have been identified, all resulting in abnormal glycogen metabolism and an accumulation of glycogen within cells. Periodic acid-Schiff stain identifies glycogen and is useful in identifying these diseases.

Very Poor Carbohydrate Metabolism. Types I, II, III, and V are autosomal recessive.

IIGG	efflent enzMe	OMment
Severe fasting hypoglycemia, $\uparrow \uparrow$ Glycogen in liver and kidneys, \uparrow blood lactate, \uparrow triglycerides, \uparrow uric acid (Gout), and hepatomegaly, renomegaly. Liver does not regulate blood glucose.	Glucose-6-phosphatase	Treatment: frequent oral glucose/cornstarch; avoidance of fructose and galactose Impaired gluconeogenesis and glycogenolysis
Cardiomegaly, hypertrophic cardiomyopathy, hypotonia, exercise intolerance, and systemic findings lead to early death.	Lysosomal acid $\alpha-1,4-$ glucosidase with $\alpha-1,6$ glucosidase activity (acid maltase)	PomPe trashes the PumP (1,4) (heart, liver, and muscle)

| Milder form of von Gierke | Debranching enzyme
 $($ (type I) with normal blood |
| :---: | :---: |\quad Gluconeogenesis is intact lactate levels. Accumulation of limit dextrin-like structures in cytosol.

\uparrow glycogen in muscle, but muscle cannot break it down \rightarrow painful Muscle cramps, Myoglobinuria (red urine) with strenuous exercise, and arrhythmia from electrolyte abnormalities. Second-wind phenomenon noted during exercise due to \uparrow muscular blood flow.

Skeletal muscle glycogen phosphorylase (Myophosphorylase) Hallmark is a flat venous lactate curve with normal rise in ammonia levels during exercise

Lysosomal storage diseases

Each is caused by a deficiency in one of the many lysosomal enzymes. Results in an accumulation of abnormal metabolic products.

DISEASE	FINIINGS	DEFIIIENT EnzYME	AcCuMulate substrate	InHERITANCE
Sphingolipidoses				
Tay-Sachs disease	Progressive neurodegeneration, developmental delay, "cherry-red" spot on macula \mathbf{A}, lysosomes with onion skin, no hepatosplenomegaly (vs Niemann-Pick).	(1) HeXosaminidase A ("TAy-SaX")	GM_{2} ganglioside	AR
Fabry disease	Early: Triad of episodic peripheral neuropathy, angiokeratomas B, hypohidrosis. Late: progressive renal failure, cardiovascular disease.	(2) α-galactosidase A	Ceramide trihexoside	XR
Metachromatic leukodystrophy	Central and peripheral demyelination with ataxia, dementia.	(3) Arylsulfatase A	Cerebroside sulfate	AR
Krabbe disease	Peripheral neuropathy, destruction of oligodendrocytes, developmental delay, optic atrophy, globoid cells.	(4) Galactocerebrosidase	Galactocerebroside, psychosine	AR
	Most common. Hepatosplenomegaly, pancytopenia, osteoporosis, avascular necrosis of femur, bone crises, Gaucher cells [C (lipid-laden macrophages resembling crumpled tissue paper).	(5) Glucocerebrosidase (β-glucosidase); treat with recombinant glucocerebrosidase	Glucocerebroside	AR
Niemann-Pick disease	Progressive neurodegeneration, hepatosplenomegaly, foam cells (lipid-laden macrophages) D, "cherry-red" spot on macula \boldsymbol{A}.	6 Sphingomyelinase	Sphingomyelin	AR
Mucopolysaccharidoses				
Hurler syndrome	Developmental delay, gargoylism, airway obstruction, corneal clouding, hepatosplenomegaly.	α-L-iduronidase	Heparan sulfate, dermatan sulfate	AR
Hunter syndrome	Mild Hurler + aggressive behavior, no corneal clouding.	Iduronate-2-sulfatase	Heparan sulfate, dermatan sulfate	XR

No man picks (Niemann-Pick) his nose with his sphinger (sphingomyelinase).
Tay-SaX lacks heXosaminidase.
Hunters see clearly (no corneal clouding) and aggressively aim for the \mathbf{X} (\mathbf{X}-linked recessive). \uparrow incidence of Tay-Sachs, Niemann-Pick, and some forms of Gaucher disease in Ashkenazi Jews.

Fatty acid metabolism

Fatty acid synthesis requires transport of citrate from mitochondria to cytosol. Predominantly occurs in liver, lactating mammary glands, and adipose tissue.
Long-chain fatty acid (LCFA) degradation requires carnitine-dependent transport into the mitochondrial matrix.
"SYtrate" = SYnthesis.
CARnitine $=$ CARnage of fatty acids.
Systemic 1° carnitine deficiency-inherited defect in transport of LCFAs into the mitochondria \rightarrow toxic accumulation. Causes weakness, hypotonia, and hypoketotic hypoglycemia.

Medium-chain acyl-CoA dehydrogenase

 deficiency- \downarrow ability to break down fatty acids into acetyl-CoA \rightarrow accumulation of fatty acyl carnitines in the blood with hypoketotic hypoglycemia. Causes vomiting, lethargy, seizures, coma, liver dysfunction, hyperammonemia. Can lead to sudden death in infants or children. Treat by avoiding fasting.
Ketone bodies

In the liver, fatty acids and amino acids are metabolized to acetoacetate and β-hydroxybutyrate (to be used in muscle and brain).
In prolonged starvation and diabetic ketoacidosis, oxaloacetate is depleted for gluconeogenesis. In alcoholism, excess NADH shunts oxaloacetate to malate. Both processes cause a buildup of acetyl-CoA, which shunts glucose, amino acids, and FFAs toward the production of ketone bodies.

Metabolic fuel use

Fasting and starvation Priorities are to supply sufficient glucose to the brain and RBCs and to preserve protein.

Fed state (after a Glycolysis and aerobic respiration. meal)

Fasting (between meals)

Starvation days 1-3 Blood glucose levels maintained by:

- Hepatic glycogenolysis
- Adipose release of FFA
- Muscle and liver, which shift fuel use from glucose to FFA
- Hepatic gluconeogenesis from peripheral tissue lactate and alanine, and from adipose tissue glycerol and propionylCoA (from odd-chain FFA-the only triacylglycerol components that contribute to gluconeogenesis)
Starvation after day 3

Adipose stores (ketone bodies become the main source of energy for the brain). After these are depleted, vital protein degradation accelerates, leading to organ failure and death.

Insulin stimulates storage of lipids, proteins, and glycogen.
Glucagon and epinephrine stimulate use of fuel reserves.

Glycogen reserves depleted after day 1.
RBCs lack mitochondria and therefore cannot use ketones.

Amount of excess stores determines survival time.

Lipid transport

Key enzymes in lipid transport	Cholesterol ester transfer protein mediates transfer of cholesterol esters to other lipoprotein particles.
Hepatic lipase	Degrades TGs remaining in IDL.
Hormone-sensitive lipase	Degrades TGs stored in adipocytes.
Lecithin-cholesterol acyltransferase	Catalyzes esterification of $2 / 3$ of plasma cholesterol.
Lipoprotein lipase	Degrades TGs circulating chylomicrons and VLDLs. Found on vascular endothelial surface.
Pancreatic lipase	Degrades dietary TGs in small intestine.

Major apolipoproteins

Apolipoprotein	Function	Chylomicron	Chylomicron remnant	VLDL	IDL	LDL	HDL
E	Mediates remnant uptake (Everything Except LDL)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
A-I	Activates LCAT						
C-II	Lipoprotein lipase Cofactor that Catalyzes Cleavage	\checkmark		\checkmark		\checkmark	
B-48	Mediates chylomicron secretion into lymphatics Only on particles originating from the intestines	\checkmark	\checkmark				
B-100							
Binds LDL receptor Only on particles originating from the liver		\checkmark	\checkmark				

Lipoprotein functions	Lipoproteins are composed of varying proportions of cholesterol, TGs, and phospholipids. LDL and HDL carry the most cholesterol.
LDL transports cholesterol from liver to tissues. \quadLDL is Lousy. HDL transports cholesterol from periphery to liver.	
HDL is Healthy.	

Abetalipoproteinemia Autosomal recessive. Chylomicrons, VLDL, LDL absent. Deficiency in ApoB-48, ApoB-100. Affected infants present with severe fat malabsorption, steatorrhea, failure to thrive. Later manifestations include retinitis pigmentosa, spinocerebellar degeneration due to vitamin E deficiency, progressive ataxia, acanthocytosis.
Treatment: restriction of long-chain fatty acids, large doses of oral vitamin E.

Familial dyslipidemias

TYPE	InHeritance	Pathogenesis	\dagger Blood Level	ClINICAL
I-Hyperchylomicronemia	AR	Lipoprotein lipase or apolipoprotein C-II deficiency	Chylomicrons, TG, cholesterol	Pancreatitis, hepatosplenomegaly, and eruptive/pruritic xanthomas (no \uparrow risk for atherosclerosis). Creamy layer in supernatant.
II-Familial hypercholesterolemia	AD	Absent or defective LDL receptors, or defective ApoB-100	IIa: LDL, cholesterol IIb: LDL, cholesterol, VLDL	Heterozygotes ($1: 500$) have cholesterol $\approx 300 \mathrm{mg} / \mathrm{dL}$; homozygotes (very rare) have cholesterol $\sim 700+\mathrm{mg} / \mathrm{dL}$. Accelerated atherosclerosis (may have MI before age 20), tendon (Achilles) xanthomas, and corneal arcus.
III-Dysbetalipoproteinemia	AR	Defective ApoE	Chylomicrons, VLDL	Premature atherosclerosis, tuberoeruptive xanthomas, palmar xanthomas.
IV-Hypertriglyceridemia	AD	Hepatic overproduction of VLDL	VLDL, TG	Hypertriglyceridemia (> 1000 $\mathrm{mg} / \mathrm{dL}$) can cause acute pancreatitis. Related to insulin resistance.

HIGH-YIELD PRINCIPLES IN

Immunology

"I hate to disappoint you, but my rubber lips are immune to your charms."
-Batman © Robin
"An apple a day keeps the doctor away."
-English proverb

Understand how the many components of the immune system operate and interact in the normal immune response to infection at both the clinical and cellular levels. Know the immune mechanisms of responses to vaccines. Both congenital and acquired immunodeficiencies are very testable. Cell surface markers are high yield for understanding immune cell interactions and for laboratory diagnosis. Know the roles and functions of major cytokines and chemokines.
> Lymphoid Structures 96

Cellular Components99
Immune Responses 104
> Immunosuppressants 120

- IMMUNOLOGY-LYMPHOID STRUCTURES

Immune system	1° organs:
organs	" Bone marrow-immune cell production, B cell maturation
	" Thymus-T cell maturation
	2° organs:
	" Spleen, lymph nodes, tonsils, Peyer patches
	- Allow immune cells to interact with antigen

Lymph node

A 2° lymphoid organ that has many afferents, 1 or more efferents. Encapsulated, with trabeculae. Functions are nonspecific filtration by macrophages, storage of B and T cells, and immune response activation.

Lymphatic drainage associations

Spleen

Located in LUQ of abdomen, anterior to left kidney, protected by 9th-llth ribs.
Sinusoids are long, vascular channels in red pulp (red arrows in A) with fenestrated "barrel hoop" basement membrane.

- T cells are found in the periarteriolar lymphatic sheath (PALS) within the white pulp (white arrows in A).
- B cells are found in follicles within the white pulp.
- The marginal zone, in between the red pulp and white pulp, contains macrophages and specialized B cells, and is where antigenpresenting cells (APCs) capture blood-borne antigens for recognition by lymphocytes.
Splenic macrophages remove encapsulated bacteria.

Thymus

Located in the anterosuperior mediastinum. Site of T-cell differentiation and maturation. Encapsulated. Thymus is derived from the Third pharyngeal pouch. Lymphocytes of mesenchymal origin. Cortex is dense with immature T cells; medulla is pale with mature T cells and Hassall corpuscles A containing epithelial reticular cells.
Normal neonatal thymus "sail-shaped" on
CXR B, involutes with age.

Splenic dysfunction (eg, postsplenectomy state in sickle cell disease): $\downarrow \mathrm{IgM} \rightarrow \downarrow$ complement activation $\rightarrow \downarrow$ C3b opsonization $\rightarrow \uparrow$ susceptibility to encapsulated organisms.
Postsplenectomy blood findings:

- Howell-Jolly bodies (nuclear remnants)
- Target cells
- Thrombocytosis (loss of sequestration and removal)
- Lymphocytosis (loss of sequestration)

Vaccinate patients undergoing splenectomy against encapsulated organisms (pneumococcal, Hib, meningococcal).

T cells $=$ Thymus
B cells $=$ Bone marrow
Hypoplastic in DiGeorge syndrome and severe combined immunodeficiency (SCID).

Thymoma-neoplasm of thymus. Associated with myasthenia gravis and superior vena cava syndrome.

IMMUNOLOGY—CELLULAR COMPONENTS

Innate vs adaptive immunity

	Innate immunity	Adaptive immunity
COMPONENTS	Neutrophils, macrophages, monocytes, dendritic cells, natural killer (NK) cells (lymphoid origin), complement, physical epithelial barriers, secreted enzymes.	T cells, B cells, circulating antibodies

Major histocompatibility complex I and II

HLA subtypes associated with diseases

HLA SUBTYPE	DISEASE	mnemonic
A3	Hemochromatosis	
B8	Addison disease, myasthenia gravis, Graves disease	Don't Be late(8), Dr. Addison, or else you'll send my patient to the grave.
B27	Psoriatic arthritis, Ankylosing spondylitis, IBD-associated arthritis, Reactive arthritis	PAIR. Also known as seronegative arthropathies.
DQ2/DQ8	Celiac disease	I ate (8) too (2) much gluten at Dairy Queen.
DR2	Multiple sclerosis, hay fever, SLE, Goodpasture syndrome	Multiple hay pastures have dirt.
DR3	Diabetes mellitus type 1, SLE, Graves disease, Hashimoto thyroiditis, Addison disease	2-3, S-L-E
DR4	Rheumatoid arthritis, diabetes mellitus type 1 , Addison disease	There are 4 walls in a "rheum" (room).
DR5	Hashimoto thyroiditis	Hashimoto is an odd doctor (DR3, DR5).

Natural killer cells Lymphocyte member of innate immune system.
Use perforin and granzymes to induce apoptosis of virally infected cells and tumor cells.
Activity enhanced by IL-2, IL-12, IFN- α, and IFN- β.
Induced to kill when exposed to a nonspecific activation signal on target cell and/or to an absence of MHC I on target cell surface.
Also kills via antibody-dependent cell-mediated cytotoxicity (CDl6 binds Fc region of bound Ig, activating the NK cell).

Major functions of B and T cells

B cells

T cells Cell-mediated immunity.

CD4+ T cells help B cells make antibodies and produce cytokines to recruit phagocytes and activate other leukocytes.
CD8+ T cells directly kill virus-infected cells.
Delayed cell-mediated hypersensitivity (type IV).
Acute and chronic cellular organ rejection.
Rule of $8: \mathrm{MHC} \mathrm{II} \times \mathrm{CD} 4=8$; $\mathrm{MHC} \mathrm{I} \times \mathrm{CD} 8=8$.

Differentiation of T cells

回

Positive selection

Negative selection

Thymic cortex. T cells expressing TCRs capable of binding self-MHC on cortical epithelial cells survive.

Thymic medulla. T cells expressing TCRs with high affinity for self antigens undergo apoptosis or become regulatory T cells. Tissue-restricted self-antigens are expressed in the thymus due to the action of autoimmune regulator (AIRE); deficiency leads to autoimmune polyendocrine syndrome-l.

T cell subsets

	Th1 cell	Th2 cell	Th17 cell	Treg
SECRETES	IFN- γ	$\begin{aligned} & \text { IL-4, IL-5, IL-6, IL-10, } \\ & \text { IL-13 } \end{aligned}$	IL-17, IL-21, IL-22	TGF-ß, IL-10, IL-35
function	Activates macrophages and cytotoxic T cells to kill phagocytosed microbes	Activate eosinophils and promote production of IgE for parasite defense	Immunity against extracellular microbes, through induction of neutrophilic inflammation	Prevent autoimmunity by maintaining tolerance to selfantigens
induced by	IFN- γ, IL-12	IL-2, IL-4	TGF- β, IL-1, IL-6	TGF- β, IL-2
INHIBITED BY	IL-4, IL-10 (from Th2 cell)	IFN- γ (from Thl cell)	IFN- γ, IL-4	IL-6
Immunodefiliency	Mendelian susceptibility to mycobacterial disease		Hyper-IgE syndrome	IPEX

Macrophagelymphocyte interaction

Thl cells secrete IFN- γ, which enhances the ability of monocytes and macrophages to kill microbes they ingest. This function is also enhanced by interaction of T cell CD40L with CD40 on macrophages.

Cytotoxic T cells
Kill virus-infected, neoplastic, and donor graft cells by inducing apoptosis.
Release cytotoxic granules containing preformed proteins (eg, perforin, granzyme B).
Cytotoxic T cells have CD8, which binds to MHC I on virus-infected cells.

Help maintain specific immune tolerance by suppressing CD4 and CD8 T-cell effector functions. Identified by expression of CD3, CD4, CD25, and FOXP3.
Activated regulatory T cells (Tregs) produce anti-inflammatory cytokines (eg, IL-10, TGF- β).
IPEX (Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndromegenetic deficiency of FOXP3 \rightarrow autoimmunity. Characterized by enteropathy, endocrinopathy, nail dystrophy, dermatitis, and/or other autoimmune dermatologic conditions. Associated with diabetes in male infants.

T- and B-cell activation APCs: B cells, dendritic cells, Langerhans cells, macrophages. Two signals are required for T-cell activation, B-cell activation, and class switching.

T-cell activation

B-cell activation and class switching

(1) Dendritic cell (specialized APC) samples antigen, processes antigen, and migrates to the draining lymph node.
(2) T-cell activation (signal 1): antigen is presented on MHC II and recognized by TCR on Th (CD4+) cell. Endogenous or cross-presented antigen is presented on MHC I to Tc (CD8+) cell.
(3) Proliferation and survival (signal 2):
costimulatory signal via interaction of B7 protein (CD80/86) on dendritic cell and CD28 on naïve T cell.
(4) Th cell activates and produces cytokines. Tc cell activates and is able to recognize and kill virus-infected cell.
(1) Th-cell activation as above.
(2) B-cell receptor-mediated endocytosis; foreign antigen is presented on MHC II and recognized by TCR on Th cell.
(3) CD40 receptor on B cell binds CD40 ligand (CD40L) on Th cell.
(4) Th cell secretes cytokines that determine Ig class switching of B cell. B cell activates and undergoes class switching, affinity maturation, and antibody production.

IMMUNOLOGY-IMMUNE RESPONSES

Antibody structure and function

Fab (containing the variable/hypervariable regions) consisting of light (L) and heavy (H) chains recognizes antigens. Fc region of IgM and IgG fixes complement. Heavy chain contributes to Fc and Fab regions. Light chain contributes only to Fab region.

回

Fab:

- Fragment, antigen binding
- Determines idiotype: unique antigen-binding pocket; only l antigenic specificity expressed per B cell
Fc:
- Constant
- Carboxy terminal
- Complement binding
- Carbohydrate side chains
- Determines isotype (IgM, IgD, etc)

Generation of antibody diversity (antigen independent)

1. Random recombination of VJ (light-chain) or $V(D)$ J (heavy-chain) genes
2. Random addition of nucleotides to DNA during recombination by terminal deoxynucleotidyl transferase (TdT)
3. Random combination of heavy chains with light chains
Generation of antibody specificity (antigen
dependent)
4. Somatic hypermutation and affinity maturation (variable region)
5. Isotype switching (constant region)

Immunoglobulin
isotypes
:---
on their surfaces. They may differentiate in germinal centers of lymph nodes by isotype switching
(gene rearrangement; induced by cytokines and CD40L) into plasma cells that secrete IgA, IgE,
or IgG.

Main antibody in 2° response to an antigen. Most abundant isotype in serum. Fixes complement,
opsonizes bacteria, neutralizes bacterial toxins and viruses. Only isotype that crosses the placenta
(provides infants with passive immunity).

IgG | Prevents attachment of bacteria and viruses to mucous membranes; does not fix complement. |
| :--- |
| Monomer (in circulation) or dimer (with J chain when secreted). Crosses epithelial cells by |
| transcytosis. Produced in GI tract (eg, by Peyer patches) and protects against gut infections (eg, |
| Giardia). Most produced antibody overall, but has lower serum concentrations. Released into |
| secretions (tears, saliva, mucus) and breast milk. Picks up secretory component from epithelial cells, |
| which protects the Fc portion from luminal proteases. |
| Produced in the l l° (immediate) response to an antigen. Fixes complement. Cannot cross the |
| placenta. Antigen receptor on the surface of B cells. Monomer on B cell, pentamer with J chain |
| when secreted. Pentamer enables avid binding to antigen while humoral response evolves. |

Jchain

IgD | Unclear function. Found on surface of many B cells and in serum. |
| :--- |

Binds mast cells and basophils; cross-links when exposed to allergen, mediating immediate (type I)
hypersensitivity through release of inflammatory mediators such as histamine. Contributes to
immunity to parasites by activating eosinophils. Lowest concentration in serum.

Antigen type and memory

Thymus-independent Antigens lacking a peptide component (eg, lipopolysaccharides from gram Θ bacteria); cannot antigens be presented by MHC to T cells. Weakly immunogenic; vaccines often require boosters and adjuvants (eg, pneumococcal polysaccharide vaccine).
Thymus-dependent Antigens containing a protein component (eg, diphtheria vaccine). Class switching and antigens immunologic memory occur as a result of direct contact of B cells with Th cells.

Complement disorders

Complement protein deficiencies

Early complement Increased risk of severe, recurrent pyogenic sinus and respiratory tract infections. Increased risk of deficiencies (C1-C4) SLE.
Terminal complement Increased susceptibility to recurrent Neisseria bacteremia. deficiencies (C5-C9)

Complement regulatory protein deficiencies

C1 esterase inhibitor Causes hereditary angioedema due to unregulated activation of kallikrein $\rightarrow \uparrow$ bradykinin. deficiency Characterized by $\downarrow \mathrm{C} 4$ levels. ACE inhibitors are contraindicated.
Paroxysmal nocturnal
A defect in the PIGA gene preventing the formation of anchors for complement inhibitors, such as hemoglobinuria decay-acclerating factor (DAF/CD55) and membrane inhibitor of reactive lysis (MIRL/CD59). Causes complement-mediated lysis of RBCs.

Important cytokines

SECRETED BY MACROPHAGES		
Interleukin-1	Causes fever, acute inflammation. Activates endothelium to express adhesion molecules. Induces chemokine secretion to recruit WBCs. Also known as osteoclast-activating factor.	"Hot T-bone stEAK": IL-1: fever (hot). IL-2: stimulates T cells. IL-3: stimulates bone marrow. IL-4: stimulates IgE production. IL-5: stimulates IgA production. IL-6: stimulates aKute-phase protein production.
Interleukin-6	Causes fever and stimulates production of acutephase proteins.	
Interleukin-8	Major chemotactic factor for neutrophils.	"Clean up on aisle 8." Neutrophils are recruited by IL-8 to clear infections.
Interleukin-12	Induces differentiation of T cells into Thl cells. Activates NK cells.	
Tumor necrosis factor- α	Activates endothelium. Causes WBC recruitment, vascular leak.	Causes cachexia in malignancy. Maintains granulomas in TB. IL-1, IL-6, TNF- α can mediate fever and sepsis.
Secreted by All Tcell		
Interleukin-2	Stimulates growth of helper, cytotoxic, and regulatory T cells, and NK cells.	
Interleukin-3	Supports growth and differentiation of bone marrow stem cells. Functions like GM-CSF.	
From Th CELLS		
Interferon- $\boldsymbol{\gamma}$	Secreted by NK cells and T cells in response to antigen or IL-12 from macrophages; stimulates macrophages to kill phagocytosed pathogens. Inhibits differentiation of Th2 cells.	Also activates NK cells to kill virus-infected cells. Increases MHC expression and antigen presentation by all cells.
FROM Th2 CLLLS		
Interleukin-4	Induces differentiation of T cells into Th (helper) 2 cells. Promotes growth of B cells. Enhances class switching to IgE and IgG..	Ain't too proud 2 BEG 4 help.
Interleukin-5	Promotes growth and differentiation of B cells. Enhances class switching to IgA. Stimulates growth and differentiation of eosinophils.	
Interleukin-10	Attenuates inflammatory response. Decreases expression of MHC class II and Thl cytokines. Inhibits activated macrophages and dendritic cells. Also secreted by regulatory T cells.	TGF- β and IL-10 both attenuate the immune response.

Respiratory burst (oxidative burst)

Involves the activation of the phagocyte NADPH oxidase complex (eg, in neutrophils, monocytes), which utilizes O_{2} as a substrate. Plays an important role in the immune response \rightarrow rapid release of reactive oxygen species (ROS). NADPH plays a role in both the creation and neutralization of ROS. Myeloperoxidase contains a blue-green heme-containing pigment that gives sputum its color.

Phagocytes of patients with CGD can utilize $\mathrm{H}_{2} \mathrm{O}_{2}$ generated by invading organisms and convert it to ROS. Patients are at \uparrow risk for infection by catalase \oplus species (eg, S aureus, Aspergillus) capable of neutralizing their own $\mathrm{H}_{2} \mathrm{O}_{2}$, leaving phagocytes without ROS for fighting infections.
Pyocyanin of P aeruginosa generates ROS to kill competing pathogens. Oxidative burst also leads to K^{+}influx, which releases lysosomal enzymes from proteoglycans. Lactoferrin is a protein found in secretory fluids and neutrophils that inhibits microbial growth via iron chelation.

Interferon- $\boldsymbol{\alpha}$ and $-\boldsymbol{\beta}$

A part of innate host defense against both RNA and DNA viruses. Interferons are glycoproteins synthesized by virus-infected cells that act on local cells, "priming them" for viral defense by downregulating protein synthesis to resist potential viral replication and upregulating MHC expression to facilitate recognition of infected cells.

Interfere with viruses.

Cell surface proteins

T cells	TCR (binds antigen-MHC complex) CD3 (associated with TCR for signal transduction) CD28 (binds B7 on APC)	
Helper T cells	CD4, CD40L, CXCR4/CCR5 (co-receptor for HIV)	
Cytotoxic T cells	CD8	
Regulatory T cells	CD4, CD25	
B cells	Ig (binds antigen) CD19, CD20, CD21 (receptor for EBV), CD40 MHC II, B7	You can drink Beer at the Bar when you're 21: B cells, Epstein-Barr virus, CD21.
Macrophages	CD14 (receptor for PAMPs, eg, LPS), CD40 CCR5 MHC II, B7 (CD80/86) Fc and C 3 b receptors (enhanced phagocytosis)	
NK cells	CD16, CD56 (suggestive marker for NK)	
Hematopoietic stem cells	CD34	

Anergy State during which a cell cannot become activated by exposure to its antigen. T and B cells become anergic when exposed to their antigen without costimulatory signal (signal 2). Another mechanism of self-tolerance.

Passive vs active immunity

	Passive	Active
MEANS OF ACQUISITION	Receiving preformed antibodies	Exposure to foreign antigens
ONSET	Rapid	Slow
DURATION	Short span of antibodies (half-life = 3 weeks)	Long-lasting protection (memory)
EXAMPLES	IgA in breast milk, maternal IgG crossing placenta, antitoxin, humanized monoclonal antibody	Natural infection, vaccines, toxoid
NOTES	After exposure to Tetanus toxin, Botulinum toxin, HBV, Varicella, Rabies virus, or diphtheria toxin, unvaccinated patients are given preformed antibodies (passive)-"To Be Healed Very Rapidly"	Combined passive and active immunizations can be given for hepatitis B or rabies exposure

Vaccination

VACCINE TYPE	DESCRIPTION	PROS/CONS	EXAMPLES
Live attenuated vaccine	Microorganism loses its pathogenicity but retains capacity for transient growth within inoculated host. Induces cellular and humoral responses. MMR and varicella vaccines can be given to $\mathrm{HIV} \oplus$ patients without evidence of immunity if CD4 cell count ≥ 200 cells/ mm^{3}.	Pros: induces strong, often lifelong immunity. Cons: may revert to virulent form. Often contraindicated in pregnancy and immunodeficiency.	Adenovirus (nonattenuated, given to military recruits), Polio (sabin), Varicella (chickenpox), Smallpox, BCG, Yellow fever, Influenza (intranasal), MMR, Rotavirus "Attention! Please Vaccinate Small, Beautiful Young Infants with MMR Regularly!"
Killed or inactivated vaccine	Pathogen is inactivated by heat or chemicals. Maintaining epitope structure on surface antigens is important for immune response. Mainly induces a humoral response.	Pros: safer than live vaccines. Cons: weaker immune response; booster shots usually required.	Rabies, Influenza (injection), Polio (Salk), hepatitis A SalK = Killed RIP Always
Subunit	Includes only the antigens that best stimulate the immune system.	Pros: lower chance of adverse reactions. Cons: expensive, weaker immune response.	HBV (antigen $=\mathrm{HBsAg}$), HPV (types 6, 11, 16, and 18), acellular pertussis (aP), Neisseria meningitidis (various strains), Streptococcus pneumoniae, Haemophilus influenzae type b.
Toxoid	Denatured bacterial toxin with an intact receptor binding site. Stimulates the immune system to make antibodies without potential for causing disease.	Pros: protects against the bacterial toxins. Cons: antitoxin levels decrease with time, may require a booster.	Clostridium tetani, Corynebacterium diphtheriae

Hypersensitivity types Four types (ABCD): Anaphylactic and Atopic (type I), AntiBody-mediated (type II), Immune

	Complex (type III), Delayed (cell-mediated,). Types I, II, and III are all antibody-mediated.
Type I hypersensitivity	Anaphylactic and atopic-two phases:	First (type) and Fast (anaphylaxis). Test: skin test or blood test (ELISA) for allergen-
	- Immediate (minutes): antigen crosslinks	
Alergen $工 \quad \Gamma_{\text {Alergen- }}^{\text {Alecific lgE }}$	preformed IgE on presensitized mast cells \rightarrow immediate degranulation \rightarrow release of	specific IgE. Example:
$\text { for lge } 7$	histamine (a vasoactive amine) and tryptase (a marker of mast cell activation).	- Anaphylaxis (eg, food, drug, or bee sting allergies)
	- Late (hours): chemokines (attract	
	inflammatory cells, eg, eosinophils) and	
	cytokines (eg, leukotrienes) from mast cells	
	\rightarrow inflammation and tissue damage.	

Type II hypersensitivity

Antibodies bind to cell-surface antigens
\rightarrow cellular destruction, inflammation, and cellular dysfunction.

Cellular destruction-cell is opsonized (coated) by antibodies, leading to either:

- Phagocytosis and/or activation of complement system.
- NK cell killing (antibody-dependent cellular cytotoxicity).
Inflammation-binding of antibodies to cell surfaces \rightarrow activation of complement system and Fc receptor-mediated inflammation.

Cellular dysfunction-antibodies bind to cell surface receptors \rightarrow abnormal blockade or activation of downstream process.

Direct Coombs test-detects antibodies attached directly to the RBC surface.
Indirect Coombs test-detects presence of unbound antibodies in the serum

Examples:

- Autoimmune-hemolytic anemia
- Immune thrombocytopenia
- Transfusion reactions
- Hemolytic disease of the newborn

Examples:

- Goodpasture syndrome
- Rheumatic fever
- Hyperacute transplant rejection

Examples:

- Myasthenia gravis
- Graves disease
- Pemphigus vulgaris

Hypersensitivity types (continued)

Blood transfusion reactions

TYPE	Pathogenesis	Clincal presentation	TIMING
Allergic/anaphylactic reaction	Type I hypersensitivity reaction against plasma proteins in transfused blood. IgAdeficient individuals must receive blood products without IgA.	Urticaria, pruritus, fever, wheezing, hypotension, respiratory arrest, shock.	Within minutes to 2-3 hours
Febrile nonhemolytic transfusion reaction	Two known mechanisms: type II hypersensitivity reaction with host antibodies against donor HLA and WBCs; and induced by cytokines that are created and accumulate during the storage of blood products.	Fever, headaches, chills, flushing.	Within l-6 hours
Acute hemolytic transfusion reaction	Type II hypersensitivity reaction. Intravascular hemolysis (ABO blood group incompatibility) or extravascular hemolysis (host antibody reaction against foreign antigen on donor RBCs).	Fever, hypotension, tachypnea, tachycardia, flank pain, hemoglobinuria (intravascular hemolysis), jaundice (extravascular).	Within 1 hour
Transfusion-related acute lung injury	Donor anti-leukocyte antibodies against recipient neutrophils and pulmonary endothelial cells.	Respiratory distress and noncardiogenic pulmonary edema.	Within 6 hours

Autoantibodies

autoantibody	ASSOCIATED DISORDER
Anti-ACh receptor	Myasthenia gravis
Anti-presynaptic voltage-gated calcium channel	Lambert-Eaton myasthenic syndrome
Anti- β_{2} glycoprotein	Antiphospholipid syndrome
Antinuclear (ANA)	Nonspecific screening antibody, often associated with SLE
Anticardiolipin, lupus anticoagulant	SLE, antiphospholipid syndrome
Anti-dsDNA, anti-Smith	SLE
Anti-histone	Drug-induced lupus
Anti-Ul RNP (ribonucleoprotein)	Mixed connective tissue disease
Rheumatoid factor (IgM antibody against IgG Fc region), anti-CCP (more specific)	Rheumatoid arthritis
Anti-Ro/SSA, anti-La/SSB	Sjögren syndrome
Anti-Scl-70 (anti-DNA topoisomerase I)	Scleroderma (diffuse)
Anticentromere	Limited scleroderma (CREST syndrome)
Antisynthetase (eg, anti-Jo-l), anti-SRP, antihelicase (anti-Mi-2)	Polymyositis, dermatomyositis
Antimitochondrial 1° biliary cirrhosis	1° biliary cholangitis
Anti-smooth muscle	Autoimmune hepatitis type 1
MPO-ANCA/p-ANCA	Microscopic polyangiitis, eosinophilic granulomatosis with polyangiitis (ChurgStrauss syndrome), ulcerative colitis
PR3-ANCA/c-ANCA	Granulomatosis with polyangiitis (Wegener)
Anti-phospholipase A_{2} receptor	1° membranous nephropathy
Anti-hemidesmosome	Bullous pemphigoid
Anti-desmoglein (anti-desmosome)	Pemphigus vulgaris
Antimicrosomal, antithyroglobulin, antithyroid peroxidase	Hashimoto thyroiditis
Anti-TSH receptor	Graves disease
IgA anti-endomysial, IgA anti-tissue transglutaminase, IgA and IgG deamidated gliadin peptide	Celiac disease
Anti-glutamic acid decarboxylase, islet cell cytoplasmic antibodies	Type 1 diabetes mellitus
Antiparietal cell, anti-intrinsic factor	Pernicious anemia
Anti-glomerular basement membrane	Goodpasture syndrome

Immunodeficiencies

DISEASE	DEFECT	PRESENTATION	FINDINGS
B-cell disorders			
X-linked (Bruton) agammaglobulinemia	Defect in BTK, a tyrosine kinase gene \rightarrow no B-cell maturation. X-linked recessive (\uparrow in Boys).	Recurrent bacterial and enteroviral infections after 6 months (\downarrow maternal IgG).	Absent B cells in peripheral blood, $\downarrow \mathrm{Ig}$ of all classes. Absent/scanty lymph nodes and tonsils. Live vaccines contraindicated.
Selective IgA deficiency	Unknown. Most common 1° immunodeficiency.	Majority Asymptomatic. Can see Airway and GI infections, Autoimmune disease, Atopy, Anaphylaxis to IgA-containing products.	$\downarrow \operatorname{IgA}$ with normal IgG, IgM levels. \uparrow susceptibility to giardiasis.
Common variable immunodeficiency	Defect in B-cell differentiation. Cause is unknown in most cases.	Usually presents after age 2 and may be considerably delayed; \uparrow risk of autoimmune disease, bronchiectasis, lymphoma, sinopulmonary infections.	\downarrow plasma cells, \downarrow immunoglobulins.
T-cell disorders			
Thymic aplasia (DiGeorge syndrome)	22q11 deletion; failure to develop 3 rd and 4th pharyngeal pouches \rightarrow absent thymus and parathyroids.	Tetany (hypocalcemia), recurrent viral/fungal infections (T-cell deficiency), conotruncal abnormalities (eg, tetralogy of Fallot, truncus arteriosus).	\downarrow T cells, \downarrow PTH, $\downarrow \mathrm{Ca}^{2+}$. Thymic shadow absent on CXR.
IL-12 receptor deficiency	\downarrow Thl response. Autosomal recessive.	Disseminated mycobacterial and fungal infections; may present after administration of BCG vaccine.	\downarrow IFN $-\gamma$.
Autosomal dominant hyper-lgE syndrome (Job syndrome)	Deficiency of Thil cells due to STAT3 mutation \rightarrow impaired recruitment of neutrophils to sites of infection.	FATED: coarse Facies, cold (noninflamed) staphylococcal Abscesses, retained primary Teeth, \uparrow IgE, Dermatologic problems (eczema). Bone fractures from minor trauma.	$\uparrow \mathrm{IgE}$. \uparrow eosinophils.
Chronic mucocutaneous candidiasis	T-cell dysfunction. Can result from congenital genetic defects in IL-17 or IL-17 receptors.	Noninvasive Candida albicans infections of skin and mucous membranes.	Absent in vitro T-cell proliferation in response to Candida antigens. Absent cutaneous reaction to Candida antigens.

Immunodeficiencies (continued)

DISEASE	DEFECT	PRESENTATION	FINDINGS
B- and T-cell disorders			
Severe combined immunodeficiency	Several types including defective IL-2R gamma chain (most common, X-linked recessive), adenosine deaminase deficiency (autosomal recessive).	Failure to thrive, chronic diarrhea, thrush. Recurrent viral, bacterial, fungal, and protozoal infections. Treatment: avoid live vaccines, give antimicrobial prophylaxis and IVIG; bone marrow transplant curative (no concern for rejection).	\downarrow T-cell receptor excision circles (TRECs). Absence of thymic shadow (CXR), germinal centers (lymph node biopsy), and T cells (flow cytometry).
Ataxia-telangiectasia A	Defects in ATM gene \rightarrow failure to detect DNA damage \rightarrow failure to halt progression of cell cycle \rightarrow mutations accumulate; autosomal recessive.	Triad: cerebellar defects (Ataxia), spider Angiomas (telangiectasia A), IgA deficiency.	\uparrow AFP. $\downarrow \operatorname{IgA}, \operatorname{IgG}$, and IgE. Lymphopenia, cerebellar atrophy. \uparrow risk of lymphoma and leukemia.
Hyper-IgM syndrome	Most commonly due to defective CD40L on Th cells \rightarrow class switching defect; X-linked recessive.	Severe pyogenic infections early in life; opportunistic infection with Pneumocystis, Cryptosporidium, CMV.	Normal or $\uparrow \mathrm{IgM}$. $\downarrow \operatorname{IgG}, \operatorname{IgA}, \operatorname{IgE}$. Failure to make germinal centers.
Wiskott-Aldrich syndrome	Mutation in WASp gene; leukocytes and platelets unable to reorganize actin cytoskeleton \rightarrow defective antigen presentation; X-linked recessive.	WATER: Wiskott-Aldrich: Thrombocytopenia, Eczema, Recurrent (pyogenic) infections. \uparrow risk of autoimmune disease and malignancy.	\downarrow to normal IgG, IgM. $\uparrow \operatorname{IgE}, \mathrm{IgA}$. Fewer and smaller platelets.
Phagocyte dysfunction			
Leukocyte adhesion deficiency (type 1)	Defect in LFA-l integrin (CD18) protein on phagocytes; impaired migration and chemotaxis; autosomal recessive.	Recurrent skin and mucosal bacterial infections, absent pus, impaired wound healing, delayed (>30 days) separation of umbilical cord.	\uparrow neutrophils in blood. Absence of neutrophils at infection sites.
Chédiak-Higashi syndrome	Defect in lysosomal trafficking regulator gene (LYST). Microtubule dysfunction in phagosome-lysosome fusion; autosomal recessive.	PLAIN: Progressive neurodegeneration, Lymphohistiocytosis, Albinism (partial), recurrent pyogenic Infections by staphylococci and streptococci, peripheral Neuropathy.	Giant granules (\mathbf{B}, arrows) in granulocytes and platelets. Pancytopenia. Mild coagulation defects.
Chronic granulomatous disease	Defect of NADPH oxidase $\rightarrow \downarrow$ reactive oxygen species (eg, superoxide) and \downarrow respiratory burst in neutrophils; X-linked form most common.	\uparrow susceptibility to catalase organisms.	Abnormal dihydrorhodamine (flow cytometry) test (\downarrow green fluorescence). Nitroblue tetrazolium dye reduction test (obsolete) fails to turn blue.

Infections in immunodeficiency

Pathogen	†TCELLS	\downarrow bCELLS	1 GRanulocytes	\downarrow Complement
Bacteria	Sepsis	Encapsulated (Please SHINE my SKiS): Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus Influenzae type b, Neisseria meningitidis, Escherichia coli, Salmonella, Klebsiella pneumoniae, Group B Streptococcus	Staphylococcus, Burkholderia cepacia, Pseudomonas aeruginosa, Serratia, Nocardia	Encapsulated species with early complement deficiencies Neisseria with late complement (C5C9) deficiencies
Viruses	CMV, EBV, JC virus, VZV, chronic infection with respiratory/GI viruses	Enteroviral encephalitis, poliovirus (live vaccine contraindicated)	N/A	N/A
Fungi/parasites	Candida (local), PCP, Cryptococcus	GI giardiasis (no IgA)	Candida (systemic), Aspergillus, Mucor	N/A

Note: B-cell deficiencies tend to produce recurrent bacterial infections, whereas T-cell deficiencies produce more fungal and viral infections.

Grafts

Autograft	From self.
Syngeneic graft (isograft)	From identical twin or clone.
Allograft	From nonidentical individual of same species.
Xenograft	From different species.

Transplant rejection

TYPE OF REJECTION	ONSET	PATHOGENESIS	FEATURES
Hyperacute	Within minutes	Pre-existing recipient antibodies react to donor antigen (type II hypersensitivity reaction), activate complement.	Widespread thrombosis of graft vessels \rightarrow ischemia/necrosis. Graft must be removed.
Acute	Weeks to months	Cellular: CD8+T cells and/ or CD4+ T cells activated against donor MHCs (type IV hypersensitivity reaction). Humoral: similar to hyperacute, except antibodies develop after transplant.	Vasculitis of graft vessels with dense interstitial lymphocytic infiltrate. Prevent/reverse with immunosuppressants.
Chronic	Months to years	CD4+ T cells respond to recipient APCs presenting donor peptides, including allogeneic MHC. Both cellular and humoral components (type II and IV hypersensitivity reactions).	Recipient T cells react and secrete cytokines \rightarrow proliferation of vascular smooth muscle, parenchymal atrophy, interstitial fibrosis. Dominated by arteriosclerosis. Organ-specific examples: - Bronchiolitis obliterans (lung) - Accelerated atherosclerosis (heart) - Chronic graft nephropathy (kidney) - Vanishing bile duct syndrome (liver)
Graft-versus-host disease	Varies	Grafted immunocompetent T cells proliferate in the immunocompromised host and reject host cells with "foreign" proteins \rightarrow severe organ dysfunction. Type IV hypersensitivity reaction.	Maculopapular rash, jaundice, diarrhea, hepatosplenomegaly. Usually in bone marrow and liver transplants (rich in lymphocytes). Potentially beneficial in bone marrow transplant for leukemia (graft-versus-tumor effect).

IMMUNOLOGY-IMMUNOSUPPRESSANTS

Immunosuppressants Agents that block lymphocyte activation and proliferation. Reduce acute transplant rejection by suppressing cellular immunity (used as prophylaxis). Frequently combined to achieve greater efficacy with \downarrow toxicity. Chronic suppression \uparrow risk of infection and malignancy.

DRUG	mechanism	OTHER USE	toxicity	Notes
Cyclosporine	Calcineurin inhibitor; binds cyclophilin. Blocks T-cell activation by preventing IL-2 transcription.	Psoriasis, rheumatoid arthritis.	Nephrotoxicity, hypertension, hyperlipidemia, neurotoxicity, gingival hyperplasia, hirsutism.	Both calcineurin inhibitors are highly nephrotoxic.
Tacrolimus (FK506)	Calcineurin inhibitor; binds FK506 binding protein (FKBP). Blocks T-cell activation by preventing IL-2 transcription.		Similar to cyclosporine, \uparrow risk of diabetes and neurotoxicity; no gingival hyperplasia or hirsutism.	
Sirolimus (Rapamycin)	mTOR inhibitor; binds FKBP. Blocks T-cell activation and B-cell differentiation by preventing response to IL-2.	Kidney transplant rejection prophylaxis specifically.	"PanSirtopenia" (pancytopenia), insulin resistance, hyperlipidemia; not nephrotoxic.	Kidney "sir-vives." Synergistic with cyclosporine. Also used in drugeluting stents.
Basiliximab	Monoclonal antibody; blocks IL-2R.		Edema, hypertension, tremor.	
Azathioprine	Antimetabolite precursor of 6-mercaptopurine. Inhibits lymphocyte proliferation by blocking nucleotide synthesis.	Rheumatoid arthritis, Crohn disease, glomerulonephritis, other autoimmune conditions.	Pancytopenia.	6-MP degraded by xanthine oxidase; toxicity \uparrow by allopurinol. Pronounce "azathiopurine."
Mycophenolate Mofetil	Reversibly inhibits IMP dehydrogenase, preventing purine synthesis of B and T cells.	Lupus nephritis.	GI upset, pancytopenia, hypertension, hyperglycemia. Less nephrotoxic and neurotoxic.	Associated with invasive CMV infection.
Glucocorticoids	Inhibit NF-кB. Suppress both B- and T-cell function by \downarrow transcription of many cytokines. Induce T cell apoptosis.	Many autoimmune and inflammatory disorders, adrenal insufficiency, asthma, CLL, non-Hodgkin lymphoma.	Cushing syndrome, osteoporosis, hyperglycemia, diabetes, amenorrhea, adrenocortical atrophy, peptic ulcers, psychosis, cataracts, avascular necrosis (femoral head).	Demargination of WBCs causes artificial leukocytosis. Adrenal insufficiency may develop if drug is stopped abruptly after chronic use.

Immunosuppression targets

Recombinant cytokines and clinical uses

CYtokine	Agent	clincal uses
Bone marrow stimulation		
Erythropoietin	Epoetin alfa (EPO analog)	Anemias (especially in renal failure)
Colony stimulating factors	Filgrastim (G-CSF), Sargramostim (GM-CSF)	Leukopenia; recovery of granulocyte and monocyte counts
Thrombopoietin	Romiplostim (TPO analog), eltrombopag (TPO receptor agonist)	Autoimmune thrombocytopenia
Immunotherapy		
Interleukin-2	Aldesleukin	Renal cell carcinoma, metastatic melanoma
Interferon	IFN- α	Chronic hepatitis C (not preferred) and B, renal cell carcinoma
	IFN- β	Multiple sclerosis
	IFN- γ	Chronic granulomatous disease

Therapeutic antibodies

AgENT	TARGET	CLINICAL USE	NOTES
Cancer therapy			
Alemtuzumab	CD52	CLL, MS	"Alymtuzumab"-chronic lymphocytic leukemia
Bevacizumab	VEGF	Colorectal cancer, renal cell carcinoma, non-small cell lung cancer	Also used for neovascular agerelated macular degeneration, proliferative diabetic retinopathy, and macular edema
Cetuximab	EGFR	Stage IV colorectal cancer, head and neck cancer	
Rituximab	CD20	B-cell non-Hodgkin lymphoma, CLL, rheumatoid arthritis, ITP, multiple sclerosis	
Trastuzumab	HER2	Breast cancer, gastric cancer	HER2-"tras2zumab"
Autoimmune disease therapy			
Adalimumab, certolizumab, golimumab, infliximab	Soluble TNF- α	IBD, rheumatoid arthritis, ankylosing spondylitis, psoriasis	Etanercept is a decoy TNF- α receptor and not a monoclonal antibody
Daclizumab	CD25 (part of IL-2 receptor)	Relapsing multiple sclerosis	
Eculizumab	Complement protein C5	Paroxysmal nocturnal hemoglobinuria	
Natalizumab	$\alpha 4$-integrin	Multiple sclerosis, Crohn disease	$\alpha 4$-integrin: WBC adhesion Risk of PML in patients with JC virus
Ustekinumab	IL-12/IL-23	Psoriasis, psoriatic arthritis	
Other applications			
Abciximab	Platelet glycoproteins IIb/IIIa	Antiplatelet agent for prevention of ischemic complications in patients undergoing percutaneous coronary intervention	IIb times IIIa equals "absiximab"
Denosumab	RANKL	Osteoporosis; inhibits osteoclast maturation (mimics osteoprotegerin)	Denosumab affects osteoclasts
Digoxin immune Fab	Digoxin	Antidote for digoxin toxicity	
Omalizumab	IgE	Refractory allergic asthma; prevents IgE binding to FceRI	
Palivizumab	RSV F protein	RSV prophylaxis for high-risk infants	PaliVIzumab-VIrus

HIGH-YIELD PRINCIPLES IN

Microbiology

"Support bacteria. They're the only culture some people have."
-Steven Wright
"What lies behind us and what lies ahead of us are tiny matters compared to what lies within us."
-Henry S. Haskins
"Infectious disease is merely a disagreeable instance of a widely prevalent tendency of all living creatures to save themselves the bother of building, by their own efforts, the things they require."
-Hans Zinsser

Microbiology questions on the Step 1 exam often require two (or more) steps: Given a certain clinical presentation, you will first need to identify the most likely causative organism, and you will then need to provide an answer regarding some feature of that organism. For example, a description of a child with fever and a petechial rash will be followed by a question that reads, "From what site does the responsible organism usually enter the blood?"

This section therefore presents organisms in two major ways: in individual microbial "profiles" and in the context of the systems they infect and the clinical presentations they produce. You should become familiar with both formats. When reviewing the systems approach, remind yourself of the features of each microbe by returning to the individual profiles. Also be sure to memorize the laboratory characteristics that allow you to identify microbes.

> Basic Bacteriology	124
> Clinical Bacteriology	134
> Mycology	151
> Parasitology	155
D Virology	162
Systems	178
PAntimicrobials	187

- MICROBIOLOGY—BASIC BACTERIOLOGY

Bacterial structures

STRUCTURE	CHEMICALCOMPOSITION	FUNCTION
Appendages		
Flagellum	Proteins.	Motility.
Pilus/fimbria	Glycoprotein.	Mediate adherence of bacteria to cell surface; sex pilus forms during conjugation.
Specialized structures		

Spore	Keratin-like coat; dipicolinic acid; peptidoglycan, DNA.	Gram \oplus only. Survival: resist dehydration, heat, chemicals.
Cell envelope		
Capsule	Organized, discrete polysaccharide layer (except poly-D-glutamate on B anthracis).	Protects against phagocytosis.
Glycocalyx	Loose network of polysaccharides.	Mediates adherence to surfaces, especially foreign surfaces (eg, indwelling catheters).
Outer membrane	Outer leaflet: contains endotoxin (LPS/LOS). Embedded proteins: porins and other outer membrane proteins (OMPs) Inner leaflet: phospholipids.	Gram Θ only. Endotoxin: lipid A induces TNF and IL-l; antigenic O polysaccharide component. Most OMPs are antigenic. Porins: transport across outer membrane.
Periplasm	Space between cytoplasmic membrane and outer membrane in gram Θ bacteria. (Peptidoglycan in middle.)	Accumulates components exiting gram Θ cells, including hydrolytic enzymes (eg, β-lactamases).
Cell wall	Peptidoglycan is a sugar backbone with peptide side chains cross-linked by transpeptidase.	Net-like structure gives rigid support, protects against osmotic pressure damage.
Cytoplasmic membrane	Phospholipid bilayer sac with embedded proteins (eg, penicillin-binding proteins [PBPs]) and other enzymes. Lipoteichoic acids (gram \oplus only) extend from membrane to exterior.	Site of oxidative and transport enzymes; PBPs involved in cell wall synthesis. Lipoteichoic acids induce TNF- α and IL-1.

Cell envelope

Bacterial taxonomy

morphology	Gram \oplus examples	Gram \ominus examples
Spherical (coccus)	Staphylococcus (clusters) Streptococcus (chains or pairs) Enterococcus (pairs or short chains)	Moraxella catarrhalis Neisseria
Rod (bacillus)	Bacillus Clostridium Corynebacterium Gardnerella (gram variable) Lactobacillus Listeria Mycobacterium (acid fast) Cutibacterium (formerly Propionibacterium)	Enterics: - Bacteroides - Campylobacter - E coli - Enterobacter - Fusobacterium - Helicobacter - Klebsiella - Proteus - Pseudomonas - Salmonella - Serratia - Shigella - Vibrio - Yersinia Respiratory: - Acinetobacter baumannii - Bordetella - Burkholderia cepacia - Haemophilus (pleomorphic) - Legionella (silver stain) Zoonotic: - Bartonella - Brucella - Francisella - Pasteurella
Branching filamentous	Actinomyces Nocardia (weakly acid fast)	
Pleomorphic (no cell wall)		Anaplasma, Ehrlichia Chlamydiae (Giemsa) Rickettsiae (Giemsa) Mycoplasma (contains sterols, which do not Gram stain), Ureaplasma
Spiral		Spirochetes: - Borrelia (Giemsa) - Leptospira - Treponema

Stains

Gram stain	First-line lab test in bacterial identification. Bacteria with thick peptidoglycan layer retain crystal violet dye $(\operatorname{gram} \oplus)$; bacteria with thin peptidoglycan layer turn red or pink (gram Θ) with counterstain. These bugs do not Gram stain well (These Little Microbes May Unfortunately Lack Real Color But Are Everywhere).	
	Treponema, Leptospira	Too thin to be visualized.
	Mycobacteria	Cell wall has high lipid content.
	Mycoplasma, Ureaplasma	No cell wall.
	Legionella, Rickettsia, Chlamydia, Bartonella, Anaplasma, Ehrlichia	Primarily intracellular; also, Chlamydia lack classic peptidoglycan because of \downarrow muramic acid.
Giemsa stain	Rickettsia, Chlamydia, Trypanosomes A, Plasmodium, Borrelia	Ricky got Chlamydia as he Tried to Please the Bored "Geisha."
Periodic acid-Schiff stain	Stains glycogen, mucopolysaccharides; used to diagnose Whipple disease (Tropheryma whipplei B)	PaSs the sugar.
Ziehl-Neelsen stain (carbol fuchsin)	Acid-fast bacteria (eg, Mycobacteria [C, Nocardia; stains mycolic acid in cell wall); protozoa (eg, Cryptosporidium oocysts)	Auramine-rhodamine stain is more often used for screening (inexpensive, more sensitive).
India ink stain	Cryptococcus neoformans D; mucicarmine can also be used to stain thick polysaccharide capsule red	
Silver stain	Fungi (eg, Coccidioides ■®, Pneumocystis jirovecii), Legionella, Helicobacter pylori	
Fluorescent antibody stain	Used to identify many bacteria and viruses.	Example is FTA-ABS for syphilis.

Properties of growth media

The same type of media can possess both (or neither) of these properties.

Selective media
Favors the growth of particular organism while preventing growth of other organisms, eg, ThayerMartin agar contains antibiotics that allow the selective growth of Neisseria by inhibiting the growth of other sensitive organisms.
Indicator (differential) Yields a color change in response to the metabolism of certain organisms, eg, MacConkey agar media
contains a pH indicator; a lactose fermenter like E coli will convert lactose to acidic metabolites \rightarrow color change.

Special culture requirements

Bug	MEDIA USED For Isolation	MEDIA CONTENTS/OTHER
Hinfluenzae	Chocolate agar	Factors V (NAD^{+}) and X (hematin)
N gonorrhoeae, N meningitidis	Thayer-Martin agar	Selectively favors growth of Neisseria by inhibiting growth of gram \oplus organisms with Vancomycin, gram Θ organisms except Neisseria with Trimethoprim and Colistin, and fungi with Nystatin Very Typically Cultures Neisseria
B pertussis	Bordet-Gengou agar (Bordet for Bordetella) Regan-Lowe medium	Potato extract Charcoal, blood, and antibiotic
C diphtheriae	Tellurite agar, Löffler medium	
M tuberculosis	Löwenstein-Jensen agar	
M pneumoniae	Eaton agar	Requires cholesterol
Lactose-fermenting enterics	MacConkey agar	Fermentation produces acid, causing colonies to turn pink
Ecoli	Eosin-methylene blue (EMB) agar	Colonies with green metallic sheen
Legionella	Charcoal yeast extract agar buffered with cysteine and iron	
Fungi	Sabouraud agar	"Sab's a fun guy!"

Aerobes
Use an O_{2}-dependent system to generate ATP.
Examples include Nocardia, Pseudomonas aeruginosa, and MycoBacterium tuberculosis.
Reactivation of M tuberculosis (eg, after immunocompromise or TNF- α inhibitor use) has a predilection for the apices of the lung.

Anaerobes

Facultative anaerobes

Examples include Clostridium, Bacteroides, Fusobacterium, and Actinomyces israelii. They lack catalase and/or superoxide dismutase and are thus susceptible to oxidative damage. Generally foul smelling (short-chain fatty acids), are difficult to culture, and produce gas in tissue $\left(\mathrm{CO}_{2}\right.$ and $\left.\mathrm{H}_{2}\right)$.
May use O_{2} as a terminal electron acceptor to generate ATP, but can also use fermentation and other O_{2}-independent pathways.

Anaerobes Can't Breathe Fresh Air.
Anaerobes are normal flora in GI tract, typically pathogenic elsewhere. AminO O_{2} glycosides are ineffective against anaerobes because these antibiotics require O_{2} to enter into bacterial cell.

Streptococci, staphylococci, and enteric gram Θ bacteria.

Intracellular bugs

Obligate intracellular	Rickettsia, CHlamydia, COxiella. Rely on host ATP.	Stay inside (cells) when it is Really CHilly and COld.
Facultative intracellular	Salmonella, Neisseria, Brucella, Mycobacterium, Listeria, Francisella, Legionella, Yersinia pestis.	Some Nasty Bugs May Live FacultativeLY.

Examples are Pseudomonas aeruginosa, Streptococcus pneumoniae A, Haemophilus influenzae type b, Neisseria meningitidis, Escherichia coli, Salmonella, Klebsiella preumoniae, and group B Strep. Their capsules serve as an antiphagocytic virulence factor.
Capsular polysaccharide + protein conjugate serves as an antigen in vaccines.

Please SHiNE my SKiS.
Are opsonized, and then cleared by spleen.
Asplenics (No Spleen Here) have \downarrow opsonizing ability and thus \uparrow risk for severe infections; need vaccines to protect against:

- N meningitidis
- S pneumoniae
- H influenzae

Encapsulated bacteria

 vaccinesSome vaccines containing polysaccharide capsule antigens are conjugated to a carrier protein, enhancing immunogenicity by promoting T-cell activation and subsequent class switching. A polysaccharide antigen alone cannot be presented to T cells.

Pneumococcal vaccines: PCV13 (pneumococcal conjugate vaccine), PPSV23 (pneumococcal polysaccharide vaccine with no conjugated protein)
H influenzae type b (conjugate vaccine)
Meningococcal vaccine (conjugate vaccine)

Urease-positive organisms

Proteus, Cryptococcus, H pylori, Ureaplasma, Nocardia, Klebsiella, S epidermidis, S saprophyticus. Urease hydrolyzes urea to release ammonia and $\mathrm{CO}_{2} \rightarrow \uparrow \mathrm{pH}$. Predisposes to struvite (ammonium magnesium phosphate) stones, particularly Proteus.

Pee CHUNKSS.

Catalase-positive organisms

Catalase degrades $\mathrm{H}_{2} \mathrm{O}_{2}$ into $\mathrm{H}_{2} \mathrm{O}$ and bubbles of $\mathrm{O}_{2} \boldsymbol{A}$ before it can be converted to microbicidal products by the enzyme myeloperoxidase. People with chronic granulomatous disease (NADPH oxidase deficiency) have recurrent infections with certain catalase \oplus organisms.
Examples: Nocardia, Pseudomonas, Listeria, Aspergillus, Candida, E coli, Staphylococci, Serratia, B cepacia, H pylori.

Pigment-producing
bacteria

Actinomyces israelii-yellow "sulfur" granules, Israel has yellow sand. which are composed of filaments of bacteria.
S aureus-yellow pigment. Aureus $($ Latin $)=$ gold.
P aeruginosa-blue-green pigment (pyocyanin Aerugula is green. and pyoverdin).
Serratia marcescens—red pigment. Think red Sriracha hot sauce.

In vivo biofilm-	S epidermidis	Catheter and prosthetic device infections
producing bacteria	Viridans streptococci $($ S mutans, S sanguinis)	Dental plaques, infective endocarditis
P aeruginosa	Respiratory tree colonization in patients with cystic fibrosis, ventilator-associated pneumonia Contact lens-associated keratitis	

Bacterial virulence factors	These promote evasion of host immune response.
Protein A	Binds Fc region of IgG. Prevents opsonization and phagocytosis. Expressed by S aureus.
IgA protease	Enzyme that cleaves IgA, allowing bacteria to adhere to and colonize mucous membranes. Secreted by S pneumoniae, H influenzae type b, and Neisseria (SHiN).
M protein	Helps prevent phagocytosis. Expressed by group A streptococci. Shares similar epitopes to human cellular proteins (molecular mimicry); possibly underlies the autoimmune response seen in acute rheumatic fever.

Type III secretion system

Also known as "injectisome." Needle-like protein appendage facilitating direct delivery of toxins from certain gram Θ bacteria (eg, Pseudomonas, Salmonella, Shigella, E coli) to eukaryotic host cell.

Bacterial genetics

Transformation	Competent bacteria can bind and import short pieces of environmental naked bacterial chromosomal DNA (from bacterial cell lysis). The transfer and expression of newly transferred genes is called transformation. A feature of many bacteria, especially S pneumoniae, H influenzae type b, and Neisseria (SHiN). Adding deoxyribonuclease degrades naked DNA, preventing transformation.	
Conjugation		
$\mathrm{F}^{+} \times \mathrm{F}^{-}$	F^{+}plasmid contains genes required for sex pilus and conjugation. Bacteria without this plasmid are termed F^{-}. Sex pilus on F^{+}bacterium contacts F^{-}bacterium. A single strand of plasmid DNA is transferred across the conjugal bridge ("mating bridge"). No transfer of chromosomal DNA.	
$\mathrm{Hfr} \times \mathrm{F}^{-}$	F^{+}plasmid can become incorporated into bacterial chromosomal DNA, termed highfrequency recombination (Hfr) cell. Transfer of leading part of plasmid and a few flanking chromosomal genes. High-frequency recombination may integrate some of those bacterial genes. Recipient cell remains F^{-}but now may have new bacterial genes.	
Transduction		
Generalized	A packaging "error." Lytic phage infects bacterium, leading to cleavage of bacterial DNA. Parts of bacterial chromosomal DNA may become packaged in phage capsid. Phage infects another bacterium, transferring these genes.	
Specialized	An "excision" event. Lysogenic phage infects bacterium; viral DNA incorporates into bacterial chromosome. When phage DNA is excised, flanking bacterial genes may be excised with it. DNA is packaged into phage capsid and can infect another bacterium. Genes for the following 5 bacterial toxins are encoded in a lysogenic phage (ABCD'S): Group A strep erythrogenic toxin, Botulinum toxin, Cholera toxin, Diphtheria toxin, Shiga toxin.	

Bacterial genetics (continued)

Segment of DNA (eg, transposon) that can "jump" (copy/excise and reinsert) from one location to another, can transfer genes from plasmid to chromosome and vice versa. This is a critical process in creating plasmids with multiple antibiotic resistance which can be transferred across species lines (eg, Tn 1546 carrying vanA gene from vancomycin-resistant Enterococcus to S aureus).

Some bacteria can form spores \boldsymbol{A} when nutrients are limited.
Spores lack metabolic activity.
Spores are highly resistant to heat and chemicals. Core contains dipicolinic acid. Must autoclave to kill spores (as is done to surgical equipment) by steaming at $121^{\circ} \mathrm{C}$ for 15 minutes.

Bacillus anthracis
Bacillus cereus
Clostridium botulinum
Clostridium difficile
Clostridium perfringens
Clostridium tetani

Anthrax
Food poisoning
Botulism Pseudomembranous colitis Gas gangrene Tetanus

Main features of exotoxins and endotoxins

	Exotoxins	Endotoxin
SOURCE	Certain species of gram \oplus and gram Θ bacteria	Outer cell membrane of most gram Θ bacteria
SECREEED FROM CELL	Yes	No
CHEMISTRY	Polypeptide	Lipid A component of LPS (structural part of bacteria; released when lysed)
LCCation of genes	Plasmid or bacteriophage	Bacterial chromosome

Bugs with exotoxins

BACTERIA	Toxin	MECHANISM	MANIFESTATION
Inhibit protein synthesis			
Corynebacterium diphtheriae	Diphtheria toxin ${ }^{\text {a }}$	Inactivate elongation factor (EF-2)	Pharyngitis with pseudomembranes in throat and severe lymphadenopathy (bull neck)
Pseudomonas aeruginosa	Exotoxin $\mathrm{A}^{\text {a }}$		Host cell death
Shigella spp.	Shiga toxin (ST) ${ }^{\text {a }}$	Inactivate 60 S ribosome by removing adenine from rRNA	GI mucosal damage \rightarrow dysentery; ST also enhances cytokine release, causing hemolyticuremic syndrome (HUS)
Enterohemorrhagic Ecoli	Shiga-like toxin (SLT) ${ }^{\mathrm{a}}$		SLT enhances cytokine release, causing HUS (prototypically in EHEC serotype Ol57:H7). Unlike Shigella, EHEC does not invade host cells
Increase fluid secretion			
Enterotoxigenic E coli	Heat-labile toxin (LT) ${ }^{\text {a }}$	Overactivates adenylate cyclase (\uparrow cAMP) $\rightarrow \uparrow \mathrm{Cl}^{-}$ secretion in gut and $\mathrm{H}_{2} \mathrm{O}$ efflux	Watery diarrhea: "labile in the Air (Adenylate cyclase), stable on the Ground (Guanylate cyclase)"
	Heat-stable toxin (ST)	Overactivates guanylate cyclase (\uparrow cGMP) $\rightarrow \downarrow$ resorption of NaCl and $\mathrm{H}_{2} \mathrm{O}$ in gut	
Bacillus anthracis	Edema toxin ${ }^{\text {a }}$	Mimics adenylate cyclase (\uparrow cAMP)	Likely responsible for characteristic edematous borders of black eschar in cutaneous anthrax
Vibrio cholerae	Cholera toxin ${ }^{\text {a }}$	Overactivates adenylate cyclase (\uparrow cAMP) by permanently activating G_{s} $\rightarrow \uparrow \mathrm{Cl}^{-}$secretion in gut and $\mathrm{H}_{2} \mathrm{O}$ efflux	Voluminous "rice-water" diarrhea
Inhibit phagocytic ability			
Bordetella pertussis	Pertussis toxin ${ }^{\text {a }}$	Overactivates adenylate cyclase (\uparrow cAMP) by disabling G_{i}, impairing phagocytosis to permit survival of microbe	Whooping cough—child coughs on expiration and "whoops" on inspiration (toxin may not actually be a cause of cough; can cause "100-day cough" in adults)
Inhibit release of neurotransmitter			
Clostridium tetani	Tetanospasmin ${ }^{\text {a }}$	Both are proteases that cleave SNARE (soluble NSF attachment protein receptor), a set of proteins required for neurotransmitter release via vesicular fusion	Toxin prevents release of inhibitory (GABA and glycine) neurotransmitters from Renshaw cells in spinal cord \rightarrow spastic paralysis, risus sardonicus, trismus (lockjaw)
Clostridium botulinum	Botulinum toxin ${ }^{\text {a }}$		```Toxin prevents release of stimulatory (ACh) signals at neuromuscular junction }->\mathrm{ flaccid paralysis (floppy baby)```

${ }^{a}$ An AB toxin (aka, two-component toxin [or three for anthrax]) with B enabling binding and triggering uptake (endocytosis) of the active A component. The A components are usually ADP ribosyltransferases; others have enzymatic activities as listed in chart.

Bugs with exotoxins (continued)

BACTERIA	Toxin	MECHANISM	MANIFESTATION
Lyse cell membranes			
Clostridium perfringens	Alpha toxin	Phospholipase (lecithinase) that degrades tissue and cell membranes	Degradation of phospholipids \rightarrow myonecrosis ("gas gangrene") and hemolysis ("double zone" of hemolysis on blood agar)
Streptococcus pyogenes	Streptolysin O	Protein that degrades cell membrane	Lyses RBCs; contributes to β-hemolysis; host antibodies against toxin (ASO) used to diagnose rheumatic fever (do not confuse with immune complexes of poststreptococcal glomerulonephritis)
Superantigens causing shock			
Staphylococcus aureus	Toxic shock syndrome toxin (TSST-1)	Cross-links β region of TCR to MHC class II on APCs outside of the antigen binding site	Toxic shock syndrome: fever, rash, shock; other toxins cause scalded skin syndrome (exfoliative toxin) and food poisoning (heat-stable enterotoxin)
Streptococcus pyogenes	Erythrogenic exotoxin A	\rightarrow overwhelming release of IL-1, IL-2, IFN- γ, and TNF- $\alpha \rightarrow$ shock	Toxic shock-like syndrome: fever, rash, shock; scarlet fever

Endotoxin

LPS found in outer membrane of gram Θ bacteria (both cocci and rods). Composed of O antigen + core polysaccharide + lipid A (the toxic component).
Released upon cell lysis or by living cells by blebs detaching from outer surface membrane (vs exotoxin, which is actively secreted).
Three main effects: macrophage activation (TLR4/CD14), complement activation, and tissue factor activation.

ENDOTOXINS:

Edema

Nitric oxide
DIC/Death
Outer membrane
TNF- α
O-antigen + core polysaccharide + lipid A
eXtremely heat stable
IL-1 and IL-6
Neutrophil chemotaxis
Shock

MICROBIOLOGY—CLINICAL BACTERIOLOGY

Gram-positive lab algorithm

Gram-positive cocci antibiotic tests

Staphylococci	NOvobiocin-Saprophyticus is Resistant; Epidermidis is Sensitive.	On the office's "staph" retreat, there was
NO StRESs.		

Gram \oplus cocci. Partial reduction of hemoglobin causes greenish or brownish color without clearing around growth on blood agar \boldsymbol{A}. Include the following organisms:

- Streptococcus pneumoniae (catalase Θ and optochin sensitive)
- Viridans streptococci (catalase Θ and optochin resistant)

Gram \oplus cocci. Complete lysis of RBCs \rightarrow clear area surrounding colony on blood agar \boldsymbol{A}. Include the following organisms:

- Staphylococcus aureus (catalase and coagulase \oplus)
- Streptococcus pyogenes - group A strep (catalase Θ and bacitracin sensitive)
- Streptococcus agalactiae - group B strep (catalase Θ and bacitracin resistant)

Staphylococcus aureus

Gram \oplus, β-hemolytic, catalase \oplus, coagulase \oplus cocci in clusters \boldsymbol{A}. Protein A (virulence factor) binds Fc-IgG, inhibiting complement activation and phagocytosis. Commonly colonizes the nares, ears, axilla, and groin. Causes:

- Inflammatory disease-skin infections, organ abscesses, pneumonia (often after influenza virus infection), endocarditis, septic arthritis, and osteomyelitis.
- Toxin-mediated disease-toxic shock syndrome (TSST-1), scalded skin syndrome (exfoliative toxin), rapid-onset food poisoning (enterotoxins).
- MRSA (methicillin-resistant S aureus)important cause of serious nosocomial and community-acquired infections; resistant to methicillin and nafcillin because of altered penicillin-binding protein.

TSST-l is a superantigen that binds to MHC II and T-cell receptor, resulting in polyclonal T-cell activation.
Staphylococcal toxic shock syndrome (TSS) fever, vomiting, rash, desquamation, shock, end-organ failure. TSS results in \uparrow AST, \uparrow ALT, \uparrow bilirubin. Associated with prolonged use of vaginal tampons or nasal packing.
Compare with Streptococcus pyogenes TSS (a toxic shock-like syndrome associated with painful skin infection).
S aureus food poisoning due to ingestion of preformed toxin \rightarrow short incubation period (2-6 hr) followed by nonbloody diarrhea and emesis. Enterotoxin is heat stable \rightarrow not destroyed by cooking.
Bad staph (aureus) make coagulase and toxins. Forms fibrin clot around self \rightarrow abscess.

Staphylococcus epidermidis

Gram \oplus, catalase \oplus, coagulase Θ, urease \oplus cocci in clusters. Novobiocin sensitive. Does not ferment mannitol (vs S aureus).
Normal flora of skin; contaminates blood cultures.
Infects prosthetic devices (eg, hip implant, heart valve) and IV catheters by producing adherent biofilms.

Staphylococcus saprophyticus

Gram \oplus, catalase \oplus, coagulase Θ, urease \oplus cocci in clusters. Novobiocin resistant.
Normal flora of female genital tract and perineum.
Second most common cause of uncomplicated UTI in young women (most common is E coli).

Streptococcus pneumoniae

Viridans group streptococci

Gram \oplus, lancet-shaped diplococci A.
Encapsulated. IgA protease. Optochin sensitive. Most common cause of:

- Meningitis
- Otitis media (in children)
- Pneumonia
- Sinusitis

Pneumococcus is associated with "rusty" sputum, sepsis in patients with sickle cell disease, and asplenic patients.
No virulence without capsule.
MOPS commonly spread pneumonia.

Gram \oplus, α-hemolytic cocci. Resistant to optochin, differentiating them from S pneumoniae which is α-hemolytic but optochin sensitive. Normal flora of the oropharynx.
Streptococcus mutans and S mitis cause dental caries.
S sanguinis makes dextrans that bind to fibrinplatelet aggregates on damaged heart valves, causing subacute bacterial endocarditis.

Viridans group strep live in the mouth, because they are not afraid of-the-chin (op-to-chin resistant).
Sanguinis = blood. Think, "there is lots of blood in the heart" (endocarditis).

Streptococcus pyogenes (group A streptococci)
A

Gram \oplus cocci in chains A. Group A strep cause:

- Pyogenic-pharyngitis, cellulitis, impetigo ("honey-crusted" lesions), erysipelas
- Toxigenic-scarlet fever, toxic shock-like syndrome, necrotizing fasciitis
- Immunologic-rheumatic fever, glomerulonephritis
Bacitracin sensitive, β-hemolytic, pyrrolidonyl arylamidase $(\mathrm{PYR}) \oplus$. Hyaluronic acid capsule and M protein inhibit phagocytosis. Antibodies to M protein enhance host defenses against S pyogenes but can give rise to rheumatic fever. ASO titer or anti-DNase B antibodies indicate recent S pyogenes infection.

Pharyngitis can result in rheumatic "phever" and glomerulonephritis.
Strains causing impetigo can induce glomerulonephritis.
Scarlet fever-blanching, sandpaper-like body rash, strawberry tongue, and circumoral pallor in the setting of group A streptococcal pharyngitis (erythrogenic toxin \oplus).

Streptococcus agalactiae (group B streptococci)

Gram \oplus cocci, bacitracin resistant, β-hemolytic, \quad Group B for Babies! colonizes vagina; causes pneumonia, meningitis, and sepsis, mainly in babies.
Produces CAMP factor, which enlarges the area of hemolysis formed by S aureus. (Note: CAMP stands for the authors of the test, not cyclic AMP.) Hippurate test \oplus. PYR Θ.
Screen pregnant women at 35-37 weeks of gestation with rectal and vaginal swabs. Patients with \oplus culture receive intrapartum penicillin prophylaxis.

Streptococcus bovis

Gram \oplus cocci, colonizes the gut. S gallolyticus (S bovis biotype l) can cause bacteremia and subacute endocarditis and is associated with colon cancer.

Bovis in the blood $=$ cancer in the colon.

Gram \oplus cocci. Enterococci (E faecalis and E faecium) are normal colonic flora that are penicillin G resistant and cause UTI, biliary tract infections, and subacute endocarditis (following GI/GU procedures). Catalase Θ, PYR \oplus, variable hemolysis.
VRE (vancomycin-resistant enterococci) are an important cause of nosocomial infection.

Enterococci are more resilient than streptococci, can grow in $6.5 \% \mathrm{NaCl}$ and bile (lab test).
Entero $=$ intestine, faecalis $=$ feces, strepto $=$ twisted (chains), coccus $=$ berry.

Bacillus anthracis

Cutaneous anthrax

Gram \oplus, spore-forming rod that produces anthrax toxin. The only bacterium with a polypeptide capsule (contains D-glutamate). Colonies show a halo of projections, sometimes referred to as "medusa head" appearance.

Painless papule surrounded by vesicles \rightarrow ulcer with black eschar (\boldsymbol{A}) (painless, necrotic) \rightarrow uncommonly progresses to bacteremia and death.

Inhalation of spores \rightarrow flu-like symptoms that rapidly progress to fever, pulmonary hemorrhage, mediastinitis, and shock. Also known as woolsorter's disease. CXR may show widened mediastinum.

Bacillus cereus

Gram \oplus rod. Causes food poisoning. Spores survive cooking rice (also known as reheated rice syndrome). Keeping rice warm results in germination of spores and enterotoxin formation. Emetic type usually seen with rice and pasta. Nausea and vomiting within l-5 hr. Caused by cereulide, a preformed toxin.
Diarrheal type causes watery, nonbloody diarrhea and GI pain within 8-18 hr.

Clostridia (with exotoxins)	Gram \oplus, spore-forming, obligate anaerobic rods.	
C tetani	Produces tetanospasmin, an exotoxin causing tetanus. Tetanus toxin (and botulinum toxin) are proteases that cleave SNARE proteins for neurotransmitters. Blocks release of inhibitory neurotransmitters, GABA and glycine, from Renshaw cells in spinal cord. Causes spastic paralysis, trismus (lockjaw), risus sardonicus (raised eyebrows and open grin), opisthotonos (spasms of spinal extensors). Prevent with tetanus vaccine. Treat with antitoxin +/- vaccine booster, antibiotics, diazepam (for muscle spasms), and wound debridement.	Tetanus is tetanic paralysis.
C botulinum	Produces a heat-labile toxin that inhibits ACh release at the neuromuscular junction, causing botulism. In adults, disease is caused by ingestion of preformed toxin. In babies, ingestion of spores (eg, in honey) leads to disease (floppy baby syndrome). Treat with human botulinum immunoglobulin.	Symptoms of botulism (the 4 D's): Diplopia, Dysarthria, Dysphagia, Dyspnea. Botulinum is from bad bottles of food, juice, and honey (causes a descending flaccid paralysis). Local botox injections used to treat focal dystonia, achalasia, and muscle spasms. Also used for cosmetic reduction of facial wrinkles.
C perfringens	Produces α toxin (lecithinase, a phospholipase) that can cause myonecrosis (gas gangrene A; presents as soft tissue crepitus) and hemolysis. Spores can survive in undercooked food; when ingested, bacteria release heat-labile enterotoxin \rightarrow food poisoning.	Perfringens perforates a gangrenous leg.
C difficile	Produces 2 toxins. Toxin A, an enterotoxin, binds to brush border of gut and alters fluid secretion. Toxin B, a cytotoxin, disrupts cytoskeleton via actin depolymerization. Both toxins lead to diarrhea \rightarrow pseudomembranous colitis B. Often 2° to antibiotic use, especially clindamycin or ampicillin; associated with PPIs. Diagnosed by PCR or antigen detection of one or both toxins in stool.	Difficile causes diarrhea. Treatment: metronidazole or oral vancomycin. For recurrent cases, consider repeating prior regimen, fidaxomicin, or fecal microbiota transplant.

Corynebacterium diphtheriae

Gram \oplus rod; transmitted via respiratory droplets. Causes diphtheria via exotoxin encoded by β-prophage. Potent exotoxin inhibits protein synthesis via ADP-ribosylation of EF-2.
Symptoms include pseudomembranous pharyngitis (grayish-white membrane A) with lymphadenopathy, myocarditis, and arrhythmias.
Lab diagnosis based on gram \oplus rods with metachromatic (blue and red) granules and \oplus Elek test for toxin.
Toxoid vaccine prevents diphtheria.

Coryne $=$ club shaped.
Black colonies on cystine-tellurite agar. ABCDEFG:

ADP-ribosylation
β-prophage
Corynebacterium
Diphtheriae
Elongation Factor 2
Granules

Listeria monocytogenes

Gram \oplus, facultative intracellular rod; acquired by ingestion of unpasteurized dairy products and cold deli meats, via transplacental transmission, or by vaginal transmission during birth. Grows well at refrigeration temperatures $\left(4^{\circ}-10^{\circ} \mathrm{C}\right.$; "cold enrichment").
Forms "rocket tails" (red in A) via actin polymerization that allow intracellular movement and cell-to-cell spread across cell membranes, thereby avoiding antibody. Characteristic tumbling motility in broth.
Can cause amnionitis, septicemia, and spontaneous abortion in pregnant women; granulomatosis infantiseptica; neonatal meningitis; meningitis in immunocompromised patients; mild, selflimited gastroenteritis in healthy individuals.
Treatment: ampicillin.

Nocardia vs Actinomyces

Both are gram \oplus and form long, branching filaments resembling fungi.

Nocardia	Actinomyces
Aerobe	Anaerobe
Acid fast (weak) A	Not acid fast B
Found in soil	Normal oral, reproductive, and GI flora
Causes pulmonary infections in	Causes oral/facial abscesses that drain through immunocompromised (can mimic TB but sinus tracts; often associated with dental caries/ with Θ PPD); cutaneous infections after trauma in immunocompetent; can spread to
extraction and other maxillofacial trauma; Corms yellow "sulfur granules"; can also cause	
Treat with sulfonamides (TMP-SMX)	PID with IUDs

Mycobacteria

Mycobacterium tuberculosis (TB, often resistant to multiple drugs).
M avium-intracellulare (causes disseminated, non-TB disease in AIDS; often resistant to multiple drugs). Prophylaxis with azithromycin when CD4+ count <50 cells/ mm^{3}.
M scrofulaceum (cervical lymphadenitis in children).
M marinum (hand infection in aquarium handlers).
All mycobacteria are acid-fast organisms (pink rods; arrows in A).

TB symptoms include fever, night sweats, weight loss, cough (nonproductive or productive), hemoptysis.
Cord factor creates a "serpentine cord" appearance in virulent M tuberculosis strains; activates macrophages (promoting granuloma formation) and induces release of TNF- α. Sulfatides (surface glycolipids) inhibit phagolysosomal fusion.

Tuberculosis

PPD \oplus if current infection or past exposure.
PPD \ominus if no infection and in sarcoidosis or HIV infection (especially with low CD4+ cell count).
Interferon- γ release assay (IGRA) has fewer false positives from BCG vaccination.
Caseating granulomas with central necrosis and Langhans giant cell (single example in (A) are characteristic of 2° tuberculosis.

Leprosy (Hansen disease)

Caused by Mycobacterium leprae, an acid-fast bacillus that likes cool temperatures (infects skin and superficial nerves - "glove and stocking" loss of sensation A) and cannot be grown in vitro. Diagnosed via skin biopsy or tissue PCR. Reservoir in United States: armadillos.
Hansen disease has 2 forms (many cases fall temporarily between two extremes):

- Lepromatous-presents diffusely over the skin, with leonine (lion-like) facies B, and is communicable (high bacterial load); characterized by low cell-mediated immunity with a humoral Th2 response. Lepromatous form can be lethal.
- Tuberculoid - limited to a few hypoesthetic, hairless skin plaques; characterized by high cellmediated immunity with a largely Thl-type immune response and low bacterial load.
Treatment: dapsone and rifampin for tuberculoid form; clofazimine is added for lepromatous form.

Gram-negative lab algorithm

Important tests are in bold. Important pathogens are in bold italics.

Neisseria

Condoms \downarrow sexual transmission, erythromycin eye ointment prevents neonatal blindness
Treatment: ceftriaxone (+ azithromycin or doxycycline, for possible chlamydial coinfection)

MeninGococci ferment Maltose and Glucose. Gonococci ferment Glucose.

Meningococci

Polysaccharide capsule
Maltose fermentation
Vaccine (type B vaccine not widely available)

Transmitted via respiratory and oral secretions
Causes meningococcemia with petechial hemorrhages and gangrene of toes B, meningitis, Waterhouse-Friderichsen syndrome (adrenal insufficiency, fever, DIC, shock)
Rifampin, ciprofloxacin, or ceftriaxone prophylaxis in close contacts
Treatment: ceftriaxone or penicillin G

Haemophilus influenzae

Small gram Θ (coccobacillary) rod. Aerosol transmission. Nontypeable (unencapsulated) strains are the most common cause of mucosal infections (otitis media, conjunctivitis, bronchitis) as well as invasive infections since the vaccine for capsular type b was introduced. Produces IgA protease.
Culture on chocolate agar, which contains factors $\mathrm{V}\left(\mathrm{NAD}^{+}\right)$and X (hematin) for growth; can also be grown with S aureus, which provides factor V via RBC hemolysis.
HaEMOPhilus causes Epiglottitis (endoscopic appearance in \boldsymbol{A}, can be "cherry red" in children; "thumb sign" on lateral neck x-ray B), Meningitis, Otitis media, and Pneumonia.
Treatment: amoxicillin +/- clavulanate for mucosal infections; ceftriaxone for meningitis; rifampin prophylaxis for close contacts.

Vaccine contains type b capsular polysaccharide (polyribosylribitol phosphate) conjugated to diphtheria toxoid or other protein. Given between 2 and 18 months of age.
Does not cause the flu (influenza virus does).

Bordetella pertussis
Gram Θ, aerobic coccobacillus. Virulence factors include pertussis toxin (disables G_{i}), adenylate cyclase toxin (\uparrow cAMP), and tracheal cytotoxin. Three clinical stages:

- Catarrhal-low-grade fevers, Coryza.
" Paroxysmal-paroxysms of intense cough followed by inspiratory "whooP" ("whooping cough"), posttussive vomiting.
- Convalescent-gradual recovery of chronic cough.

Prevented by Tdap, DTaP vaccines. May be mistaken as viral infection due to lymphocytic infiltrate resulting from immune response.

Legionella pneumophila

Gram Θ rod. Gram stains poorly-use silver stain. Grow on charcoal yeast extract medium with iron and cysteine. Detected by presence of antigen in urine. Labs may show hyponatremia.
Aerosol transmission from environmental water source habitat (eg, air conditioning systems, hot water tanks). No person-to-person transmission.
Treatment: macrolide or quinolone.
Legionnaires' disease-severe pneumonia (often unilateral and lobar \mathbb{A}), fever, GI and CNS symptoms. Common in smokers and in chronic lung disease.
Pontiac fever-mild flu-like syndrome.

Think of a French legionnaire (soldier) with his silver helmet, sitting around a campfire (charcoal) with his iron dagger-he is no sissy (cysteine).

Pseudomonas aeruginosa

Aeruginosa-aerobic; motile, gram \ominus rod. Nonlactose fermenting. Oxidase \oplus. Frequently found in water. Has a grape-like odor. PSEUDOMONAS is associated with: Pneumonia, Sepsis, Ecthyma gangrenosum, UTIs, Diabetes, Osteomyelitis, Mucoid polysaccharide capsule, Otitis externa (swimmer's ear), Nosocomial infections (eg, catheters, equipment), Addicts (drug abusers), Skin infections (eg, hot tub folliculitis, wound infection in burn victims).
Mucoid polysaccharide capsule may contribute to chronic pneumonia in cystic fibrosis patients due to biofilm formation.
Produces PEEP: Phospholipase C (degrades cell membranes); Endotoxin (fever, shock); Exotoxin A (inactivates EF-2); Pigments: pyoverdine and pyocyanin (blue-green pigment \mathbb{A}; also generates reactive oxygen species).

Corneal ulcers/keratitis in contact lens wearers/ minor eye trauma.
Ecthyma gangrenosum-rapidly progressive, necrotic cutaneous lesion B caused by Pseudomonas bacteremia. Typically seen in immunocompromised patients.
Treatments include "CAMPFIRE" drugs:

- Carbapenems
- Aminoglycosides
- Monobactams
- Polymyxins (eg, polymyxin B, colistin)
- Fluoroquinolones (eg, ciprofloxacin, levofloxacin)
- ThIRd- and fourth-generation cephalosporins (eg, ceftazidime, cefepime)
- Extended-spectrum penicillins (eg, piperacillin, ticarcillin)

Salmonella vs Shigella Both Salmonella and Shigella are gram Θ rods, non-lactose fermenters, oxidase Θ, and can invade the GI tract via M cells of Peyer patches.

	Salmonella typhi	Salmonella spp. (except S typhi)	Shigella
Reservoirs	Humans only	Humans and animals	Humans only
SPREAD	Can disseminate hematogenously	Can disseminate hematogenously	Cell to cell; no hematogenous spread
H_{2} Sproduction	Yes	Yes	No
flagella	Yes (salmon swim)	Yes (salmon swim)	No
VIRULEnce Factors	Endotoxin; Vi capsule	Endotoxin	Endotoxin; Shiga toxin (enterotoxin)
INFECTIOUS DOSE (IIS ${ }_{50}$)	High-large inoculum required; acid-labile (inactivated by gastric acids)	High	Low-very small inoculum required; acid stable (resistant to gastric acids)
Effect Of antibiotics on fechl excretion	Prolongs duration	Prolongs duration	Shortens duration
Immune response	Primarily monocytes	PMNs in disseminated disease	Primarily PMN infiltration
GImanfestations	Constipation, followed by diarrhea	Diarrhea (possibly bloody)	Bloody diarrhea (bacillary dysentery)
vaccine	Oral vaccine contains live attenuated Styphi IM vaccine contains Vi capsular polysaccharide	No vaccine	No vaccine
UnIoUE PROPERTIES	- Causes typhoid fever (rose spots on abdomen, constipation, abdominal pain, fever); treat with ceftriaxone or fluoroquinolone - Carrier state with gallbladder colonization	- Poultry, eggs, pets, and turtles are common sources - Antibiotics not indicated - Gastroenteritis is usually caused by nontyphoidal Salmonella	- Four F's: Fingers, Flies, Food, Feces - In order of decreasing severity (less toxin produced): S dysenteriae, S flexneri, S boydii, S sonnei - Invasion of M cells is key to pathogenicity: organisms that produce little toxin can cause disease

Yersinia enterocolitica Gram Θ rod. Usually transmitted from pet feces (eg, puppies), contaminated milk, or pork. Causes acute diarrhea or pseudoappendicitis (right lower abdominal pain due to mesenteric adenitis and/ or terminal ileitis).

Lactose-fermenting enteric bacteria

Fermentation of lactose \rightarrow pink colonies on MacConkey agar. Examples include Citrobacter, Klebsiella, E coli, Enterobacter, and Serratia (weak fermenter). E coli produces β-galactosidase, which breaks down lactose into glucose and galactose.

Lactose is key.
Test with MacConKEE'S agar.
EMB agar-lactose fermenters grow as purple/ black colonies. E coli grows colonies with a green sheen.

Escherichia coli

Gram Θ rod. E coli virulence factors: fimbriae-cystitis and pyelonephritis (P-pili); K capsulepneumonia, neonatal meningitis; LPS endotoxin-septic shock.

Strain	toxin and mechanism	PRESENTATION
Enteroinvasive E coli	Microbe invades intestinal mucosa and causes necrosis and inflammation.	EIEC is Invasive; dysentery. Clinical manifestations similar to Shigella.
Enterotoxigenic E coli	Produces heat-labile and heat-stable enteroToxins. No inflammation or invasion.	ETEC; Traveler's diarrhea (watery).
Enteropathogenic Ecoli	No toxin produced. Adheres to apical surface, flattens villi, prevents absorption.	Diarrhea, usually in children (think EPEC and Pediatrics).
Enterohemorrhagic E coli	O157:H7 is most common serotype in US. Often transmitted via undercooked meat, raw leafy vegetables. Shiga-like toxin causes hemolytic-uremic syndrome: triad of anemia, thrombocytopenia, and acute renal failure due to microthrombi forming on damaged endothelium \rightarrow mechanical hemolysis (with schistocytes on peripheral blood smear), platelet consumption, and \downarrow renal blood flow.	Dysentery (toxin alone causes necrosis and inflammation). Does not ferment sorbitol (vs other E coli). Hemorrhagic, Hamburgers, Hemolytic-uremic syndrome.

Klebsiella

Gram \ominus rod; intestinal flora that causes lobar pneumonia in alcoholics and diabetics when aspirated. Very mucoid colonies A caused by abundant polysaccharide capsules. Dark red "currant jelly" sputum (blood/mucus).
Also cause of nosocomial UTIs. Associated with evolution of multidrug resistance (MDR).

5 A's of KlebsiellA:
Aspiration pneumonia
Abscess in lungs and liver
Alcoholics
DiAbetics
"CurrAnt jelly" sputum

Gram Θ, comma or S shaped (with polar flagella) A, oxidase \oplus, grows at $42^{\circ} \mathrm{C}$ ("Campylobacter likes the hot campfire").
Major cause of bloody diarrhea, especially in children. Fecal-oral transmission through person-to-person contact or via ingestion of undercooked contaminated poultry or meat, unpasteurized milk. Contact with infected animals (dogs, cats, pigs) is also a risk factor.
Common antecedent to Guillain-Barré syndrome and reactive arthritis.

Vibrio cholerae

Gram Θ, flagellated, comma shaped \boldsymbol{A}, oxidase \oplus, grows in alkaline media. Endemic to developing countries. Produces profuse rice-water diarrhea via enterotoxin that permanently activates G_{s}, \uparrow cAMP. Sensitive to stomach acid (acid labile); requires large inoculum (high ID_{50}) unless host has \downarrow gastric acidity. Transmitted via ingestion of contaminated water or uncooked food (eg, raw shellfish). Treat promptly with oral rehydration solution.

Helicobacter pylori

Curved, flagellated (motile), gram $\Theta \operatorname{rod} \boldsymbol{A}$ that is triple \oplus : catalase \oplus, oxidase \oplus, and urease \oplus (can use urea breath test or fecal antigen test for diagnosis). Urease produces ammonia, creating an alkaline environment, which helps H pylori survive in acidic mucosa. Colonizes mainly antrum of stomach; causes gastritis and peptic ulcers (especially duodenal). Risk factor for peptic ulcer disease, gastric adenocarcinoma, and MALT lymphoma.
Most common initial treatment is triple therapy: Amoxicillin (metronidazole if penicillin allergy) + Clarithromycin + Proton pump inhibitor; Antibiotics Cure Pylori.

Spirochetes

Spiral-shaped bacteria A with axial filaments. Includes Borrelia (big size), Leptospira, and Treponema. Only Borrelia can be visualized using aniline dyes (Wright or Giemsa stain) in light microscopy due to size. Treponema is visualized by dark-field microscopy or direct fluorescent antibody (DFA) microscopy.

BLT.

Borrelia is Big.

Lyme disease

Caused by Borrelia burgdorferi, which is transmitted by the Ixodes deer tick A (also vector for Anaplasma spp. and protozoa Babesia). Natural reservoir is the mouse (and important to tick life cycle).
Common in northeastern United States.
Stage 1-early localized: erythema migrans (typical "bulls-eye" configuration B is pathognomonic but not always present), flu-like symptoms.
Stage 2-early disseminated: secondary lesions, carditis, AV block, facial nerve (Bell) palsy, migratory myalgias/transient arthritis.
Stage 3-late disseminated: encephalopathy, chronic arthritis.

A Key Lyme pie to the FACE:
Facial nerve palsy (typically bilateral) Arthritis
Cardiac block
Erythema migrans
Treatment: doxycycline (lst line); amoxicillin and cefuroxime in pregnant women and children.

Leptospira interrogans Spirochete with hook-shaped ends found in water contaminated with animal urine.
Leptospirosis-flu-like symptoms, myalgias (classically of calves), jaundice, photophobia with conjunctival suffusion (erythema without exudate). Prevalent among surfers and in tropics (eg, Hawaii).

Weil disease (icterohemorrhagic leptospirosis) - severe form with jaundice and azotemia from liver and kidney dysfunction, fever, hemorrhage, and anemia.

Syphilis

Primary syphilis

Secondary syphilis

Caused by spirochete Treponema pallidum.
Localized disease presenting with painless chancre \boldsymbol{A}. If available, use dark-field microscopy to visualize treponemes in fluid from chancre B. VDRL \oplus in $\sim 80 \%$.
Disseminated disease with constitutional symptoms, maculopapular rash (including palms \boldsymbol{D} and soles), condylomata lata (smooth, painless, wart-like white lesions on genitals), lymphadenopathy, patchy hair loss; also confirmable with dark-field microscopy.
Serologic testing: VDRL/RPR (nonspecific), confirm diagnosis with specific test (eg, FTA-ABS).
Secondary syphilis = Systemic. Latent syphilis (\oplus serology without symptoms) may follow.
Tertiary syphilis
Gummas \boldsymbol{F} (chronic granulomas), aortitis (vasa vasorum destruction), neurosyphilis (tabes dorsalis, "general paresis"), Argyll Robertson pupil (constricts with accommodation but is not reactive to light; also called "prostitute's pupil" since it accommodates but does not react).
Signs: broad-based ataxia, \oplus Romberg, Charcot joint, stroke without hypertension.
For neurosyphilis: test spinal fluid with VDRL, FTA-ABS, and PCR.
Congenital syphilis Presents with facial abnormalities such as rhagades (linear scars at angle of mouth, black arrow in (G), snuffles (nasal discharge, red arrow in G), saddle nose, notched (Hutchinson) teeth \boldsymbol{H}, mulberry molars, and short maxilla; saber shins; CN VIII deafness.
To prevent, treat mother early in pregnancy, as placental transmission typically occurs after first trimester.

VDRL false positives

VDRL detects nonspecific antibody that reacts with beef cardiolipin. Quantitative, inexpensive, and widely available test for syphilis (sensitive but not specific).

False-Positive results on VDRL with:
Pregnancy
Viral infection (eg, EBV, hepatitis)
Drugs
Rheumatic fever
Lupus and leprosy

Jarisch-Herxheimer reaction

Flu-like syndrome (fever, chills, headache, myalgia) after antibiotics are started; due to killed bacteria (usually spirochetes) releasing toxins.

Gardnerella vaginalis

A pleomorphic, gram-variable rod involved in bacterial vaginosis. Presents as a gray vaginal discharge with a fishy smell; nonpainful (vs vaginitis). Associated with sexual activity, but not sexually transmitted. Bacterial vaginosis is also characterized by overgrowth of certain anaerobic bacteria in vagina. Clue cells (vaginal epithelial cells covered with Gardnerella) have stippled appearance along outer margin (arrow in \boldsymbol{A}).
Treatment: metronidazole or clindamycin.

I don't have a clue why I smell fish in the vagina garden!
Amine whiff test-mixing discharge with 10% KOH enhances fishy odor.

Chlamydiae

Chlamydiae cannot make their own ATP. They are obligate intracellular organisms that cause mucosal infections. 2 forms:

- Elementary body (small, dense) is "Enfectious" and Enters cell via Endocytosis; transforms into reticulate body.
- Reticulate body Replicates in cell by fission; Reorganizes into elementary bodies.
Chlamydia trachomatis causes reactive arthritis (Reiter syndrome), neonatal and follicular adult conjunctivitis \boldsymbol{A}, nongonococcal urethritis, and PID.
Chlamydophila pneumoniae and Chlamydophila psittaci cause atypical pneumonia; transmitted by aerosol.
Treatment: azithromycin (favored because onetime treatment) or doxycycline (+ ceftriaxone for possible concomitant gonorrhea).

Chlamys = cloak (intracellular).
C psittaci-has an avian reservoir (parrots), causes atypical pneumonia.
Lab diagnosis: PCR, nucleic acid amplification test. Cytoplasmic inclusions (reticulate bodies) seen on Giemsa or fluorescent antibodystained smear.
The chlamydial cell wall lacks classic peptidoglycan (due to reduced muramic acid), rendering β-lactam antibiotics ineffective.

Chlamydia trachomatis serotypes

Types A, B, and C	Chronic infection, cause blindness due to follicular conjunctivitis in Africa.
Types D-K	Urethritis/PID, ectopic pregnancy, neonatal pneumonia (staccato cough) with eosinophilia, neonatal conjunctivitis (l-2 weeks after birth).
Types L1, L2, and L3	Lymphogranuloma venereum-small, painless ulcers on genitals \rightarrow swollen, painful inguinal lymph nodes that ulcerate (buboes). Treat with doxycycline.

ABC = Africa, Blindness, Chronic infection.

D-K = everything else.
Neonatal disease can be acquired during passage through infected birth canal.

SPECIES	DISEASE	TRANSMISSION AND SOURCE
Anaplasma spp.	Anaplasmosis	Ixodes ticks (live on deer and mice)
Bartonella spp.	Cat scratch disease, bacillary angiomatosis	Cat scratch
Borrelia burgdorferi	Lyme disease	Ixodes ticks (live on deer and mice)
Borrelia recurrentis	Relapsing fever	Louse (recurrent due to variable surface antigens)
Brucella spp.	Brucellosis/undulant fever	Unpasteurized dairy
Campylobacter	Bloody diarrhea	Feces from infected pets/animals; contaminated meats/foods/hands
Chlamydophila psittaci	Psittacosis	Parrots, other birds
Coxiella burnetii	Q fever	Aerosols of cattle/sheep amniotic fluid
Ehrlichia chaffeensis	Ehrlichiosis	Amblyomma (Lone Star tick)
Francisella tularensis	Tularemia	Ticks, rabbits, deer flies
Leptospira spp.	Leptospirosis	Animal urine in water; recreational water use
Mycobacterium leprae	Leprosy	Humans with lepromatous leprosy; armadillo (rare)
Pasteurella multocida	Cellulitis, osteomyelitis	Animal bite, cats, dogs
Rickettsia prowazekii	Epidemic typhus	Human to human via human body louse
Rickettsia rickettsii	Rocky Mountain spotted fever	Dermacentor (dog tick)
Rickettsia typhi	Endemic typhus	Fleas
Salmonella spp. (except Styphi)	Diarrhea (which may be bloody), vomiting, fever, abdominal cramps	Reptiles and poultry
Yersinia pestis	Plague	Fleas (rats and prairie dogs are reservoirs)

Rickettsial diseases and vector-borne illnesses

Typhus
Rocky Mountain spotted fever

Endemic (fleas) -R typhi.
Epidemic (human body louse)-R prowazekii. Rash starts centrally and spreads out, sparing palms and soles.

Mycoplasma pneumoniae

Classic cause of atypical "walking" pneumonia (insidious onset, headache, nonproductive cough, patchy or diffuse interstitial infiltrate). X-ray looks worse than patient. High titer of cold agglutinins (IgM), which can agglutinate RBCs. Grown on Eaton agar.
Treatment: macrolides, doxycycline, or fluoroquinolone (penicillin ineffective since Mycoplasma have no cell wall).

No cell wall. Not seen on Gram stain.
Pleomorphic A.
Bacterial membrane contains sterols for stability. Mycoplasmal pneumonia is more common in patients < 30 years old.
Frequent outbreaks in military recruits and prisons.
Mycoplasma gets cold without a coat (cell wall).

- MICROBIOLOGY-MYCOLOGY

Systemic mycoses

All of the following can cause pneumonia and can disseminate.
All are caused by dimorphic fungi: cold $\left(20^{\circ} \mathrm{C}\right)=$ mold; heat $\left(37^{\circ} \mathrm{C}\right)=$ yeast. Only exception is Coccidioides, which is a spherule (not yeast) in tissue.
Systemic mycoses can form granulomas (like TB); cannot be transmitted person-to-person (unlike TB).
Treatment: fluconazole or itraconazole for local infection; amphotericin B for systemic infection.

DISEASE	endemic location	pathologic features	UNINUESIGNS/SYMPTOMS	Notes
	Mississippi and Ohio River Valleys	Macrophage filled with Histoplasma (smaller than RBC) \boldsymbol{A}	Palatal/tongue ulcers, splenomegaly	Histo hides (within macrophages) Bird (eg, starlings) or bat droppings Diagnosis via urine/ serum antigen
	Eastern and Central US	Broad-based budding of Blastomyces (same size as RBC)	Inflammatory lung disease, can disseminate to skin/ bone Verrucous skin lesions can simulate SCC Forms granulomatous nodules	Blasto buds broadly
Coccidioidomycosis	Southwestern US, California	Spherule (much larger than RBC) filled with endospores of Coccidioides \mathbb{C}	Disseminates to skin/ bone Erythema nodosum (desert bumps) or multiforme Arthralgias (desert rheumatism) Can cause meningitis	
Paracoccidioidomycosis	Latin America	Budding yeast of Paracoccidioides with "captain's wheel" formation (much	Similar to blastomycosis, males $>$ females	Paracoccidio parasails with the captain's wheel all the way to Latin America

Cutaneous mycoses

Tinea
(dermatophytes)

Tinea capitis
Tinea corporis

Tinea cruris
Tinea pedis

Tinea unguium
Tinea (pityriasis)
versicolor

Clinical name for dermatophyte (cutaneous fungal) infections. Dermatophytes include Microsporum, Trichophyton, and Epidermophyton. Branching septate hyphae visible on KOH preparation with blue fungal stain \boldsymbol{A}. Associated with pruritus.
Occurs on head, scalp. Associated with lymphadenopathy, alopecia, scaling B .
Occurs on torso. Characterized by erythematous scaling rings ("ringworm") and central clearing C. Can be acquired from contact with an infected cat or dog.
Occurs in inguinal area \mathbf{D}. Often does not show the central clearing seen in tinea corporis.
Three varieties:

- Interdigital E; most common
- Moccasin distribution F
- Vesicular type

Onychomycosis; occurs on nails.
Caused by Malassezia spp. (Pityrosporum spp.), a yeast-like fungus (not a dermatophyte despite being called tinea). Degradation of lipids produces acids that damage melanocytes and cause hypopigmented G, hyperpigmented, and/or pink patches. Less pruritic than dermatophytes.
Can occur any time of year, but more common in summer (hot, humid weather). "Spaghetti and meatballs" appearance on microscopy \boldsymbol{H}.
Treatment: selenium sulfide, topical and/or oral antifungal medications.

Aspergillus fumigatus

Cryptococcus neoformans

Mucor and Rhizopus

spp.
alba $=$ white. Dimorphic; forms pseudohyphae and budding yeasts at $20^{\circ} \mathrm{C} \AA$, germ tubes at $37^{\circ} \mathrm{C}$ B.
Systemic or superficial fungal infection. Causes oral $[\mathbb{C}$ and esophageal thrush in immunocompromised (neonates, steroids, diabetes, AIDS), vulvovaginitis (diabetes, use of antibiotics), diaper rash, endocarditis (IV drug users), disseminated candidiasis (especially in neutropenic patients), chronic mucocutaneous candidiasis.
Treatment: oral fluconazole/topical azole for vaginal; nystatin, fluconazole, or echinocandins for oral/esophageal; fluconazole, echinocandins, or amphotericin B for systemic.
Monomorphic septate hyphae that branch at 45° Acute Angle (D)
Causes invasive aspergillosis in immunocompromised patients, neutrophil dysfunction (eg, chronic granulomatous disease).
Can cause aspergillomas in pre-existing lung cavities, especially after TB infection.
Some species of Aspergillus produce Aflatoxins (associated with hepatocellular carcinoma).
Allergic bronchopulmonary aspergillosis (ABPA) \boldsymbol{F}-hypersensitivity response associated with asthma and cystic fibrosis; may cause bronchiectasis and eosinophilia.
$5-10 \mu \mathrm{~m}$ with narrow budding. Heavily encapsulated yeast. Not dimorphic.
Found in soil, pigeon droppings. Acquired through inhalation with hematogenous dissemination to meninges. Culture on Sabouraud agar. Highlighted with India ink (clear halo (G) and mucicarmine (red inner capsule (H). Latex agglutination test detects polysaccharide capsular antigen and is more specific.
Causes cryptococcosis, cryptococcal meningitis, cryptococcal encephalitis ("soap bubble" lesions in brain), primarily in immunocompromised.
Treatment: amphotericin B + flucytosine followed by fluconazole for cryptococcal meningitis.
Irregular, broad, nonseptate hyphae branching at wide angles II.
Causes mucormycosis, mostly in ketoacidotic diabetic and/or neutropenic patients (eg, leukemia). Inhalation of spores \rightarrow fungi proliferate in blood vessel walls, penetrate cribriform plate, and enter brain. Rhinocerebral, frontal lobe abscess; cavernous sinus thrombosis. Headache, facial pain, black necrotic eschar on face; may have cranial nerve involvement.
Treatment: surgical debridement, amphotericin B or isavuconazole.

Pneumocystis jirovecii Causes Pneumocystis pneumonia (PCP), a diffuse interstitial pneumonia A. Yeast-like fungus

 (originally classified as protozoan). Most infections are asymptomatic. Immunosuppression (eg, AIDS) predisposes to disease. Diffuse, bilateral ground-glass opacities on CXR/CT, with pneumatoceles [B. Diagnosed by lung biopsy or lavage. Disc-shaped yeast seen on methenamine silver stain of lung tissue [C.Treatment/prophylaxis: TMP-SMX, pentamidine, dapsone (prophylaxis only), atovaquone. Start prophylaxis when CD4+ count drops to <200 cells $/ \mathrm{mm}^{3}$ in HIV patients.

Sporothrix schenckii

Sporotrichosis. Dimorphic, cigar-shaped budding yeast that grows in branching hyphae with rosettes of conidia; lives on vegetation. When spores are traumatically introduced into the skin, typically by a thorn ("rose gardener's disease"), causes local pustule or ulcer with nodules along draining lymphatics (ascending lymphangitis (A). Disseminated disease possible in immunocompromised host.
Treatment: itraconazole or potassium iodide.
Think of a rose gardener who smokes a cigar and pot.

MICROBIOLOGY-PARASITOLOGY

Protozoa—gastrointestinal infections

ORGANISM	DISEASE	TRANSMISSION	diagnosis	Treatment
Giardia lamblia	Giardiasis-bloating, flatulence, foul-smelling, fatty diarrhea (often seen in campers/hikers) think fat-rich Ghirardelli chocolates for fatty stools of Giardia	Cysts in water	Multinucleated trophozoites A or cysts B in stool, antigen detection	Metronidazole
Entamoeba histolytica	Amebiasis-bloody diarrhea (dysentery), liver abscess ("anchovy paste" exudate), RUQ pain; histology of colon biopsy shows flask-shaped ulcers	Cysts in water	Serology, antigen testing, and/or trophozoites (with engulfed RBCs in the cytoplasm) or cysts with up to 4 nuclei in stool D; Entamoeba Eats Erythrocytes	Metronidazole; paromomycin or iodoquinol for asymptomatic cyst passers
Cryptosporidium	Severe diarrhea in AIDS Mild disease (watery diarrhea) in immunocompetent hosts	Oocysts in water	Oocysts on acid-fast stain [E, antigen detection	Prevention (by filtering city water supplies); nitazoxanide in immunocompetent hosts
A	B			

Protozoa-CNS infections

ORGANISM	DISEASE	TRANSMISSION	DIAGNosis	treatment
Toxoplasma gondii	Immunocompetent: mononucleosis-like symptoms, Θ heterophile antibody test. Reactivation in AIDS \rightarrow brain abscesses usually seen as multiple ring-enhancing lesions on MRI A. Congenital toxoplasmosis: classic triad of chorioretinitis, hydrocephalus, and intracranial calcifications.	Cysts in meat (most common); oocysts in cat feces; crosses placenta (pregnant women should avoid cats)	Serology, biopsy (tachyzoite)	Sulfadiazine + pyrimethamine
Naegleria fowleri	Rapidly fatal meningoencephalitis	Swimming in warm freshwater (think Nalgene bottle filled with fresh water containing Naegleria); enters via cribriform plate	Amoebas in CSF C	Amphotericin B has been effective for a few survivors
Trypanosoma brucei	African sleeping sicknessenlarged lymph nodes, recurring fever (due to antigenic variation), somnolence, coma	Tsetse fly, a painful bite	Trypomastigote in blood smear	Suramin for bloodborne disease or melarsoprol for CNS penetration ("I sure am mellow when I'm sleeping"; remember melatonin helps with sleep)

Protozoa-hematologic infections

ORGANSM	DISEASE	TRANSMISSION	DIAGNOSIS	Treatment
Plasmodium P vivax/ovale P falciparum P malariae	Malaria-fever, headache, anemia, splenomegaly P vivax/ovale -48 -hr cycle (tertian; includes fever on first day and third day, thus fevers are actually 48 hr apart); dormant form (hypnozoite) in liver Pfalciparum—severe; irregular fever patterns; parasitized RBCs occlude capillaries in brain (cerebral malaria), kidneys, lungs P malariae-72-hr cycle (quartan)	Anopheles mosquito	Blood smear: trophozoite ring form within RBC A, schizont containing merozoites; red granules (Schüffner stippling) throughout RBC cytoplasm seen with P vivax/ovale	Chloroquine (for sensitive species), which blocks Plasmodium heme polymerase; if resistant, use mefloquine or atovaquone/ proguanil If life-threatening, use intravenous quinidine or artesunate (test for G6PD deficiency) For P vivax/ovale, add primaquine for hypnozoite (test for G6PD deficiency)
Babesia	Babesiosis-fever and hemolytic anemia; predominantly in northeastern United States; asplenia \uparrow risk of severe disease	Ixodes tick (same as Borrelia burgdorferi of Lyme disease; may often coinfect humans)	Blood smear: ring form C1, "Maltese cross" C2; PCR	Atovaquone + azithromycin

Protozoa-others

ORGANISM	DISEASE	TRANSMISSION	DIAGNOSIS	TREATMENT
Visceral infections				
Trypanosoma cruzi	Chagas disease-dilated cardiomyopathy with apical atrophy, megacolon, megaesophagus; predominantly in South America Unilateral periorbital swelling (Romaña sign) characteristic of acute stage	Triatomine ("kissing") bug, a type of reduviid bug, deposits feces in a painless bite (much like a kiss)	Trypomastigote in blood smear A	Benznidazole or nifurtimox; cruzing in my Benz, with a fur coat on
Leishmania donovani	Visceral leishmaniasis (kala-azar)—spiking fevers, hepatosplenomegaly, pancytopenia Cutaneous leishmaniasis-skin ulcers	Sandfly	Macrophages containing amastigotes B	Amphotericin B, sodium stibogluconate
Sexually transmitted infections				
Trichomonas vaginalis	Vaginitis-foul-smelling, greenish discharge; itching and burning; do not confuse with Gardnerella vaginalis, a gram-variable	Sexual (cannot exist outside human because it cannot form cysts)	Trophozoites (motile) D on wet mount; "strawberry cervix"	Metronidazole for patient and partner (prophylaxis)

Nematode routes of infection

Ingested-Enterobius, Ascaris, Toxocara, Trichinella, Trichuris
Cutaneous-Strongyloides, Ancylostoma, Necator
Bites-Loa loa, Onchocerca volvulus, Wuchereria bancrofti

You'll get sick if you EATTT these!

These get into your feet from the SANd.

Lay LOW to avoid getting bitten.

Nematodes (roundworms)

ORGANISM	DISEASE	TRANSMISSION	TREATMENT
Intestinal			
Enterobius vermicularis (pinworm)	Causes anal pruritus (diagnosed by seeing egg A via the tape test)	Fecal-oral	Pyrantel pamoate or bendazoles (because worms are bendy)
Ascaris lumbricoides (giant roundworm)	May cause obstruction at ileocecal valve, biliary obstruction, intestinal perforation, migrates from nose/mouth	Fecal-oral; knobby-coated, oval eggs seen in feces under microscope B	Bendazoles
Strongyloides stercoralis (threadworm)	Autoinfection: rarely, some larvae may penetrate the intestinal wall to enter the bloodstream without leaving the body	Larvae in soil penetrate skin; rhabditiform larvae seen in feces under microscope	Ivermectin or bendazoles
Ancylostoma duodenale, Necator americanus (hookworms)	Cause anemia by sucking blood from intestinal wall Cutaneous larva migrans-pruritic, serpiginous rash from walking barefoot on contaminated beach	Larvae penetrate skin	Bendazoles or pyrantel pamoate
Trichinella spiralis	Larvae enter bloodstream, encyst in striated muscle \rightarrow muscle inflammation Trichinosis-fever, vomiting, nausea, periorbital edema, myalgia	Undercooked meat (especially pork); fecal-oral (less likely)	Bendazoles
Trichuris trichiura (whipworm)	Often asymptomatic; loose stools, anemia, rectal prolapse in children (heavy infection)	Fecal-oral	Bendazoles
Tissue			
Toxocara canis	Visceral larva migrans-nematodes migrate to blood through intestinal wall \rightarrow inflammation and damage. Often affects heart (myocarditis), liver, eyes (visual impairment, blindness), and CNS (seizures, coma)	Fecal-oral	Bendazoles
Onchocerca volvulus	Skin changes, loss of elastic fibers, and river blindness (black flies, black skin nodules, "black sight"); allergic reaction to microfilaria possible	Female blackfly	Ivermectin (ivermectin for river blindness)
Loaloa	Swelling in skin, worm in conjunctiva	Deer fly, horse fly, mango fly	Diethylcarbamazine
Wuchereria bancrofti	Lymphatic filariasis (elephantiasis) worms invade lymph nodes \rightarrow inflammation \rightarrow lymphedema \mathbf{C}; symptom onset after 9 mo-l yr	Female mosquito	Diethylcarbamazine
A			

Cestodes (tapeworms)

ORGANISM	DISEASE	TRANSMISSIION	Treatment
Taenia solium A	Intestinal tapeworm	Ingestion of larvae encysted in undercooked pork	Praziquantel
	Cysticercosis, neurocysticercosis (cystic CNS lesions, seizures)	Ingestion of eggs in food contaminated with human feces	Praziquantel; albendazole for neurocysticercosis
Diphyllobothrium latum	Vitamin B_{12} deficiency (tapeworm competes for B_{12} in intestine) \rightarrow megaloblastic anemia	Ingestion of larvae in raw freshwater fish	Praziquantel
Echinococcus granulosus	Hydatid cysts [("eggshell calcification") in liver [E; cyst rupture can cause anaphylaxis	Ingestion of eggs in food contaminated with dog feces Sheep are an intermediate host	Albendazole

Trematodes (flukes)

ORGANISM	DISEASE	transmission	treatment
Schistosoma	Liver and spleen enlargement (S mansoni, egg with lateral spine (A), fibrosis, inflammation, portal hypertension Chronic infection with S haematobium (egg with terminal spine (B) can lead to squamous cell carcinoma of the bladder (painless hematuria) and pulmonary hypertension	Snails are intermediate host; cercariae penetrate skin of humans in contact with contaminated fresh water (eg, swimming or bathing)	Praziquantel
A			
*			
Clonorchis sinensis	Biliary tract inflammation \rightarrow pigmented gallstones Associated with cholangiocarcinoma	Undercooked fish	Praziquantel

Ectoparasites

Sarcoptes scabiei A	Mite burrow into stratum corneum and cause scabies-pruritus (worse at night) and serpiginous burrows (lines) in webspace of hands and feet \boldsymbol{A}.	Common in children, crowded populations (jails, nursing homes); transmission through skin-to-skin contact (most common) or via fomites. Treatment: permethrin cream, washing/drying all clothing/bedding, treat close contacts.
Pediculus humanus/ Phthirus pubis	Blood-sucking lice that cause intense pruritus with associated excoriations, commonly on scalp and neck (head lice) or waistband and axilla (body lice).	Can transmit Rickettsia prowazekii (epidemic typhus), Borrelia recurrentis (relapsing fever), Bartonella quintana (trench fever). Treatment includes pyrethroids, malathion, or ivermectin lotion, and nit B combing. Children with head lice can be treated at home without interrupting school attendance.
Parasite hints	ASSOCIATIONS	ORGANISM
	Biliary tract disease, cholangiocarcinoma	Clonorchis sinensis
	Brain cysts, seizures	Taenia solium (neurocysticercosis)
	Hematuria, squamous cell bladder cancer	Schistosoma haematobium
	Liver (hydatid) cysts	Echinococcus granulosus
	Microcytic anemia	Ancylostoma, Necator
	Myalgias, periorbital edema	Trichinella spiralis
	Perianal pruritus	Enterobius
	Portal hypertension	Schistosoma mansoni, Schistosoma japonicum
	Vitamin B_{12} deficiency	Diphyllobothrium latum

MICROBIOLOGY-VIROLOGY

Viral structure-general features

DNA viral genomes

All DNA viruses have dsDNA genomes except Parvoviridae (ssDNA).
All are linear except papilloma-, polyoma-, and hepadnaviruses (circular).

All are dsDNA (like our cells), except "part-of-avirus" (parvovirus) is ssDNA.
Parvus = small.

RNA viral genomes

All RNA viruses have ssRNA genomes except Reoviridae (dsRNA).
\oplus stranded RNA viruses: I went to a retro (retrovirus) toga (togavirus) party, where I drank flavored (flavivirus) Corona (coronavirus) and ate hippie (hepevirus) California (calicivirus) pickles (picornavirus).

All are ssRNA, except "repeato-virus" (reovirus) is dsRNA.

Naked viral genome
infectivity
:---
$(\approx \mathrm{mRNA})$ viruses are infectious. Naked nucleic acids of Θ strand ssRNA and dsRNA viruses are
not infectious. They require polymerases contained in the complete virion.

Viral envelopes

DNA virus characteristics

Generally, enveloped viruses acquire their envelopes from plasma membrane when they exit from cell. Exceptions include herpesviruses, which acquire envelopes from nuclear membrane.
Naked (nonenveloped) viruses include Papillomavirus, Adenovirus, Parvovirus, Polyomavirus, Calicivirus, Picornavirus, Reovirus, and Hepevirus.

DNA = PAPP; RNA = CPR and hepevirus Give PAPP smears and CPR to a naked hippie (hepevirus).

Some general rules-all DNA viruses:
\(\left.$$
\begin{array}{l|l}\hline \text { General rule } & \text { Comments } \\
\hline \text { Are HHAPPPPy viruses } & \begin{array}{l}\text { Hepadna, Herpes, Adeno, Pox, Parvo, } \\
\text { Papilloma, Polyoma. }\end{array} \\
\hline \text { Are double stranded } & \begin{array}{l}\text { Except parvo (single stranded). }\end{array}
$$

\hline Except papilloma and polyoma (circular,

supercoiled) and hepadna (circular,

incomplete).\end{array}\right\}\)	Except pox (complex).

| DNA viruses | All replicate in the nucleus (except poxvirus). "Pox is out of the box (nucleus)." |
| :--- | :--- | :--- | :--- |

Herpesviruses Enveloped, DS, and linear viruses

VIRUS	Route of transmission	CLINCAL SIGNFIFCANCE	Notes
Herpes simplex virus-1	Respiratory secretions, saliva	Gingivostomatitis, keratoconjunctivitis A, herpes labialis B, herpetic whitlow on finger, temporal lobe encephalitis, esophagitis, erythema multiforme.	Most commonly latent in trigeminal ganglia. Most common cause of sporadic encephalitis, can present as altered mental status, seizures, and/or aphasia.
Herpes simplex virus-2	Sexual contact, perinatal	Herpes genitalis [C, neonatal herpes.	Most commonly latent in sacral ganglia. Viral meningitis more common with HSV-2 than with HSV-1.
VaricellaZoster virus (HHV-3)	Respiratory secretions	Varicella-zoster (chickenpox D, shingles E), encephalitis, pneumonia. Most common complication of shingles is postherpetic neuralgia.	Latent in dorsal root or trigeminal ganglia; CN V1 branch involvement can cause herpes zoster ophthalmicus.

Herpesviruses (continued)

VIRUS	ROUTE OF TRANSMISSION	CLINICAL SIGNIFICANCE	NOTES
Epstein-Barr virus (HHV-4)	Respiratory secretions, saliva; aka "kissing disease," (common in teens, young adults)	Mononucleosis-fever, hepatosplenomegaly F, pharyngitis, and lymphadenopathy (especially posterior cervical nodes). Avoid contact sports until resolution due to risk of splenic rupture. Associated with lymphomas (eg, endemic Burkitt lymphoma), nasopharyngeal carcinoma (especially Asian adults), lymphoproliferative disease in transplant patients.	Infects B cells through CD2l. Atypical lymphocytes on peripheral blood smear G—not infected B cells but reactive cytotoxic T cells. \oplus Monospot test-heterophile antibodies detected by agglutination of sheep or horse RBCs. Use of amoxicillin in mononucleosis can cause characteristic maculopapular rash.
Cytomegalovirus (HHV-5)	Congenital transfusion, sexual contact, saliva, urine, transplant	Mononucleosis (Θ Monospot) in immunocompetent patients; infection in immunocompromised, especially pneumonia in transplant patients; esophagitis; AIDS retinitis ("sightomegalovirus"): hemorrhage, cotton-wool exudates, vision loss. Congenital CMV	Infected cells have characteristic "owl eye" intranuclear inclusions \boldsymbol{H}. Latent in mononuclear cells.
Human herpesviruses 6 and 7	Saliva	Roseola infantum (exanthem subitum): high fevers for several days that can cause seizures, followed by diffuse macular rash $\boldsymbol{\square}$.	Roseola: fever first, Rosy (rash) later. HHV-7-less common cause of roseola.
Human herpesvirus 8	Sexual contact	Kaposi sarcoma (neoplasm of endothelial cells). Seen in HIV/AIDS and transplant patients. Dark/violaceous plaques or nodules representing vascular proliferations.	Can also affect GI tract and lungs.

Viral culture for skin/genitalia.
CSF PCR for herpes encephalitis.
Tzanck test-a smear of an opened skin vesicle to detect multinucleated giant cells A commonly seen in HSV-1, HSV-2, and VZV infection. PCR of skin lesions is test of choice.
Tzanck heavens I do not have herpes.
Intranuclear eosinophilic Cowdry A inclusions also seen with HSV-1, HSV-2, VZV.

Receptors used by viruses

VIRUS	RECEPToRs
CMV	Integrins (heparan sulfate)
EBV	CD2l
HIV	CD4, CXCR4, CCR5
Parvovirus B19	P antigen on RBCs
Rabies	Nicotinic AChR
Rhinovirus	ICAM-l

RNA viruses

| VRAL FAMLY | ENVELOPE | RNA STRUCTURE | CAPSID SYMMETRY |
| :--- | :--- | :--- | :--- | :--- | | MEDICALIMPORTANCE |
| :--- |

SS, single-stranded; DS, double-stranded; \oplus, positive sense; Θ, negative sense; ${ }^{\text {a }}=$ arbovirus, arthropod borne (mosquitoes, ticks).

Negative-stranded	Must transcribe Θ strand to \oplus. Virion brings its own RNA-dependent RNA polymerase.
viruses	They include Arenaviruses, Bunyaviruses,
	Paramyxoviruses, Orthomyxoviruses,
	Filoviruses, and Rhabdoviruses.

Always Bring Polymerase Or Fail Replication.

Segmented viruses

All are RNA viruses. They include Bunyaviruses, Orthomyxoviruses (influenza viruses), Arenaviruses, and Reoviruses.

BOAR.

PicoRNAvirus = small RNA virus. PERCH on a "peak" (pico).

Rhinovirus	A picornavirus. Nonenveloped RNA virus. Cause of common cold; >100 serologic types. Acid labile - destroyed by stomach acid; therefore, does not infect the GI tract (unlike the other picornaviruses).	Rhino has a runny nose.
Yellow fever virus	A flavivirus (also an arbovirus) transmitted by Aedes mosquitoes. Virus has a monkey or human reservoir.	Flavi = yellow, jaundice.
Symptoms: high fever, black vomitus, and jaundice. May see Councilman bodies (eosinophilic apoptotic globules) on liver biopsy.		

Rotavirus

Segmented dsRNA virus (a reovirus) \boldsymbol{A}. Most important global cause of infantile gastroenteritis. Major cause of acute diarrhea in the United States during winter, especially in day care centers, kindergartens.
Villous destruction with atrophy leads to \downarrow absorption of Na^{+}and loss of K^{+}.

ROTAvirus $=$ Right Out The Anus.
CDC recommends routine vaccination of all infants except those with a history of intussusception or SCID.

| Influenza viruses | Orthomyxoviruses. Enveloped, Θ ssRNA
 viruses with 8 -segment genome. Contain
 hemagglutinin (binds sialic acid and promotes
 viral entry) and neuraminidase (promotes
 progeny virion release) antigens. Patients at
 risk for fatal bacterial superinfection, most
 commonly S aureus, S pneumoriae, and
 H influenzae. |
| :--- | :--- | | Reformulated vaccine ("the flu shot") contains
 viral strains most likely to appear during the flu
 season, due to the virus' rapid genetic change. |
| :---: |
| Killed viral vaccine is most frequently used. |
| Live attenuated vaccine contains temperature- |
| sensitive mutant that replicates in the nose but |
| not in the lung; administered intranasally. |

Rubella virus

A togavirus. Causes rubella, once known as German (3-day) measles. Fever, postauricular and other lymphadenopathy, arthralgias, and fine, maculopapular rash that starts on face and spreads centrifugally to involve trunk and extremities \boldsymbol{A}.
Causes mild disease in children but serious congenital disease (a ToRCHeS infection). Congenital rubella findings include "blueberry muffin" appearance due to dermal extramedullary hematopoiesis.

Paramyxoviruses

Paramyxoviruses cause disease in children. They include those that cause parainfluenza (croup), mumps, measles, RSV, and human metapneumovirus, which causes respiratory tract infection (bronchiolitis, pneumonia) in infants. All contain surface F (fusion) protein, which causes respiratory epithelial cells to fuse and form multinucleated cells. Palivizumab (monoclonal antibody against F protein) prevents pneumonia caused by RSV infection in premature infants. Palivizumab for Paramyxovirus (RSV) Prophylaxis in Preemies.

Croup (acute laryngotracheobronchitis)

Caused by parainfluenza viruses, which are paramyxoviruses. Virus membrane contains hemagglutinin (binds sialic acid and promotes viral entry) and neuraminidase (promotes progeny virion release) antigens. Results in a "seal-like" barking cough and inspiratory stridor. Narrowing of upper trachea and subglottis leads to characteristic steeple sign on x-ray A. Severe croup can result in pulsus paradoxus 2° to upper airway obstruction.

virus

A paramyxovirus that causes measles. Usual presentation involves prodromal fever with cough, coryza, and conjunctivitis, then eventually Koplik spots (bright red spots with blue-white center on buccal mucosa A), followed 1-2 days later by a maculopapular rash B that starts at the head/neck and spreads downward.
Lymphadenitis with Warthin-Finkeldey giant cells (fused lymphocytes) in a background of paracortical hyperplasia. Possible sequelae:

- SSPE (subacute sclerosing panencephalitis, occurring years later)
- Encephalitis (1:2000)
- Giant cell pneumonia (rare except in immunosuppressed)

3 C's of measles:
Cough
Coryza
Conjunctivitis
Vitamin A supplementation can reduce morbidity and mortality from measles, particularly in malnourished children.

Mumps virus

A paramyxovirus that causes mumps, uncommon due to effectiveness of MMR vaccine.
Symptoms: Parotitis A, Orchitis (inflammation of testes), aseptic Meningitis, and Pancreatitis. Can cause sterility (especially after puberty).

Mumps makes your parotid glands and testes as big as POM-Poms.

Ebola virus

Bullet-shaped virus A. Negri bodies (cytoplasmic inclusions [B) commonly found in Purkinje cells of cerebellum and in hippocampal neurons. Rabies has long incubation period (weeks to months) before symptom onset. Postexposure prophylaxis is wound cleaning plus immunization with killed vaccine and rabies immunoglobulin. Example of passive-active immunity.
Travels to the CNS by migrating in a retrograde fashion (via dynein motors) up nerve axons after binding to ACh receptors.
Progression of disease: fever, malaise \rightarrow agitation, photophobia, hydrophobia, hypersalivation \rightarrow paralysis, coma \rightarrow death.

Infection more commonly from bat, raccoon, and skunk bites than from dog bites in the United States; aerosol transmission (eg, bat caves) also possible.

Zika virus

A filovirus \boldsymbol{A} that targets endothelial cells, phagocytes, hepatocytes. Following an incubation period of up to 21 days, presents with abrupt onset of flu-like symptoms, diarrhea/vomiting, high fever, myalgia. Can progress to DIC, diffuse hemorrhage, shock. Diagnosed with RT-PCR within 48 hr of symptom onset. High mortality rate.

Transmission requires direct contact with bodily fluids, fomites (including dead bodies), infected bats or primates (apes/monkeys); high incidence of nosocomial infection.
Supportive care, no definitive treatment. Strict isolation of infected individuals and barrier practices for health care workers are key to preventing transmission.

A flavivirus most commonly transmitted by Aedes mosquito bites. Causes conjunctivitis, low-grade pyrexia, and itchy rash in 20% of cases. Can lead to congenital microcephaly or miscarriage if transmitted in utero. Diagnose with RT-PCR or serology.

Sexual and vertical transmission possible. Outbreaks more common in tropical and subtropical climates. Supportive care, no definitive treatment.

Hepatitis viruses

Signs and symptoms of all hepatitis viruses: episodes of fever, jaundice, \uparrow ALT and AST. Naked viruses (HAV and HEV) lack an envelope and are not destroyed by the gut: the vowels hit your bowels.
HBV DNA polymerase has DNA- and RNA-dependent activities. Upon entry into nucleus, the polymerase completes the partial dsDNA. Host RNA polymerase transcribes mRNA from viral DNA to make viral proteins. The DNA polymerase then reverse transcribes viral RNA to DNA, which is the genome of the progeny virus.
HCV lacks $3^{\prime}-5^{\prime}$ exonuclease activity \rightarrow no proofreading ability \rightarrow variation in antigenic structures of HCV envelope proteins. Host antibody production lags behind production of new mutant strains of HCV.

Virus	HAV	HBV	HCV	HDV	HEV
family	RNA picornavirus	DNA hepadnavirus	RNA flavivirus	RNA deltavirus	RNA hepevirus
transmission	Fecal-oral (shellfish, travelers, day care)	Parenteral (Blood), sexual (Babymaking), perinatal (Birthing)	Primarily blood (IVDU, posttransfusion)	Parenteral, sexual, perinatal	Fecal-oral, especially waterborne
incubation	Short (weeks)	Long (months)	Long	Superinfection (HDV after HBV) $=$ short Coinfection (HDV with HBV) $=$ long	Short
ClIIICAL COURSE	Asymptomatic (usually), Acute	Initially like serum sickness (fever, arthralgias, rash); may progress to carcinoma	May progress to Cirrhosis or Carcinoma	Similar to HBV	Fulminant hepatitis in Expectant (pregnant) women
PROGNOSIS	Good	Adults \rightarrow mostly full resolution; neonates \rightarrow worse prognosis	Majority develop stable, Chronic hepatitis C	Superinfection \rightarrow worse prognosis	High mortality in pregnant women
HCCRISK	No	Yes	Yes	Yes	No
LIVER BIOPSY	Hepatocyte swelling, monocyte infiltration, Councilman bodies	Granular eosinophilic "ground glass" appearance; cytotoxic T cells mediate damage	Lymphoid aggregates with focal areas of macrovesicular steatosis	Similar to HBV	Patchy necrosis
notes	No carrier state ("Alone")	Carrier state common	Carrier state very common	Defective virus, Depends on HBV HBsAg coat for entry into hepatocytes	Enteric, Epidemic, no carrier state

Extrahepatic manifestations of hepatitis B and C

	Hepatitis B	Hepatitis C
HEMATOLOGIC	Aplastic anemia	Essential mixed cryoglobulinemia, \uparrow risk B-cell NHL, ITP, autoimmune hemolytic anemia
RENAL	Membranous GN > membranoproliferative GN	Membranoproliferative GN > membranous GN
VASCULAR	Polyarteritis nodosa	Leukocytoclastic vasculitis
DERMATOLOGIC		Sporadic porphyria cutanea tarda, lichen planus
ENDOCRINE	risk of diabetes mellitus, autoimmune hypothyroidism	

Hepatitis serologic markers

Diploid genome (2 molecules of RNA). The 3 structural genes (protein coded for): - env (gpl20 and gp4l):

- Formed from cleavage of gpl60 to form envelope glycoproteins.
- gpl20-attachment to host CD4+ T cell.
- gp4l-fusion and entry.
- gag (p24 and pl7) -capsid and matrix proteins, respectively.
- pol-reverse transcriptase, aspartate protease, integrase.
Reverse transcriptase synthesizes dsDNA from genomic RNA; dsDNA integrates into host genome.
Virus binds CD4 as well as a coreceptor, either CCR 5 on macrophages (early infection) or CXCR4 on T cells (late infection).
國 Homozygous CCR5 mutation = immunity.
Heterozygous CCR5 mutation $=$ slower course .

HIV diagnosis

Presumptive diagnosis made with HIV-1/2 Ag/ Ab immunoassays. These immunoassays detect viral p24 Ag capsid protein and IgG Abs to HIV-1/2. Very high sensitivity/specificity.
\oplus tests are confirmed with HIV-1/2 Abdifferentiation immunoassays which determine whether patient has HIV-l or HIV-2.
If inconclusive differentiation assay, an HIV-1 nucleic acid amplification test (NAAT) is performed; if the NAAT is Θ, patient had false positive initial $\mathrm{Ag} / \mathrm{Ab}$ immunoassay. Viral load tests determine the amount of viral RNA in the plasma. High viral load associated with poor prognosis. Also use viral load to monitor effect of drug therapy. Use HIV genotyping to determine appropriate therapy.
AIDS diagnosis $\leq 200 \mathrm{CD} 4+$ cells $/ \mathrm{mm}^{3}$ (normal: 500-1500 cells $/ \mathrm{mm}^{3}$). HIV \oplus with AIDS-defining condition (eg, Pneumocystis pneumonia) or CD4+ percentage $<14 \%$.

Western blot tests are no longer recommended by the CDC for confirmatory testing. HIV-l/2 Ag/Ab testing is not recommended in babies with suspected HIV due to maternally transferred antibody. Use HIV viral load instead.

Time course of untreated HIV infection

Dashed lines on CD4+ count axis indicate moderate immunocompromise
($<400 \mathrm{CD} 4+$ cells $/ \mathrm{mm}^{3}$) and when AIDS-defining illnesses emerge (<200 CD4+ cells $/ \mathrm{mm}^{3}$).
Most patients who do not receive treatment eventually die of complications of HIV infection.

Four stages of untreated infection:

1. Flu-like (acute)
2. Feeling fine (latent)
3. Falling count
4. Final crisis

During clinical latency phase, virus replicates in lymph nodes

Common diseases of HIV-positive adults

As CD4+ cell count \downarrow, risks of reactivation of past infections (eg, TB, HSV, shingles), dissemination of bacterial infections and fungal infections (eg, coccidioidomycosis), and non-Hodgkin lymphomas \uparrow.

PATHOGEN	PRESENTATION	FINDINGS
CD4+ cell count $<500 / \mathrm{mm}^{3}$		
Candida albicans	Oral thrush	Scrapable white plaque, pseudohyphae on microscopy
EBV	Oral hairy leukoplakia	Unscrapable white plaque on lateral tongue
HHV-8	Kaposi sarcoma	Biopsy with lymphocytic inflammation
HPV	Squamous cell carcinoma, commonly of anus (men who have sex with men) or cervix (women)	
CD4+ cell count < 200/mm ${ }^{3}$		
Histoplasma capsulatum	Fever, weight loss, fatigue, cough, dyspnea, nausea, vomiting, diarrhea	Oval yeast cells within macrophages
HIV	Dementia	
JC virus (reactivation)	Progressive multifocal leukoencephalopathy	Nonenhancing areas of demyelination on MRI
Pneumocystis jirovecii	Pneumocystis pneumonia	"Ground-glass" opacities on CXR
CD4+ cell count $<100 / \mathrm{mm}^{3}$		
Aspergillus fumigatus	Hemoptysis, pleuritic pain	Cavitation or infiltrates on chest imaging
Bartonella henselae	Bacillary angiomatosis	Biopsy with neutrophilic inflammation
Candida albicans	Esophagitis	White plaques on endoscopy; yeast and pseudohyphae on biopsy
CMV	Retinitis, esophagitis, colitis, pneumonitis, encephalitis	Linear ulcers on endoscopy, cotton-wool spots on fundoscopy Biopsy reveals cells with intranuclear (owl eye) inclusion bodies
Cryptococcus neoformans	Meningitis	Encapsulated yeast on India ink stain or capsular antigen
Cryptosporidium spp.	Chronic, watery diarrhea	Acid-fast oocysts in stool
EBV	B-cell lymphoma (eg, non-Hodgkin lymphoma, CNS lymphoma)	CNS lymphoma-ring enhancing, may be solitary (vs Toxoplasma)
Mycobacterium avium-intracellulare, Mycobacterium avium complex	Nonspecific systemic symptoms (fever, night sweats, weight loss) or focal lymphadenitis	
Toxoplasma gondii	Brain abscesses	Multiple ring-enhancing lesions on MRI

Prions Prion diseases are caused by the conversion of a normal (predominantly α-helical) protein termed prion protein $\left(\mathrm{PrP}^{\mathrm{c}}\right)$ to a β-pleated form $\left(\mathrm{PrPs}^{\mathrm{Pc}}\right)$, which is transmissible via CNS-related tissue (iatrogenic CJD) or food contaminated by BSE-infected animal products (variant CJD). PrPsc resists protease degradation and facilitates the conversion of still more $\mathrm{PrP}^{\mathrm{c}}$ to $\mathrm{PrP}^{\mathrm{sc}}$. Resistant to standard sterilizing procedures, including standard autoclaving. Accumulation of $\mathrm{PrP}^{\mathrm{Pc}}$ results in spongiform encephalopathy and dementia, ataxia, and death.

Creutzfeldt-Jakob disease—rapidly progressive dementia, typically sporadic (some familial forms).
Bovine spongiform encephalopathy—also known as "mad cow disease."
Kuru-acquired prion disease noted in tribal populations practicing human cannibalism.

MICROBIOLOGY—SYSTEMS

Normal flora: dominant	Neonates delivered by C-section have no flora but are rapidly colonized after birth.	
	Location	MICROORGANISM
	Skin	S epidermidis
	Nose	S epidermidis; colonized by S aureus
	Oropharynx	Viridans group streptococci
	Dental plaque	S mutans
	Colon	B fragilis $>$ E coli
	Vagina	Lactobacillus; colonized by E coli and group B strep

Bugs causing foodborne illness

S aureus and B cereus food poisoning starts quickly and ends quickly.

MICROORGANSM	SOURCE OF INFECTION
B cereus	Reheated rice. "Food poisoning from reheated rice? Be serious!" (B cereus)
C botulinum	Improperly canned foods (toxins), raw honey (spores)
C perfringens	Reheated meat
E coli O157:H7	Undercooked meat
L monocytogenes	Deli meats, soft cheeses
Salmonella	Poultry, meat, and eggs
S aureus	Meats, mayonnaise, custard; preformed toxin
V parahaemolyticus and V vulnificus ${ }^{\text {a }}$	Contaminated seafood

${ }^{\text {a }} V$ vulnificus can also cause wound infections from contact with contaminated water or shellfish.

Bugs causing diarrhea

Bloody diarrhea

Campylobacter
Ehistolytica
Enterohemorrhagic E coli

Enteroinvasive E coli
Salmonella (nontyphoidal)

Shigella
Y enterocolitica

Comma- or S-shaped organisms; growth at $42^{\circ} \mathrm{C}$
Protozoan; amebic dysentery; liver abscess
Ol57:H7; can cause HUS; makes Shiga-like toxin

Invades colonic mucosa
Lactose Θ; flagellar motility; has animal reservoir, especially poultry and eggs

Lactose Θ; very low ID_{50}; produces Shiga toxin (human reservoir only); bacillary dysentery Day care outbreaks; pseudoappendicitis

Watery diarrhea

C difficile
C perfringens
Enterotoxigenic E coli Protozoa
V cholerae
Viruses

Pseudomembranous colitis; associated with antibiotics and PPIs; occasionally bloody diarrhea
Also causes gas gangrene
Travelers' diarrhea; produces heat-labile (LT) and heat-stable (ST) toxins
Giardia, Cryptosporidium
Comma-shaped organisms; rice-water diarrhea; often from infected seafood
Rotavirus, norovirus, enteric adenovirus

Common causes of pneumonia

Neonates (4 Wk)	CHLDREN (4WK-18 YR)	ADULTS (18-40 YR)	ADULTS (40-65 YR)	Elderil
Group B streptococci E coli	Viruses (RSV) Mycoplasma C trachomatis (infants-3 yr) C preumoniae (school-aged children) S preumoniae Runts May Co Chunky Sput	Mycoplasma C preumoniae S pneumoniae Viruses (eg, influenza)	S pneumoniae H influenzae Anaerobes Viruses Mycoplasma	S pneumoniae Influenza virus Anaerobes H influenzae Gram Θ rods
Special groups				
Alcoholic	Klebsiella, anaerobes usually due to aspiration (eg, Peptostreptococcus, Fusobacterium, Prevotella, Bacteroides)			
IV drug users	S pneumoniae, S aureus			
Aspiration	Anaerobes			
Atypical	Mycoplasma, Chlamydophila, Legionella, viruses (RSV, CMV, influenza, adenovirus)			
Cystic fibrosis	Pseudomonas, S aureus, S pneumoniae, Burkholderia cepacia			
Immunocompromised	S aureus, enteric gram Θ rods, fungi, viruses, P jirovecii (with HIV)			
Nosocomial (hospital acquired)	S aureus, Pseudomonas, other enteric gram \ominus rods			
Postviral	S preumoniae, S aureus, H influenzae			

Common causes of meningitis

NEWBORN (0-6 M0)	CHILDREN (6M0-6YR)	6-60 YR	60 YR +
Group B streptococci	S pneumoniae	S pneumoniae	S pneumoniae
E coli	N meningitidis	N meningitidis (\#l in teens)	Gram Θ rods
Listeria	H influenzae type b	Enteroviruses	Listeria
	Enteroviruses	HSV	

Give ceftriaxone and vancomycin empirically (add ampicillin if Listeria is suspected).
Viral causes of meningitis: enteroviruses (especially coxsackievirus), HSV-2 (HSV-1 = encephalitis), HIV, West Nile virus (also causes encephalitis), VZV.
In HIV: Cryptococcus spp.
Note: Incidence of H influenzae meningitis has \downarrow greatly due to conjugate H influenzae vaccinations. Today, cases are usually seen in unimmunized children.

Cerebrospinal fluid findings in meningitis

	OPENING PRESSURE	CELLTYPE	PROTEIN	GLUCOSE
Bacterial	\uparrow	\uparrow PMNs	\uparrow	\downarrow
Fungal $/$ TB	\uparrow	\uparrow lymphocytes	\uparrow	\downarrow
Viral	Normal $/ \uparrow$	\uparrow lymphocytes	Normal $/ \uparrow$	Normal

Infections causing brain abscess

Most commonly viridans streptococci and Staphylococcus aureus. If dental infection or extraction precedes abscess, oral anaerobes commonly involved.
Multiple abscesses are usually from bacteremia; single lesions from contiguous sites: otitis media and mastoiditis \rightarrow temporal lobe and cerebellum; sinusitis or dental infection \rightarrow frontal lobe. Toxoplasma reactivation in AIDS.

Osteomyelitis

RISK FACTOR	ASSOCIATED INFECTION
Assume if no other information is available	S aureus (most common overall)
Sexually active	Neisseria gonorrhoeae (rare), septic arthritis more common
Sickle cell disease	Salmonella and S aureus
Prosthetic joint replacement	S aureus and S epidermidis
Vertebral involvement	S aureus, Mycobacterium tuberculosis (Pott disease)
Cat and dog bites	Pasteurella multocida
IV drug abuse	S aureus; also Pseudomonas, Candida

Elevated C-reactive protein (CRP) and erythrocyte sedimentation rate common but nonspecific. Radiographs are insensitive early but can be useful in chronic osteomyelitis (\boldsymbol{A}, left). MRI is best for detecting acute infection and detailing anatomic involvement (\boldsymbol{A}, right).

Urinary tract infections

Cystitis presents with dysuria, frequency, urgency, suprapubic pain, and WBCs (but not WBC casts) in urine. Primarily caused by ascension of microbes from urethra to bladder. Ascension to kidney results in pyelonephritis, which presents with fever, chills, flank pain, costovertebral angle tenderness, hematuria, and WBC casts.
Ten times more common in women (shorter urethras colonized by fecal flora). Other predisposing factors: obstruction, kidney surgery, catheterization, GU malformation, diabetes, pregnancy. Males-infants with congenital defects, vesicoureteral reflux. Elderly—enlarged prostate.

SPECIES	FEATURES	comments
Escherichia coli	Leading cause of UTI. Colonies show strong pink lactose-fermentation on MacConkey agar.	Diagnostic markers: \oplus Leukocyte esterase $=$ evidence of WBC activity. \oplus Nitrite test = reduction of urinary nitrates by bacterial species (eg, E coli). \oplus Urease test = urease-producing bugs (eg, S saprophyticus, Proteus, Klebsiella).
Staphylococcus saprophyticus	2nd leading cause of UTI in sexually active women.	
Klebsiella pneumoniae	3rd leading cause of UTI. Large mucoid capsule and viscous colonies.	
Serratia marcescens	Some strains produce a red pigment; often nosocomial and drug resistant.	
Enterococcus	Often nosocomial and drug resistant.	
Proteus mirabilis	Motility causes "swarming" on agar; associated with struvite stones.	
Pseudomonas aeruginosa	Blue-green pigment and fruity odor; usually nosocomial and drug resistant.	

Common vaginal infections

ToRCHeS infections
Microbes that may pass from mother to fetus. Transmission is transplacental in most cases, or via delivery (especially HSV-2). Nonspecific signs common to many ToRCHeS infections include hepatosplenomegaly, jaundice, thrombocytopenia, and growth retardation.
Other important infectious agents include Streptococcus agalactiae (group B streptococci), E coli, and Listeria monocytogenes - all causes of meningitis in neonates. Parvovirus B19 causes hydrops fetalis.

Agent	MODES OF Maternal transmission	Maternal manifestations	NEONATAL MANIFESTATIONS
Toxoplasma gondii	Cat feces or ingestion of undercooked meat	Usually asymptomatic; lymphadenopathy (rarely)	Classic triad: chorioretinitis, hydrocephalus, and intracranial calcifications, +/- "blueberry muffin" rash A.
Rubella	Respiratory droplets	Rash, lymphadenopathy, polyarthritis, polyarthralgia	Classic triad: abnormalities of eye (cataract) and ear (deafness) and congenital heart disease (PDA); \pm "blueberry muffin" rash. "I (eye) \vee ruby (rubella) earrings."
	Sexual contact, organ transplants	Usually asymptomatic; mononucleosis-like illness	Hearing loss, seizures, petechial rash, "blueberry muffin" rash, chorioretinitis, periventricular calcifications \|B
HIV	Sexual contact, needlestick	Variable presentation depending on CD4+ cell count	Recurrent infections, chronic diarrhea
Herpes simplex virus-2	Skin or mucous membrane contact	Usually asymptomatic; herpetic (vesicular) lesions	Meningoencephalitis, herpetic (vesicular) lesions
Syphilis	Sexual contact	Chancre $\left(1^{\circ}\right)$ and disseminated rash $\left(2^{\circ}\right)$ are the two stages likely to result in fetal infection	Often results in stillbirth, hydrops fetalis; if child survives, presents with facial abnormalities (eg, notched teeth, saddle nose, short maxilla), saber shins, CN VIII deafness

Red rashes of childhood

Agent	ASSOCIATED SYNDROME/DISEASE	CLINICAL PRESENTATION
Coxsackievirus type A	Hand-foot-mouth disease	Oval-shaped vesicles on palms and soles \boldsymbol{A}; vesicles and ulcers in oral mucosa
Human herpesvirus 6	Roseola (exanthem subitum)	Asymptomatic rose-colored macules appear on body after several days of high fever; can present with febrile seizures; usually affects infants
Measles virus	Measles (rubeola)	Confluent rash beginning at head and moving down; preceded by cough, coryza, conjunctivitis, and blue-white (Koplik) spots on buccal mucosa
Parvovirus B19	Erythema infectiosum (fifth disease)	"Slapped cheek" rash on face (can cause hydrops fetalis in pregnant women)
Rubella virus	Rubella	Pink macules and papules begin at head and move down, remain discrete \rightarrow fine desquamating truncal rash; postauricular lymphadenopathy
Streptococcus pyogenes	Scarlet fever	Flushed cheeks and circumoral pallor C on the face; erythematous, sandpaper-like rash from neck to trunk and extremities; fever and sore throat
Varicella-Zoster virus	Chickenpox	Vesicular rash begins on trunk; spreads to face D and extremities with lesions of different stages

Sexually transmitted infections

DISEASE	CLINCAL FEATVRES	ORGANSM
AIDS	Opportunistic infections, Kaposi sarcoma, lymphoma	HIV
Chancroid	Painful genital ulcer with exudate, inguinal adenopathy	Haemophilus ducreyi (it's so painful, you "do cry")
Chlamydia	Urethritis, cervicitis, epididymitis, conjunctivitis, reactive arthritis, PID	Chlamydia trachomatis (D-K)
Condylomata acuminata	Genital warts, koilocytes	
Genital herpes	Painful penile, vulvar, or cervical vesicles and ulcers; can cause systemic symptoms such as fever, headache, myalgia	HSV-2, less commonly HSV-1

Salpingitis is a risk factor for ectopic pregnancy, infertility, chronic pelvic pain, and adhesions. Can lead to perihepatitis (Fitz-Hugh-Curtis syndrome)-infection and inflammation of liver capsule and "violin string" adhesions of peritoneum to liver B.

Nosocomial infections E coli (UTI) and S aureus (wound infection) are the two most common causes.

RISK FACTOR	Pathogen	UNIOUESIGN//SYMPTOMS
Antibiotic use	Clostridium difficile	Watery diarrhea, leukocytosis
Aspiration (2° to altered mental status, old age)	Polymicrobial, gram Θ bacteria, often anaerobes	Right lower lobe infiltrate or right upper/ middle lobe (patient recumbent); purulent malodorous sputum
Decubitus ulcers, surgical wounds, drains	S aureus (including MRSA), gram Θ anaerobes (Bacteroides, Prevotella, Fusobacterium)	Erythema, tenderness, induration, drainage from surgical wound sites
Intravascular catheters	S aureus (including MRSA), S epidermidis (long term), Enterobacter	Erythema, induration, tenderness, drainage from access sites
Mechanical ventilation, endotracheal intubation	Late onset: P aeruginosa, Klebsiella, Acinetobacter, S aureus	New infiltrate on CXR, \uparrow sputum production; sweet odor (Pseudomonas)
Renal dialysis unit, needlestick	HBV, HCV	
Urinary catheterization	Proteus spp, E coli, Klebsiella (infections in your PEcKer)	Dysuria, leukocytosis, flank pain or costovertebral angle tenderness
Water aerosols	Legionella	Signs of pneumonia, GI symptoms (diarrhea, nausea, vomiting), neurologic abnormalities

Bugs affecting unvaccinated children

CLINICAL PRESENTATION	FINDINGS/LABS	PATHOGEN
Dermatologic		
Rash	Beginning at head and moving down with postauricular lymphadenopathy	Rubella virus
	Beginning at head and moving down; rash preceded by cough, coryza, conjunctivitis, and blue-white (Koplik) spots on buccal mucosa	Measles virus
Neurologic		
Meningitis	Microbe colonizes nasopharynx	H influenzae type b
	Can also lead to myalgia and paralysis	Poliovirus
Respiratory		
Epiglottitis	Fever with dysphagia, drooling, and difficulty breathing due to edematous "cherry red" epiglottis; "thumbprint sign" on x-ray	H influenzae type b (also capable of causing epiglottitis in fully immunized children)
Pharyngitis	Grayish oropharyngeal exudate ("pseudomembranes" may obstruct airway); painful throat	Corynebacterium diphtheriae (elaborates toxin that causes necrosis in pharynx, cardiac, and CNS tissue)
Bug hints	Characteristic	ORGANISM
	Asplenic patient (due to surgical splenectomy or autosplenectomy, eg, chronic sickle cell disease)	Encapsulated microbes, especially SHiN (S pneumoniae >> H influenzae type b > N meningitidis)
	Branching rods in oral infection, sulfur granules	Actinomyces israelii
	Chronic granulomatous disease	Catalase \oplus microbes, especially S aureus
	"Currant jelly" sputum	Klebsiella
	Dog or cat bite	Pasteurella multocida
	Facial nerve palsy (typically bilateral)	Borrelia burgdorferi (Lyme disease)
	Fungal infection in diabetic or immunocompromised patient	Mucor or Rhizopus spp.
	Health care provider	HBV, HCV (from needlestick)
	Neutropenic patients	Candida albicans (systemic), Aspergillus
	Organ transplant recipient	CMV
	PAS \oplus	Tropheryma whipplei (Whipple disease)
	Pediatric infection	Haemophilus influenzae (including epiglottitis)
	Pneumonia in cystic fibrosis, burn infection	Pseudomonas aeruginosa
	Pus, empyema, abscess	S aureus
	Rash on hands and feet	Coxsackie A virus, Treponema pallidum, Rickettsia rickettsii
	Sepsis/meningitis in newborn	Group B strep
	Surgical wound	S aureus
	Traumatic open wound	Clostridium perfringens

MICROBIOLOGY-ANTIMICROBIALS

Antimicrobial therapy

Penicillin G, V
MECHANISM

Penicillin G (IV and IM form), penicillin V (oral). Prototype β-lactam antibiotics.
D-Ala-D-Ala structural analog. Bind penicillin-binding proteins (transpeptidases).
Block transpeptidase cross-linking of peptidoglycan in cell wall.
Activate autolytic enzymes.
CLINICAL USE

ADVERSE EFFECTS
RESISTANCE

Mostly used for gram \oplus organisms (S pneumoniae, S pyogenes, Actinomyces). Also used for gram Θ cocci (mainly N meningitidis) and spirochetes (namely T pallidum). Bactericidal for gram \oplus cocci, gram \oplus rods, gram Θ cocci, and spirochetes. β-lactamase sensitive.
Hypersensitivity reactions, direct Coombs \oplus hemolytic anemia, drug-induced interstitial nephritis. β-lactamase cleaves the β-lactam ring. Mutations in penicillin-binding proteins.

Penicillinase-sensitive penicillins	Amoxicillin, ampicillin; aminopenicillins.	
mechanism	Same as penicillin. Wider spectrum; penicillinase sensitive. Also combine with clavulanic acid to protect against destruction by β-lactamase.	AMinoPenicillins are AMPed-up penicillin. AmOxicillin has greater Oral bioavailability than ampicillin.
clincal use	Extended-spectrum penicillin-H influenzae, H pylori, E coli, Listeria monocytogenes, Proteus mirabilis, Salmonella, Shigella, enterococci.	Coverage: ampicillin/amoxicillin HHELPSS kill enterococci.
adverse effects	Hypersensitivity reactions, rash, pseudomembranous colitis.	
mechanism of resistance	Penicillinase (a type of β-lactamase) cleaves β-lactam ring.	

Penicillinase-resistant penicillins	Dicloxacillin, nafcillin, oxacillin.		
MECHANSM	Same as penicillin. Narrow spectrum; penicillinase resistant because bulky R group blocks access of β-lactamase to β-lactam ring.		
CLIICAL USE	S aureus (except MRSA).	"Use naf (nafcillin) for staph."	
ADVERSE EFFECTS	Hypersensitivity reactions, interstitial nephritis.		
MECHANSM OF RESITANCE	MRSA has altered penicillin-binding protein target site.		

Antipseudomonal penicillins	Piperacillin, ticarcillin.
MECHANSM	Same as penicillin. Extended spectrum. Penicillinase sensitive; use with β-lactamase inhibitors.
CLINCAL USE	Pseudomonas spp. and gram Θ rods.
ADverSE EFFECTS	Hypersensitivity reactions.

β-lactamase inhibitors Include Clavulanic acid, Avibactam, Sulbactam, Tazobactam. Often added to penicillin antibiotics to protect the antibiotic from destruction by β-lactamase (penicillinase).

CAST.

Cephalosporins

MECHANISM	β-lactam drugs that inhibit cell wall synthesis but are less susceptible to penicillinases. Bactericidal.	Organisms typically not covered by lst-4th generation cephalosporins are LAME: Listeria, Atypicals (Chlamydia, Mycoplasma), MRSA, and Enterococci.
Clinicaluse	1st generation (cefazolin, cephalexin)—gram cocci, Proteus mirabilis, E coli, Klebsiella pneumoniae. Cefazolin used prior to surgery to prevent S aureus wound infections.	1 st generation-PEcK.
	2nd generation (cefaclor, cefoxitin, cefuroxime, cefotetan) -gram \oplus cocci, H influenzae, Enterobacter aerogenes, Neisseria spp., Serratia marcescens, Proteus mirabilis, E coli, Klebsiella pneumoniae.	2nd graders wear fake fox fur to tea parties. 2nd generation-HENS PEcK.
	3rd generation (ceftriaxone, cefotaxime, cefpodoxime, ceftazidime) - serious gram infections resistant to other β-lactams.	Can cross blood-brain barrier. Ceftriaxone-meningitis, gonorrhea, disseminated Lyme disease. Ceftazidime-Pseudomonas.
	4th generation (cefepime)-gram Θ organisms, with \uparrow activity against Pseudomonas and gram \oplus organisms.	
	5th generation (ceftaroline)-broad gram \oplus and gram \ominus organism coverage; unlike lst-4th generation cephalosporins, ceftaroline covers Listeria, MRSA, and Enterococcus faecalisdoes not cover Pseudomonas.	
ADVERSE EFFECTS	Hypersensitivity reactions, autoimmune hemolytic anemia, disulfiram-like reaction, vitamin K deficiency. Low rate of crossreactivity even in penicillin-allergic patients. \uparrow nephrotoxicity of aminoglycosides.	
MECHANISM OF RESISTANCE	Inactivated by cephalosporinases (a type of β-lactamase). Structural change in penicillinbinding proteins (transpeptidases).	

Carbapenems	Doripenem, Imipenem, Meropenem, Ertapene 10/10 [life-threatening] infection).	DIME antibiotics are given when there is a
mechanism	Imipenem is a broad-spectrum, β-lactamaseresistant carbapenem. Always administered with cilastatin (inhibitor of renal dehydropeptidase I) to \downarrow inactivation of drug in renal tubules.	With imipenem, "the kill is lastin' with cilastatin." Newer carbapenems include ertapenem (limited Pseudomonas coverage) and doripenem.
Clincal use	Gram \oplus cocci, gram Θ rods, and anaerobes. Wide spectrum and significant side effects limit use to life-threatening infections or after other drugs have failed. Meropenem has a \downarrow risk of seizures and is stable to dehydropeptidase I.	
adverse effects	GI distress, rash, and CNS toxicity (seizures) at high plasma levels.	

Monobactams	Aztreonam
MECHANISM	Less susceptible to β-lactamases. Prevents peptidoglycan cross-linking by binding to penicillin- binding protein 3 3. Synergistic with aminoglycosides. No cross-allergenicity with penicillins.
CLINCAL USE	Gram Θ rods only-no activity against gram \oplus rods or anaerobes. For penicillin-allergic patients and those with renal insufficiency who cannot tolerate aminoglycosides.
ADVERSE EFFECTS	Usually nontoxic; occasional GI upset.

Vancomycin	
mechanism	Inhibits cell wall peptidoglycan formation by binding D-Ala-D-Ala portion of cell wall precursors. Bactericidal against most bacteria (bacteriostatic against C difficile). Not susceptible to β-lactamases.
cluncal use	Gram \oplus bugs only-serious, multidrug-resistant organisms, including MRSA, S epidermidis, sensitive Enterococcus species, and Clostridium difficile (oral dose for pseudomembranous colitis).
adverse effects	Well tolerated in general-but NOT trouble free. Nephrotoxicity, Ototoxicity, Thrombophlebitis, diffuse flushing-red man syndrome $\boldsymbol{\AA}$ (largely preventable by pretreatment with antihistamines and slow infusion rate), drug reaction with eosinophilia and systemic symptoms (DRESS syndrome).
mechanism Of resistance	Occurs in bacteria (eg, Enterococcus) via amino acid modification of D-Ala-D-Ala to D-Ala-D-Lac "If you Lack a D-Ala (dollar), you can't ride the van (vancomycin)."

Protein synthesis inhibitors

$\left.\begin{array}{lll}\text { Aminoglycosides } & \begin{array}{l}\text { Gentamicin, Neomycin, Amikacin, } \\ \text { Tobramycin, Streptomycin. }\end{array} & \begin{array}{c}\text { "Mean" (aminoglycoside) GNATS caNNOT } \\ \text { kill anaerobes. }\end{array} \\ \hline \text { MECHANSM } & \begin{array}{l}\text { Bactericidal; irreversible inhibition of initiation } \\ \text { complex through binding of the 30S subunit. } \\ \text { Can cause misreading of mRNA. Also block }\end{array} \\ \text { translocation. Require } \mathrm{O}_{2} \text { for uptake; therefore } \\ \text { ineffective against anaerobes. }\end{array}\right]$

Tetracyclines	Tetracycline, doxycycline, minocycline.
mechanism	Bacteriostatic; bind to 30S and prevent attachment of aminoacyl-tRNA. Limited CNS penetration. Doxycycline is fecally eliminated and can be used in patients with renal failure. Do not take tetracyclines with milk $\left(\mathrm{Ca}^{2+}\right)$, antacids $\left(\mathrm{Ca}^{2+}\right.$ or $\left.\mathrm{Mg}^{2+}\right)$, or iron-containing preparations because divalent cations inhibit drugs' absorption in the gut.
clincal use	Borrelia burgdorferi, M pneumoniae. Drugs' ability to accumulate intracellularly makes them very effective against Rickettsia and Chlamydia. Also used to treat acne. Doxycycline effective against MRSA.
adverse effects	GI distress, discoloration of teeth and inhibition of bone growth in children, photosensitivity. Contraindicated in pregnancy.
mechanism Of resistance	\downarrow uptake or \uparrow efflux out of bacterial cells by plasmid-encoded transport pumps.
Glycylcyclines	Tigecycline.
mechanism	Tetracycline derivative. Binds to 30 S, inhibiting protein synthesis. Generally bacteriostatic.
cluncal use	Broad-spectrum anaerobic, gram Θ, and gram \oplus coverage. Multidrug-resistant organisms (MRSA, VRE) or infections requiring deep tissue penetration.
adverse effects	GI symptoms: nausea, vomiting.

Chloramphenicol

MECHANISM	Blocks peptidyltransferase at 50S ribosomal subunit. Bacteriostatic.
cIINCAL USE	Meningitis (Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae) and ricketsial diseases (eg, Rocky Mountain spotted fever [Rickettsia rickettsii]). Limited use due to toxicity but often still used in developing countries because of low cost.
ADVERSE EFFECTS	Anemia (dose dependent), aplastic anemia (dose independent), gray baby syndrome (in premature infants because they lack liver UDP-glucuronosyltransferase).
MECHANSM OF RESITANCE	Plasmid-encoded acetyltransferase inactivates the drug.

Clindamycin

MECHANSM	Blocks peptide transfer (translocation) at 50S ribosomal subunit. Bacteriostatic.	
CLINICAL USE	Anaerobic infections (eg, Bacteroides spp., Clostridium perfringens) in aspiration	Treats anaerobic infections above the diaphragm vs metronidazole (anaerobic infections below pneumonia, lung abscesses, and oral infections. Also effective against invasive
group A streptococcal infection.		

Oxazolidinones	Linezolid.
mechanism	Inhibit protein synthesis by binding to 50 S subunit and preventing formation of the initiation complex.
ClINICAL USE	Gram \oplus species including MRSA and VRE.
ADVERSE EfFects	Bone marrow suppression (especially thrombocytopenia), peripheral neuropathy, serotonin syndrome.
mechanism OF Resistance	Point mutation of ribosomal RNA.
Macrolides	Azithromycin, clarithromycin, erythromycin.
mechanism	Inhibit protein synthesis by blocking translocation ("macroslides"); bind to the 23 S rRNA of the 50S ribosomal subunit. Bacteriostatic.
CLINICAL USE	Atypical pneumonias (Mycoplasma, Chlamydia, Legionella), STIs (Chlamydia), gram \oplus cocci (streptococcal infections in patients allergic to penicillin), and B pertussis.
ADVERSE EFFECTS	MACRO: Gastrointestinal Motility issues, Arrhythmia caused by prolonged QT interval, acute Cholestatic hepatitis, Rash, eOsinophilia. Increases serum concentration of theophylline, oral anticoagulants. Clarithromycin and erythromycin inhibit cytochrome P-450.
MECHANISM OF RESIITANCE	Methylation of 23S rRNA-binding site prevents binding of drug.

Polymyxins	Colistin (polymyxin E), polymyxin B.
MECHANISM	Cation polypeptides that bind to phospholipids on cell membrane of gram Θ bacteria. Disrupt cell membrane integrity \rightarrow leakage of cellular components \rightarrow cell death.
CLINICAL USE	Salvage therapy for multidrug-resistant gram Θ bacteria (eg, P aeruginosa, E coli, K pneumoniae). Polymyxin B is a component of a triple antibiotic ointment used for superficial skin infections.
ADVERSE EFFECTS	Nephrotoxicity, neurotoxicity (eg, slurred speech, weakness, paresthesias), respiratory failure.

Sulfonamides	Sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine.
mechanism	Inhibit dihydropteroate synthase, thus inhibiting folate synthesis. Bacteriostatic (bactericidal when combined with trimethoprim).
clinical use	Gram $\oplus, \operatorname{gram} \Theta$, Nocardia. TMP-SMX for simple UTI.
adverse effects	Hypersensitivity reactions, hemolysis if G6PD deficient, nephrotoxicity (tubulointerstitial nephritis), photosensitivity, Stevens-Johnson syndrome, kernicterus in infants, displace other drugs from albumin (eg, warfarin).
mechanism of resistance	Altered enzyme (bacterial dihydropteroate synthase), \downarrow uptake, or \uparrow PABA synthesis.
Dapsone	
mechanism	Similar to sulfonamides, but structurally distinct agent.
clinical use	Leprosy (lepromatous and tuberculoid), Pneumocystis jirovecii prophylaxis.
adverse effects	Hemolysis if G6PD deficient, methemoglobinemia.
Trimethoprim	
mechanism	Inhibits bacterial dihydrofolate reductase. Bacteriostatic.
Clinical use	Used in combination with sulfonamides (trimethoprim-sulfamethoxazole [TMPSMX]), causing sequential block of folate synthesis. Combination used for UTIs, Shigella, Salmonella, Pneumocystis jirovecii pneumonia treatment and prophylaxis, toxoplasmosis prophylaxis.
adverse effects	Megaloblastic anemia, leukopenia, granulocytopenia, which may be avoided with coadministration of folinic acid. TMP Treats Marrow Poorly.

Fluoroquinolones	Ciprofloxacin, enoxacin, norfloxacin, ofloxacin; respiratory fluoroquinolones-gemifloxacin, levofloxacin, moxifloxacin.	
MECHANISM	Inhibit prokaryotic enzymes topoisomerase	
	II (DNA gyrase) and topoisomerase IV.	
	Bactericidal. Must not be taken with antacids.	

Daptomycin

MECHANSM	Lipopeptide that disrupts cell membranes of gram \oplus cocci by creating transmembrane channels.	
CLINCAL USE	S aureus skin infections (especially MRSA), bacteremia, endocarditis, VRE.	Not used for pneumonia (avidly binds to and is inactivated by surfactant).
ADVERSE EFFECTS	Myopathy, rhabdomyolysis.	

Metronidazole

MECHANSM	Forms toxic free radical metabolites in the bacterial cell that damage DNA. Bactericidal, antiprotozoal.	
clincal usE	Treats Giardia, Entamoeba, Trichomonas, Gardnerella vaginalis, Anaerobes (Bacteroides,	GET GAP on the Metro with metronidazole! C difficile). Can be used in place of amoxicillin in H pylori "triple therapy" in case of penicillin infection below the diaphragm vs clindamycin (anaerobic infections above allergy.
diaphragm).		

Antimycobacterial drugs

Rifamycins	Rifampin, rifabutin.	
mechanism	Inhibit DNA-dependent RNA polymerase.	Rifampin's 4 R's: RNA polymerase inhibitor Ramps up microsomal cytochrome P-450 Red/orange body fluids Rapid resistance if used alone Rifampin ramps up cytochrome P-450, but rifabutin does not.
CLINICAL USE	Mycobacterium tuberculosis; delay resistance to dapsone when used for leprosy. Used for meningococcal prophylaxis and chemoprophylaxis in contacts of children with H influenzae type b.	
ADVERSE EFFECTS	Minor hepatotoxicity and drug interactions (\uparrow cytochrome P-450); orange body fluids (nonhazardous side effect). Rifabutin favored over rifampin in patients with HIV infection due to less cytochrome P-450 stimulation.	
mechanism of resistance	Mutations reduce drug binding to RNA polymerase. Monotherapy rapidly leads to resistance.	

Isoniazid

mechanism	\downarrow synthesis of mycolic acids. Bacterial catalaseperoxidase (encoded by KatG) needed to convert INH to active metabolite.	
Clincal use	Mycobacterium tuberculosis. The only agent used as solo prophylaxis against TB. Also used as monotherapy for latent TB.	Different INH half-lives in fast vs slow acetylators.
adverse effects	Hepatotoxicity, P-450 inhibition, drug-induced SLE, anion gap metabolic acidosis, vitamin B_{6} deficiency (peripheral neuropathy, sideroblastic anemia). Administer with pyridoxine $\left(\mathrm{B}_{6}\right)$.	INH Injures Neurons and Hepatocytes.
mechanism of resistance	Mutations leading to underexpression of KatG.	

Pyrazinamide
MECHANISM Mechanism uncertain. Pyrazinamide is a prodrug that is converted to the active compound pyrazinoic acid. Works best at acidic pH (eg, in host phagolysosomes).
CLINICALUSE Mycobacterium tuberculosis.
ADVERSE EFFECTS Hyperuricemia, hepatotoxicity.

Ethambutol

MECHANISM	\downarrow carbohydrate polymerization of mycobacterium cell wall by blocking arabinosyltransferase.
CLIIICAL USE	Mycobacterium tuberculosis.
ADVERSE EFFECTS	Optic neuropathy (red-green color blindness). Pronounce "eyethambutol."

Streptomycin

MECHANISM	Interferes with 30 S component of ribosome.
CLINICAL USE	Mycobacterium tuberculosis (2nd line).
ADVERSE EFFECTS	Tinnitus, vertigo, ataxia, nephrotoxicity.

Antimicrobial prophylaxis	clinical scenario	medication
	High risk for endocarditis and undergoing surgical or dental procedures	Amoxicillin
	Exposure to gonorrhea	Ceftriaxone
	History of recurrent UTIs	TMP-SMX
	Exposure to meningococcal infection	Ceftriaxone, ciprofloxacin, or rifampin
	Pregnant woman carrying group B strep	Intrapartum penicillin G or ampicillin
	Prevention of gonococcal conjunctivitis in newborn	Erythromycin ointment on eyes
	Prevention of postsurgical infection due to S aureus	Cefazolin
	Prophylaxis of strep pharyngitis in child with prior rheumatic fever	Benzathine penicillin G or oral penicillin V
	Exposure to syphilis	Benzathine penicillin G

Prophylaxis in HIV patients

CELL COUNT	PROPHYLAXIS	INFECTION
CD4 <200 cells $/ \mathrm{mm}^{3}$	TMP-SMX	Pneumocystis pneumonia
CD4 <100 cells $/ \mathrm{mm}^{3}$	TMP-SMX	Pneumocystis pneumonia and toxoplasmosis
CD4 <50 cells $/ \mathrm{mm}^{3}$	Azithromycin or clarithromycin	Mycobacterium avium complex

Treatment of highly resistant bacteria

MRSA: vancomycin, daptomycin, linezolid, tigecycline, ceftaroline, doxycycline.
VRE: linezolid and streptogramins (quinupristin, dalfopristin).
Multidrug-resistant P aeruginosa, multidrug-resistant Acinetobacter baumannii: polymyxins B and E (colistin).

Antifungal therapy

Amphotericin B

mechanism	Binds ergosterol (unique to fungi); forms membrane pores that allow leakage of electrolytes.	Amphotericin "tears" holes in the fungal membrane by forming pores.
Clinical use	Serious, systemic mycoses. Cryptococcus (amphotericin B with/without flucytosine for cryptococcal meningitis), Blastomyces, Coccidioides, Histoplasma, Candida, Mucor. Intrathecally for fungal meningitis. Supplement K^{+}and Mg^{2+} because of altered renal tubule permeability.	
ADVERSE EFFECTS	Fever/chills ("shake and bake"), hypotension, nephrotoxicity, arrhythmias, anemia, IV phlebitis ("amphoterrible"). Hydration \downarrow nephrotoxicity. Liposomal amphotericin \downarrow toxicity.	

Nystatin

MECHANISM	Same as amphotericin B. Topical use only as too toxic for systemic use.
CLINICALUSE	"Swish and swallow" for oral candidiasis (thrush); topical for diaper rash or vaginal candidiasis.

Flucytosine

MECHANISM	Inhibits DNA and RNA biosynthesis by conversion to 5-fluorouracil by cytosine deaminase.
CLINICALUSE	Systemic fungal infections (especially meningitis caused by Cryptococcus) in combination with amphotericin B.
ADVERSE EFFECTS	Bone marrow suppression.

Azoles	Clotrimazole, fluconazole, isavuconazole, itraconazole, ketoconazole, miconazole, voriconazole.
MECHANISM	Inhibit fungal sterol (ergosterol) synthesis by inhibiting the cytochrome P-450 enzyme that converts lanosterol to ergosterol.
CLINICAL USE	Local and less serious systemic mycoses. Fluconazole for chronic suppression of cryptococcal meningitis in AIDS patients and candidal infections of all types. Itraconazole for Blastomyces,
	Coccidioides, Histoplasma. Clotrimazole and miconazole for topical fungal infections.
Voriconazole for Aspergillus and some Candida. Isavuconazole for serious Aspergillus and Mucor	
infections.	

Terbinafine

MECHANISM	Inhibits the fungal enzyme squalene epoxidase.
CIINICALUSE	Dermatophytoses (especially onychomycosis-fungal infection of finger or toe nails).
ADVERSE EFFECTS	GI upset, headaches, hepatotoxicity, taste disturbance.

GI upset, headaches, hepatotoxicity, taste disturbance.

Echinocandins	Anidulafungin, caspofungin, micafungin.
mechanism	Inhibit cell wall synthesis by inhibiting synthesis of β-glucan.
clinical use	Invasive aspergillosis, Candida.
adverse effects	GI upset, flushing (by histamine release).
Griseofulvin	
mechanism	Interferes with microtubule function; disrupts mitosis. Deposits in keratin-containing tissues (eg, nails).
Cluncal use	Oral treatment of superficial infections; inhibits growth of dermatophytes (tinea, ringworm).
adverse effects	Teratogenic, carcinogenic, confusion, headaches, disulfiram-like reaction, \uparrow cytochrome P-450 and warfarin metabolism.

Antiprotozoal therapy Pyrimethamine (toxoplasmosis), suramin and melarsoprol (Trypanosoma brucei), nifurtimox (T cruzi), sodium stibogluconate (leishmaniasis).

Anti-mite/louse therapy

Permethrin (inhibits Na^{+}channel deactivation
\rightarrow neuronal membrane depolarization), malathion (acetylcholinesterase inhibitor), lindane (blocks GABA channels \rightarrow neurotoxicity). Used to treat scabies (Sarcoptes scabiei) and lice (Pediculus and Pthirus).

Chloroquine

MECHANISM	Blocks detoxification of heme into hemozoin. Heme accumulates and is toxic to plasmodia.
CLINICALUSE	Treatment of plasmodial species other than P falciparum (frequency of resistance in P falciparum is too high). Resistance due to membrane pump that \downarrow intracellular concentration of drug. Treat
	P falciparum with artemether/lumefantrine or atovaquone/proguanil. For life-threatening malaria, use quinidine in US (quinine elsewhere) or artesunate.
Retinopathy; pruritus (especially in dark-skinned individuals).	

Antihelminthic therapy

Pyrantel pamoate, Ivermectin, Mebendazole (microtubule inhibitor), Praziquantel, Diethylcarbamazine. Helminths get PIMP'D.

Antiviral therapy

Oseltamivir, zanamivir

MECHANISM Inhibit influenza neuraminidase $\rightarrow \downarrow$ release of progeny virus.
Clinicaluse Treatment and prevention of both influenza A and B. Beginning therapy within 48 hours of symptom onset may shorten duration of illness.

Acyclovir, famciclovir, valacyclovir

MECHANISM

CLINICALUSE

ADVERSE EFFECTS
MECHANISM OF RESISTANCE

Guanosine analogs. Monophosphorylated by HSV/VZV thymidine kinase and not phosphorylated in uninfected cells \rightarrow few adverse effects. Triphosphate formed by cellular enzymes. Preferentially inhibit viral DNA polymerase by chain termination.
HSV and VZV. Weak activity against EBV. No activity against CMV. Used for HSVinduced mucocutaneous and genital lesions as well as for encephalitis. Prophylaxis in immunocompromised patients. No effect on latent forms of HSV and VZV. Valacyclovir, a prodrug of acyclovir, has better oral bioavailability.
For herpes zoster, use famciclovir.
Obstructive crystalline nephropathy and acute renal failure if not adequately hydrated.
Mutated viral thymidine kinase.

Ganci	
mechanism	5'-monophosphate formed by a CMV viral kinase. Guanosine analog. Triphosphate formed by cellular kinases. Preferentially inhibits viral DNA polymerase.
clincal use	CMV, especially in immunocompromised patients. Valganciclovir, a prodrug of ganciclovir, has better oral bioavailability.
adverse effectis	Bone marrow suppression (leukopenia, neutropenia, thrombocytopenia), renal toxicity. More toxic to host enzymes than acyclovir.
MECHANSM OF Resistance	Mutated viral kinase.
Foscarnet	
mechanism	Viral DNA/RNA polymerase inhibitor and Foscarnet = pyrofosphate analog. HIV reverse transcriptase inhibitor. Binds to pyrophosphate-binding site of enzyme. Does not require any kinase activation.
clincal use	CMV retinitis in immunocompromised patients when ganciclovir fails; acyclovir-resistant HSV.
adverse effects	Nephrotoxicity, electrolyte abnormalities (hypo- or hypercalcemia, hypo- or hyperphosphatemia, hypokalemia, hypomagnesemia) can lead to seizures.
mechansm or resistance	Mutated DNA polymerase.

Cidofovir

MECHANSM	Preferentially inhibits viral DNA polymerase. Does not require phosphorylation by viral kinase.
CLINCAL USE	CMV retinitis in immunocompromised patients; acyclovir-resistant HSV. Long half-life.
ADVERSE	Nepfects

HIV therapy

Highly active antiretroviral therapy (HAART): often initiated at the time of HIV diagnosis. Strongest indication for patients presenting with AIDS-defining illness, low CD4+ cell counts (<500 cells $/ \mathrm{mm}^{3}$), or high viral load. Regimen consists of 3 drugs to prevent resistance: 2 NRTIs and preferably an integrase inhibitor.

DRUG	MECHANISM	toxicity
NRTIs		
Abacavir (ABC) Didanosine (ddl) Emtricitabine (FTC) Lamivudine (3TC) Stavudine (d4T) Tenofovir (TDF) Zidovudine (ZDV, formerly AZT)	Competitively inhibit nucleotide binding to reverse transcriptase and terminate the DNA chain (lack a $3^{\prime} \mathrm{OH}$ group). Tenofovir is a nucleoTide; the others are nucleosides. All need to be phosphorylated to be active. ZDV can be used for general prophylaxis and during pregnancy to \downarrow risk of fetal transmission. Have you dined (vudine) with my nuclear (nucleosides) family?	Bone marrow suppression (can be reversed with granulocyte colony-stimulating factor [G-CSF] and erythropoietin), peripheral neuropathy, lactic acidosis (nucleosides), anemia (ZDV), pancreatitis (didanosine). Abacavir contraindicated if patient has HLA-B*5701 mutation due to \uparrow risk of hypersensitivity.
NNRTIs		
Delavirdine Efavirenz Nevirapine	Bind to reverse transcriptase at site different from NRTIs. Do not require phosphorylation to be active or compete with nucleotides.	Rash and hepatotoxicity are common to all NNRTIs. Vivid dreams and CNS symptoms are common with efavirenz. Delavirdine and efavirenz are contraindicated in pregnancy.
Protease inhibitors		
Atazanavir Darunavir Fosamprenavir Indinavir Lopinavir Ritonavir Saquinavir	Assembly of virions depends on HIV-l protease (pol gene), which cleaves the polypeptide products of HIV mRNA into their functional parts. Thus, protease inhibitors prevent maturation of new viruses. Ritonavir can "boost" other drug concentrations by inhibiting cytochrome P-450. Navir (never) tease a protease.	Hyperglycemia, GI intolerance (nausea, diarrhea), lipodystrophy (Cushing-like syndrome). Nephropathy, hematuria, thrombocytopenia (indinavir). Rifampin (potent CYP/UGT inducer) reduces protease inhibitor concentrations; use rifabutin instead.
Integrase inhibitors		
Dolutegravir Elvitegravir Raltegravir	Inhibits HIV genome integration into host cell chromosome by reversibly inhibiting HIV integrase.	\uparrow creatine kinase.
Fusion inhibitors		
Enfuvirtide	Binds gp4l, inhibiting viral entry.	Skin reaction at injection sites. Enfuvirtide inhibits fusion.
Maraviroc	Binds CCR-5 on surface of T cells/monocytes, inhibiting interaction with gpl20.	Maraviroc inhibits docking.

mechanism	Glycoproteins normally synthesized by virus-infected cells, exhibiting a wide range of antiviral and antitumoral properties.
Cluncal use	Chronic HBV and HVC, Kaposi sarcoma, hairy cell leukemia, condyloma acuminatum, renal cell carcinoma, malignant melanoma, multiple sclerosis, chronic granulomatous disease.
ADVERSE Effectis	Flu-like symptoms, depression, neutropenia, myopathy.
Hepatitis C therapy	Chronic HCV infection is treated with different combinations of the following drugs; none is approved as monotherapy. Ribavirin also used to treat RSV (palivizumab preferred in children).
DRUG	MECHANISM Adverseeffects
Ledipasvir	Viral phosphoprotein (NS5A) inhibitor; NS5A plays important role in replication.
Ribavirin	Inhibits synthesis of guanine nucleotides Hemolytic anemia, severe teratogen. by competitively inhibiting inosine monophosphate dehydrogenase.
Simeprevir	HCV protease (NS3/4A); prevents viral Photosensitivity reactions, rash. replication.
Sofosbuvir	Inhibits HCV RNA-dependent RNA polymerase Fatigue, headache, nausea. (NS5B) acting as a chain terminator.

Disinfection and sterilization	Goals include the reduction of pathogenic organism counts to safe levels (disinfection) and the inactivation of all microbes including spores (sterilization).
Autoclave	Pressurized steam at $>120^{\circ} \mathrm{C}$. Sporicidal. May not reliably inactivate prions.
Alcohols	Denature proteins and disrupt cell membranes. Not sporicidal.
Chlorhexidine	Denatures proteins and disrupts cell membranes. Not sporicidal.
Chlorine	Oxidizes and denatures proteins. Sporicidal.
Hydrogen peroxide	Free radical oxidation. Sporicidal.
lodine and iodophors	Halogenation of DNA, RNA, and proteins. May be sporicidal.
Quaternary amines	Impair permeability of cell membranes. Not sporicidal.

Antimicrobials to avoid in pregnancy

ANTIMICROBIAL	ADVERSE EFFECT
Sulfonamides	Kernicterus
Aminoglycosides	Ototoxicity
Fluoroquinolones	Cartilage damage
Clarithromycin	Embryotoxic
Tetracyclines	Discolored teeth, inhibition of bone growth
Ribavirin	Teratogenic
Griseofulvin	Teratogenic
Chloramphenicol	Gray baby syndrome
SAFe Children Take Really Good Care.	

HIGH-YIELD PRINCIPLES IN

Pathology

"Digressions, objections, delight in mockery, carefree mistrust are signs of health; everything unconditional belongs in pathology."
-Friedrich Nietzsche
"You cannot separate passion from pathology any more than you can separate a person's spirit from his body."
-Richard Selzer
The fundamental principles of pathology are key to understanding diseases in all organ systems. Major topics such as inflammation and neoplasia appear frequently in questions across different organ systems, and such topics are definitely high yield. For example, the concepts of cell injury and inflammation are key to understanding the inflammatory response that follows myocardial infarction, a very common subject of board questions. Similarly, a familiarity with the early cellular changes that culminate in the development of neoplasias-for example, esophageal or colon cancer-is critical. Finally, make sure you recognize the major tumor-associated genes and are comfortable with key cancer concepts such as tumor staging and metastasis.

- PATHOLOGY-CELLULAR INJURY

Cellular adaptations

Reversible changes that can be physiologic (eg, uterine enlargement during pregnancy) or pathologic (eg, myocardial hypertrophy 2° to systemic HTN to prevent injury). If stress is excessive or persistent, adaptations can progress to cell injury (eg, significant LV hypertrophy \rightarrow injury to myofibrils $\rightarrow \mathrm{HF}$).

Hypertrophy

Hyperplasia

Atrophy

Metaplasia

Dysplasia
\uparrow structural proteins and organelles $\rightarrow \uparrow$ in size of cells.
Controlled proliferation of stem cells and differentiated cells $\rightarrow \uparrow$ in number of cells. Excessive stimulation \rightarrow pathologic hyperplasia (eg, endometrial hyperplasia), which may progress to dysplasia and cancer.
\downarrow in tissue mass due to \downarrow in size (\uparrow cytoskeleton degradation via ubiquitin-proteasome pathway and autophagy; \downarrow protein synthesis) and/or number of cells (apoptosis). Causes include disuse, denervation, loss of blood supply, loss of hormonal stimulation, poor nutrition.

Reprogramming of stem cells \rightarrow replacement of one cell type by another that can adapt to a new stress. Usually due to exposure to an irritant, such as gastric acid (\rightarrow Barrett esophagus) or cigarette smoke (\rightarrow respiratory ciliated columnar epithelium replaced by stratified squamous epithelium). May progress to dysplasia \rightarrow malignant transformation with persistent insult (eg, Barrett esophagus \rightarrow esophageal adenocarcinoma). Metaplasia of connective tissue can also occur (eg, myositis ossificans, the formation of bone within muscle after trauma).
Disordered, precancerous epithelial cell growth. Characterized by loss of uniformity of cell size and shape (pleomorphism); loss of tissue orientation; nuclear changes (eg, \uparrow nuclear:cytoplasmic ratio and clumped chromatin). Mild and moderate dysplasias (ie, do not involve entire thickness of epithelium) may regress with alleviation of inciting cause. Severe dysplasia usually becomes irreversible and progresses to carcinoma in situ. Usually preceded by persistent metaplasia or pathologic hyperplasia.

Cell injury

Apoptosis

Intrinsic

 (mitochondrial) pathwayATP-dependent programmed cell death.
Intrinsic and extrinsic pathways; both pathways activate caspases (cytosolic proteases) \rightarrow cellular breakdown including cell shrinkage, chromatin condensation, membrane blebbing, and formation of apoptotic bodies, which are then phagocytosed.
Characterized by deeply eosinophilic cytoplasm and basophilic nucleus, pyknosis (nuclear shrinkage), and karyorrhexis (fragmentation caused by endonuclease-mediated cleavage).
Cell membrane typically remains intact without significant inflammation (unlike necrosis).
DNA laddering (fragments in multiples of 180 bp) is a sensitive indicator of apoptosis.
Involved in tissue remodeling in embryogenesis. Occurs when a regulating factor is withdrawn from a proliferating cell population (eg, \downarrow IL-2 after a completed immunologic reaction \rightarrow apoptosis of proliferating effector cells). Also occurs after exposure to injurious stimuli (eg, radiation, toxins, hypoxia).
Regulated by Bcl-2 family of proteins. BAX and BAK are proapoptotic, while Bcl-2 and Bcl-xL are antiapoptotic.
BAX and BAK form pores in the mitochondrial membrane \rightarrow release of cytochrome C from inner mitochondrial membrane into the cytoplasm \rightarrow activation of caspases.
Bcl-2 keeps the mitochondrial membrane impermeable, thereby preventing cytochrome C release. Bcl-2 overexpression (eg, follicular lymphoma $t[14 ; 18]) \rightarrow \downarrow$ caspase activation \rightarrow tumorigenesis.

Extrinsic (death

receptor) pathway

- Ligand receptor interactions (FasL binding to Fas [CD95] or TNF- α binding to its receptor)
- Immune cell (cytotoxic T-cell release of perforin and granzyme B)

Fas-FasL interaction is necessary in thymic medullary negative selection. Mutations in Fas
\uparrow numbers of circulating self-reacting lymphocytes due to failure of clonal deletion.
Defective Fas-FasL interactions cause autoimmune lymphoproliferative syndrome.

Necrosis

TYPE	SEEN IN	DUETO	HISTOLOGY
Coagulative	Ischemia/infarcts in most tissues (except brain)	Ischemia or infarction; injury denatures enzymes \rightarrow proteolysis blocked	Preserved cellular architecture (cell outlines seen), but nuclei disappear; \uparrow cytoplasmic binding of eosin stain ($\rightarrow \uparrow$ eosinophilia; red/pink color) A
Liquefactive	Bacterial abscesses, brain infarcts	Neutrophils release lysosomal enzymes that digest the tissue B	Early: cellular debris and macrophages Late: cystic spaces and cavitation (brain) Neutrophils and cell debris seen with bacterial infection
Caseous	TB, systemic fungi (eg, Histoplasma capsulatum), Nocardia	Macrophages wall off the infecting microorganism \rightarrow granular debris C	Fragmented cells and debris surrounded by lymphocytes and macrophages (granuloma)
Fat	Enzymatic: acute pancreatitis (saponification of peripancreatic fat) Nonenzymatic: traumatic (eg, injury to breast tissue)	Damaged cells release lipase, which breaks down triglycerides; liberated fatty acids bind calcium \rightarrow saponification	Outlines of dead fat cells without peripheral nuclei; saponification of fat (combined with Ca^{2+}) appears dark blue on H\&E stain
Fibrinoid	Immune reactions in vessels (eg, polyarteritis nodosa), preeclampsia, hypertensive emergency	Immune complexes combine with fibrin \rightarrow vessel wall damage (type III hypersensitivity reaction)	Vessel walls are thick and pink [
Gangrenous	Distal extremity and GI tract, after chronic ischemia	Dry: ischemia F	Coagulative
		Wet: superinfection	Liquefactive superimposed on coagulative

Ischemia

Inadequate blood supply to meet demand. Mechanisms include \downarrow arterial perfusion (eg, atherosclerosis), \downarrow venous drainage (eg, testicular torsion, Budd-Chiari syndrome), and shock. Regions most vulnerable to hypoxia/ischemia and subsequent infarction:

Organ	Region
Brain	ACA/MCA/PCA boundary areas ${ }^{\text {a,b }}$
Heart	Subendocardium (LV) A
Kidney	Straight segment of proximal tubule (medulla) Thick ascending limb (medulla)
Liver	Area around central vein (zone III)
Colon	Splenic flexure, ${ }^{\text {a }}$ rectum ${ }^{\text {a }}$
${ }^{a}$ Waters limited ${ }^{b}$ Neuro pyram	ply from most distal branches of 2 arteries with ceptible to ischemia from hypoperfusion. sults include Purkinje cells of the cerebellum and ex (zones 3, 5, 6).

Types of infarcts

Red (hemorrhagic) infarcts \boldsymbol{A} occur in venous occlusion and tissues with multiple blood supplies, such as liver, lung, intestine, testes; reperfusion (eg, after angioplasty). Reperfusion injury is due to damage by free radicals.
Red $=$ reperfusion .

Pale infarct

Pale (anemic) infarcts B occur in solid organs with a single (end-arterial) blood supply, such as heart, kidney, and spleen.

Inflammation	Response to eliminate initial cause of cell injury, to remove necrotic cells resulting from the original insult, and to initiate tissue repair. Divided into acute and chronic. The inflammatory response itself can be harmful to the host if the reaction is excessive (eg, septic shock), prolonged (eg, persistent infections such as TB), or inappropriate (eg, autoimmune diseases such as SLE).	
Cardinal signs		
SIGN	mechansm	mediators
Rubor (redness), calor (warmth)	$\begin{aligned} & \text { Vasodilation (relaxation of arteriolar smooth } \\ & \text { muscle) } \rightarrow \uparrow \text { blood flow } \end{aligned}$	Histamine, prostaglandins, bradykinin
Tumor (swelling)	Endothelial contraction/disruption (eg, from tissue damage) $\rightarrow \uparrow$ vascular permeability \rightarrow leakage of protein-rich fluid from postcapillary venules into interstitial space (exudate) $\rightarrow \uparrow$ oncotic pressure	Endothelial contraction: leukotrienes $\left(\mathrm{C}_{4}, \mathrm{D}_{4}\right.$, E_{4}), histamine, serotonin
Dolor (pain)	Sensitization of sensory nerve endings	Bradykinin, PGE_{2}
Functio laesa (loss of function)	Cardinal signs above impair function (eg, inability to make fist with hand that has cellulitis)	
Systemic manifestations (acute-phase reaction)		
Fever	Pyrogens (eg, LPS) induce macrophages to release IL-l and TNF $\rightarrow \uparrow$ COX activity in perivascular cells of hypothalamus $\rightarrow \uparrow \mathrm{PGE}_{2}$ $\rightarrow \uparrow$ temperature set point.	
Leukocytosis	Elevation of WBC count. Type of cell that is predominantly elevated depends on the inciting agent or injury (eg, bacteria $\rightarrow \uparrow$ neutrophils).	Leukemoid reaction-severe elevation in WBC ($>40,000$ cells $/ \mathrm{mm}^{3}$) caused by some stressors or infections (eg, Clostridium difficile).
\uparrow plasma acute-phase proteins	Factors whose serum concentrations change significantly in response to inflammation. Produced by the liver in both acute and chronic inflammatory states.	Notably induced by IL-6.

Acute phase reactants More FFiSH in the C (sea).

POSITVEE (UPREGULATED)	
Ferritin	Binds and sequesters iron to inhibit microbial iron scavenging.
Fibrinogen	Coagulation factor; promotes endothelial repair; correlates with ESR.
Serum amyloid A	Prolonged elevation can lead to amyloidosis.
Hepcidin	\downarrow iron absorption (by degrading ferroportin) and \downarrow iron release (from macrophages) \rightarrow anemia of chronic disease.
C-reactive protein	Opsonin; fixes complement and facilitates phagocytosis. Measured clinically as a nonspecific sign of ongoing inflammation.
NEGATIVE (DOWNREGULATED)	Reduction conserves amino acids for positive reactants.
Albumin	Internalized by macrophages to sequester iron.

Erythrocyte sedimentation rate

Products of inflammation (eg, fibrinogen) coat RBCs and cause aggregation. The denser RBC aggregates fall at a faster rate within a pipette tube $\rightarrow \uparrow$ ESR. Often co-tested with CRP levels.

\uparrow ESR	\downarrow ESR
Most anemias	Sickle cell anemia (altered shape)
Infections	Polycythemia (\uparrow RBCs "dilute" aggregation
Inflammation (eg, giant cell [temporal] arteritis,	factors)
\quad polymyalgia rheumatica)	HF
Cancer (eg, metastases, multiple myeloma)	Microcytosis
Renal disease (end-stage or nephrotic syndrome)	Hypofibrinogenemia
Pregnancy	

STIMULI
mediators

COMPONENTS

OUTCOMES

Transient and early response to injury or infection. Characterized by neutrophils in tissue \boldsymbol{A}, often with associated edema. Rapid onset (seconds to minutes) and short duration (minutes to days). Represents a reaction of the innate immune system (ie, less specific response than chronic inflammation).

Infections, trauma, necrosis, foreign bodies.
Toll-like receptors, arachidonic acid metabolites, neutrophils, eosinophils, antibodies (preexisting), mast cells, basophils, complement, Hageman factor (factor XII).

- Vascular: vasodilation ($\rightarrow \uparrow$ blood flow and
stasis) and \uparrow endothelial permeability stasis) and \uparrow endothelial permeability

Inflammasome-Cytoplasmic protein complex that recognizes products of dead cells, microbial products, and crystals (eg, uric acid crystals) \rightarrow activation of IL-1 and inflammatory response.

- Cellular: extravasation of leukocytes (mainly neutrophils) from postcapillary venules and accumulation in the focus of injury followed by leukocyte activation
- Resolution and healing (IL-10, TGF- β)
- Persistent acute inflammation (IL-8)
- Abscess (acute inflammation walled off by fibrosis)
- Chronic inflammation (antigen presentation by macrophages and other APCs \rightarrow activation of CD4+ Th cells)
- Scarring

To bring cells and proteins to site of injury or infection.
Leukocyte extravasation has 4 steps: margination and rolling, adhesion, transmigration, and migration (chemoattraction).

Macrophages predominate in the late stages of acute inflammation (peak 2-3 days after onset) and influence the outcome of acute inflammation by secreting cytokines.

Leukocyte extravasation

Extravasation predominantly occurs at postcapillary venules.
WBCs exit from blood vessels at sites of tissue injury and inflammation in 4 steps:

STEP	VASCULATURE/STROMA	Leukocyte
(1) Margination and rollingdefective in leukocyte adhesion deficiency type $2(\downarrow$ SialylLewis ${ }^{\mathrm{X}}$)	E-selectin (upregulated by TNF and IL-1) P-selectin (released from Weibel- Palade bodies) GlyCAM-1, CD34	Sialyl-Lewis ${ }^{\mathrm{X}}$ Sialyl-Lewis ${ }^{\mathrm{X}}$ L-selectin
(2) Tight binding (adhesion)defective in leukocyte adhesion deficiency type 1 (\downarrow CD18 integrin subunit)	ICAM-1 (CD54) VCAM-1 (CDl06)	CDll/18 integrins (LFA-1, Mac-l) VLA-4 integrin
(3) Diapedesis (transmigration)WBC travels between endothelial cells and exits blood vessel	PECAM-1 (CD31)	PECAM-1 (CD31)
(4) Migration-WBC travels through interstitium to site of injury or infection guided by chemotactic signals	Chemotactic products released in response to bacteria: C5a, IL-8, LTB_{4}, kallikrein, platelet-activating factor	Various

Chronic inflammation Inflammation of prolonged duration characterized by infiltration of tissue by mononuclear cells (macrophages, lymphocytes, and plasma cells). Tissue destruction and repair (including angiogenesis and fibrosis) occur simultaneously. May or may not be preceded by acute inflammation.
stimuli
medators

OUTCOMES
Persistent infections (eg, TB, T pallidum, certain fungi and viruses) \rightarrow type IV hypersensitivity, autoimmune diseases, prolonged exposure to toxic agents (eg, silica) and foreign material.
Macrophages are the dominant cells. Chronic inflammation is the result of their interaction with T lymphocytes.

- Thl cells secrete INF- $\gamma \rightarrow$ macrophage classical activation (proinflammatory)
- Th2 cells secrete IL-4 and IL-13 \rightarrow macrophage alternative activation (repair and antiinflammatory)
Scarring, amyloidosis and neoplastic transformation (eg, chronic HCV infection \rightarrow chronic inflammation \rightarrow hepatocellular carcinoma; Helicobacter pylori infection \rightarrow chronic gastritis \rightarrow gastric adenocarcinoma).

Granulomatous diseases

Bacterial:

- Mycobacteria (tuberculosis, leprosy)
- Bartonella henselae (cat scratch disease)
- Listeria monocytogenes (granulomatosis infantiseptica)
- Treponema pallidum (3° syphilis)

Fungal: endemic mycoses (eg, histoplasmosis)
Parasitic: schistosomiasis
Chronic granulomatous disease
Autoinflammatory:

- Sarcoidosis
- Crohn disease
- Primary biliary cholangitis
- Subacute (de Quervain/granulomatous) thyroiditis
- Granulomatosis with polyangiitis (Wegener)
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss)
- Giant cell (temporal) arteritis
- Takayasu arteritis

Foreign material: berylliosis, talcosis, hypersensitivity pneumonitis

Granulomas (a pattern of chronic inflammation) are composed of epithelioid cells (macrophages with abundant pink cytoplasm) with surrounding multinucleated giant cells and lymphocytes. Thl cells secrete IFN- γ, activating macrophages. TNF- α from macrophages induces and maintains granuloma formation. Anti-TNF drugs can cause sequestering granulomas to break down \rightarrow disseminated disease. Always test for latent TB before starting anti-TNF therapy.
Associated with hypercalcemia due to calcitriol ($1,25-[\mathrm{OH}]_{2}$ vitamin D_{3}) production.
Caseating necrosis is more common with an infectious etiology (eg, TB). Diagnosis of sarcoidosis requires noncaseating granulomas \boldsymbol{A} on biopsy.

Types of calcification

Lipofuscin

A yellow-brown "wear and tear" pigment A associated with normal aging.
Formed by oxidation and polymerization of autophagocytosed organellar membranes.
Autopsy of elderly person will reveal deposits in heart, colon, liver, kidney, eye, and other organs.

Free radical injury

Free radicals damage cells via membrane lipid peroxidation, protein modification, and DNA breakage.
Initiated via radiation exposure (eg, cancer therapy), metabolism of drugs (phase I), redox reactions, nitric oxide (eg, inflammation), transition metals, WBC (eg, neutrophils, macrophages) oxidative burst.
Free radicals can be eliminated by scavenging enzymes (eg, catalase, superoxide dismutase, glutathione peroxidase), spontaneous decay, antioxidants (eg, vitamins A, C, E), and certain metal carrier proteins (eg, transferrin, ceruloplasmin).
Examples:

- Oxygen toxicity: retinopathy of prematurity (abnormal vascularization), bronchopulmonary dysplasia, reperfusion injury after thrombolytic therapy
- Drug/chemical toxicity: acetaminophen overdose (hepatotoxicity), carbon tetrachloride (converted by cytochrome $\mathrm{P}-450$ into CCl_{3} free radical \rightarrow fatty liver [cell injury $\rightarrow \downarrow$ apolipoprotein synthesis \rightarrow fatty change], centrilobular necrosis)
- Metal storage diseases: hemochromatosis (iron) and Wilson disease (copper)

Scar formation

Occurs when repair cannot be accomplished by cell regeneration alone. Nonregenerated cells $\left(2^{\circ}\right.$ to severe acute or chronic injury) are replaced by connective tissue. $70-80 \%$ of tensile strength regained at 3 months; little tensile strength regained thereafter.

SCARTYPE	Hypertrophic A	Keloid [B
COLLAGENSYNTHESIS	\uparrow (type III collagen)	$\uparrow \uparrow \uparrow$ (disorganized types I and III collagen)
collagen organization	Parallel	Disorganized
Extent of SCAR	Confined to borders of original wound	Extends beyond borders of original wound with "claw-like" projections typically on earlobes, face, upper extremities
recurrence	Infrequent	Frequent
PREDISPosition	None	\uparrow incidence in ethnic groups with darker skin
	A 	

Wound healing

Tissue mediators	MEDIATOR	ROLE
	FGF	Stimulates angiogenesis
	TGF- β	Angiogenesis, fibrosis

Exudate vs transudate

Exudate	Transudate
Cellular (cloudy)	Hypocellular (clear)
\uparrow protein (>2.9 g/dL)	\downarrow protein ($<2.5 \mathrm{~g} / \mathrm{dL}$)
Due to: - Lymphatic obstruction (chylous) - Inflammation/infection - Malignancy	Due to: - \uparrow hydrostatic pressure (eg, HF, Na^{+}retention) - \downarrow oncotic pressure (eg, cirrhosis, nephrotic syndrome)
Fluid is exudative if ≥ 1 of the following criteria is met: - Pleural effusion protein/serum protein ratio >0.5 - Pleural effusion LDH/serum LDH ratio > 0.6 - Pleural effusion LDH $>2 / 2$ of the upper limit of norn	

Amyloidosis	Abnormal aggregation of proteins (or their fragments) into β-pleated linear sheets \rightarrow insoluble fibrils \rightarrow cellular damage and apoptosis. Amyloid deposits visualized by Congo red stain \boldsymbol{A}, polarized light (apple green birefringence) B, and H\&E stain (C shows deposits in glomerular mesangial areas [white arrows], tubular basement membranes [black arrows]).		
COMMON TYPES	FIBRIL PROTEIN	DESCRIPTION	
Systemic			
Primary amyloidosis	AL (from Ig Light chains)	Seen in plasma cell disorders and multiple myeloma	Manifestations include: - Cardiac (eg, restrictive cardiomyopathy, arrhythmia) - GI (eg, macroglossia, hepatomegaly) - Renal (eg, nephrotic syndrome) - Hematologic (eg, easy bruising, splenomegaly) - Neurologic (neuropathy) - Musculoskeletal (carpal tunnel syndrome)
Secondary amyloidosis	Serum Amyloid A (AA)	Seen in chronic inflammatory conditions, eg, rheumatoid arthritis, IBD, familial Mediterranean fever, protracted infection	
Dialysis-related amyloidosis	β_{2}-microglobulin	Seen in patients with ESRD and/or on long-term dialysis	
Localized			
Alzheimer disease	β-amyloid protein	Cleaved from amyloid precursor protein (APP)	
Type 2 diabetes mellitus	Islet amyloid polypeptide (IAPP)	Caused by deposition of amylin in pancreatic islets	
Medullary thyroid cancer	Calcitonin (A Cal)		
Isolated atrial amyloidosis	ANP	Common in normal aging \uparrow risk of atrial fibrillation	
Systemic senile (agerelated) amyloidosis	Normal (wild-type) transthyretin (TTR)	Seen predominantly in cardiac ventricles	Cardiac dysfunction more insidious than in AL amyloidosis
Hereditary			
Familial amyloid cardiomyopathy	Mutated transthyretin (ATTR)	Ventricular endomyocardium deposition \rightarrow restrictive cardiomyopathy, arrhythmias	5\% of African Americans are carriers of mutant allele
Familial amyloid polyneuropathies	Mutated transthyretin (ATTR)	Due to transthyretin gene mutation	

PATHOLOGY - NEOPLASIA

Neoplasia and neoplastic progression

Uncontrolled, clonal proliferation of cells. Can be benign or malignant. Hallmarks of cancer: evasion of apoptosis, growth signal self-sufficiency, anti-growth signal insensitivity, Warburg effect (shift of glucose metabolism away from mitochondria toward glycolysis), sustained angiogenesis, limitless replicative potential, tissue invasion, and metastasis.

Normal cells	(1) Normal cells with basal \rightarrow apical polarity. See cervical example A, which shows normal cells and spectrum of dysplasia, as discussed below.
Dysplasia	2 Loss of uniformity of cell size and shape (pleomorphism); loss of tissue orientation; nuclear changes (eg, \uparrow nuclear:cytoplasmic ratio) \boldsymbol{A}.
Carcinoma in situ/ preinvasive	(3) Irreversible severe dysplasia that involves the entire thickness of epithelium but does not penetrate the intact basement membrane.
Invasive carcinoma	(4) Cells have invaded basement membrane using collagenases and hydrolases (metalloproteinases). Cell-cell contacts lost by inactivation of E-cadherin.
Metastasis	(5) Spread to distant organ(s) via lymphatics or blood. "Seed and soil" theory of metastasis: - Seed = tumor embolus. - Soil = target organ is often the first-encountered capillary bed (eg, liver, lungs, bone, brain, et

Tumor nomenclature Carcinoma implies epithelial origin, whereas sarcoma denotes mesenchymal origin. Both terms generally imply malignancy.
Benign tumors are usually well differentiated, well demarcated, low mitotic activity, no metastasis, no necrosis.
Malignant tumors may show poor differentiation, erratic growth, local invasion, metastasis, and \downarrow apoptosis. Upregulation of telomerase prevents chromosome shortening and cell death.
Terms for non-neoplastic malformations include hamartoma (disorganized overgrowth of tissues in their native location, eg, Peutz-Jeghers polyps) and choristoma (normal tissue in a foreign location, eg, gastric tissue located in distal ileum in Meckel diverticulum).

| CELLTYPE | BENIGN | MALIGNANT |
| :--- | :--- | :--- | :--- |
| Epithelium | Adenoma, papilloma | Adenocarcinoma, papillary carcinoma |
| Mesenchyme | | Leukemia, lymphoma |
| Blood cells | Hemangioma | Angiosarcoma |
| Blood vessels | Leiomyoma | Leiomyosarcoma |
| Smooth muscle | Rhabdomyoma | Rhabdomyosarcoma |
| Striated muscle | Fibroma | Fibrosarcoma |
| Connective tissue | Osteoma | Liposarcoma |
| Bone | Lipoma | Melanoma |
| Fat | Nevus/mole | |
| Melanocyte | | |

Tumor grade vs stage Differentiation-degree to which a tumor resembles its tissue of origin. Well-differentiated tumors (often less aggressive) closely resemble their tissue of origin, whereas poorly differentiated tumors (often more aggressive) look almost nothing like their tissue of origin.
Anaplasia-complete lack of differentiation of cells in a malignant neoplasm.

Grade	Degree of cellular differentiation and mitotic activity on histology. Range from low grade (well differentiated) to high grade (poorly differentiated, undifferentiated or anaplastic).	Stage generally has more prognostic value than grade (eg, a high-stage yet low-grade tumor is usually worse than a low-stage yet high-grade tumor). Stage determines Survival.
Stage	Degree of localization/spread based on site and size of 1° lesion, spread to regional lymph nodes, presence of metastases. Based on clinical (c) or pathology (p) findings. Example: cT3N1M0	TNM staging system $($ Stage $=$ Spread $):$ $\mathrm{T}=$ Tumor size/invasiveness $\mathrm{N}=$ Node involvement $\mathbf{M}=$ Metastases Each TNM factor has independent prognostic value; N and M are often most important.

Paraneoplastic syndromes

MANIFESTATION	DESCRIPTION/MECHANISM	MOST COMMONLY ASSOCIATED TUMOR(S)
Musculoskeletal and cutaneous		
Dermatomyositis	Progressive proximal muscle weakness, Gottron papules, heliotrope rash	Adenocarcinomas, especially ovarian
Acanthosis nigricans	Hyperpigmented velvety plaques in axilla and neck	Gastric adenocarcinoma and other visceral malignancies (but more commonly associated with obesity and insulin resistance)
Sign of Leser-Trélat	Sudden onset of multiple seborrheic keratoses	GI adenocarcinomas and other visceral malignancies
Hypertrophic osteoarthropathy	Abnormal proliferation of skin and bone at distal extremities \rightarrow clubbing, arthralgia, joint effusions, periostosis of tubular bones	Adenocarcinoma of the lung
Endocrine		
Hypercalcemia	PTHrP $\uparrow 1,25-(\mathrm{OH})_{2}$ vitamin D_{3} (calcitriol)	Squamous cell carcinomas of lung, head, and neck; renal, bladder, breast, and ovarian carcinomas Lymphoma
Cushing syndrome	\uparrow ACTH	
Hyponatremia (SIADH)	$\uparrow \mathrm{ADH}$	Small cell lung cancer
Hematologic		
Polycythemia	\uparrow Erythropoietin Paraneoplastic rise to high hematocrit levels	Pheochromocytoma, renal cell carcinoma, HCC, hemangioblastoma, leiomyoma
Pure red cell aplasia	Anemia with low reticulocytes	T
Good syndrome	Hypogammaglobulinemia	Thymoma
Trousseau syndrome	Migratory superficial thrombophlebitis	
Nonbacterial thrombotic (marantic) endocarditis	Deposition of sterile platelet thrombi on heart valves	Adenocarcinomas, especially pancreatic
Neuromuscular		
Anti-NMDA receptor encephalitis	Psychiatric disturbance, memory deficits, seizures, dyskinesias, autonomic instability, language dysfunction	Ovarian teratoma
Opsoclonusmyoclonus ataxia syndrome	"Dancing eyes, dancing feet"	Neuroblastoma (children), small cell lung cancer (adults)
Paraneoplastic cerebellar degeneration	Antibodies against antigens in Purkinje cells	Small cell lung cancer (anti-Hu), gynecologic and breast cancers (anti-Yo), and Hodgkin lymphoma (anti-Tr)
Paraneoplastic encephalomyelitis	Antibodies against Hu antigens in neurons	Small cell lung cancer
Lambert-Eaton myasthenic syndrome	Antibodies against presynaptic (P/Q-type) Ca^{2+} channels at NMJ	Small cell lung cancer
Myasthenia gravis	Antibodies against postsynaptic ACh receptors at NMJ	Thymoma

Oncogenes	Gain of function mutation converts proto-o Need damage to only one allele of a proto	ne (normal gene) to oncogene $\rightarrow \uparrow$ cancer risk. gene.
GENE	gene product	ASSOCIATED NEOPLASM
ALK	Receptor tyrosine Kinase	Lung Adenocarcinoma (Adenocarcinoma of the Lung Kinase)
BCR-ABL	Tyrosine kinase	CML, ALL
$B C L-2$	Antiapoptotic molecule (inhibits apoptosis)	Follicular and diffuse large B cell lymphomas
BRAF	Serine/threonine kinase	Melanoma, non-Hodgkin lymphoma, papillary thyroid carcinoma
c-KIT	Cytokine receptor	Gastrointestinal stromal tumor (GIST)
c-MYC	Transcription factor	Burkitt lymphoma
HER2/neu (c-erbB2)	Receptor tyrosine kinase	Breast and gastric carcinomas
JAK2	Tyrosine kinase	Chronic myeloproliferative disorders
KRAS	GTPase	Colon cancer, lung cancer, pancreatic cancer
MYCL1	Transcription factor	Lung tumor
N-myc (MYCN)	Transcription factor	Neuroblastoma
RET	Receptor tyrosine kinase	MEN 2A and 2B, papillary thyroid carcinoma

Tumor suppressor genes

GENE	GENE PRODUCT	ASSOCIATED CONDITION
APC	Negative regulator of β-catenin/WNT pathway	Colorectal cancer (associated with FAP)
BRCA1/BRCA2	DNA repair protein	Breast, ovarian, and pancreatic cancer
CDKN2A	pl6, blocks $\mathrm{G}_{1} \rightarrow$ S phase	Melanoma, pancreatic cancer
DCC	DCC-Deleted in Colon Cancer	Colon cancer
SMAD4 (DPC4)	DPC-Deleted in Pancreatic Cancer	Pancreatic cancer
MEN1	Menin	Multiple Endocrine Neoplasia 1
NF1	Neurofibromin (Ras GTPase activating protein)	Neurofibromatosis type 1
NF2	Merlin (schwannomin) protein	Neurofibromatosis type 2
PTEN	Negatively regulates PI3k/AKT pathway	Breast, prostate, and endometrial cancer
Rb	Inhibits E2F; blocks $\mathrm{G}_{1} \rightarrow$ S phase	Retinoblastoma, osteosarcoma
TP53	p53, activates p2l, blocks $\mathrm{G}_{1} \rightarrow$ S phase	Most human cancers, Li-Fraumeni syndrome (multiple malignancies at early age, aka, SBLA cancer syndrome: Sarcoma, Breast, Leukemia, Adrenal gland)
TSC1	Hamartin protein	Tuberous sclerosis
TSC2	Tuberin protein	Tuberous sclerosis
VHL	Inhibits hypoxia inducible factor la	von Hippel-Lindau disease
WT1	Transcription factor that regulates urogenital development	Wilms tumor (nephroblastoma)

Microbe	Associated cancer
EBV	Burkit lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, ${ }^{\circ}$ CNS lymphoma (in immunocompromised patients)
HBV, HCV	Hepatocellular carcinoma
HHV-8	Kaposi sarcoma
HPV	18), head and neck cancer carcinoma (types 16,
H pylori	Gastric adenocarcinoma and MALT lymphoma
HTLV-1	Adult T-cell leukemia/lymphoma
Liver fluke (Clonorchis sinensis)	Cholangiocarcinoma
Schistosoma haematobium	Bladder cancer (squamous cell)

Carcinogens

Toxin	EXPOSURE	ORGAN	Impact
Aflatoxins (Aspergillus)	Stored grains and nuts	Liver	Hepatocellular carcinoma
Alkylating agents	Oncologic chemotherapy	Blood	Leukemia/lymphoma
Aromatic amines (eg, benzidine, 2-naphthylamine)	Textile industry (dyes), cigarette smoke (2-naphthylamine)	Bladder	Transitional cell carcinoma
Arsenic	Herbicides (vineyard workers), metal smelting	Liver Lung Skin	Angiosarcoma Lung cancer Squamous cell carcinoma
Asbestos	Old roofing material, shipyard workers	Lung	Bronchogenic carcinoma > mesothelioma
Cigarette smoke		Bladder Cervix Esophagus Kidney Larynx Lung Pancreas	Transitional cell carcinoma Squamous cell carcinoma Squamous cell carcinoma/ adenocarcinoma Renal cell carcinoma Squamous cell carcinoma Squamous cell and small cell carcinoma Pancreatic adenocarcinoma
Ethanol		Esophagus Liver	Squamous cell carcinoma Hepatocellular carcinoma
lonizing radiation		Thyroid	Papillary thyroid carcinoma
Nitrosamines	Smoked foods	Stomach	Gastric cancer
Radon	By-product of uranium decay, accumulates in basements	Lung	Lung cancer (2nd leading cause after cigarette smoke)
Vinyl chloride	Used to make PVC pipes (plumbers)	Liver	Angiosarcoma

Psammoma bodies

Serum tumor markers Tumor markers should not be used as the 1° tool for cancer diagnosis or screening. They may be used to monitor tumor recurrence and response to therapy, but definitive diagnosis is made via biopsy. Some can be associated with non-neoplastic conditions.

MARKER	ImPORTANT ASSOCIATIONS	NOTES
Alkaline phosphatase	Metastases to bone or liver, Paget disease of bone, seminoma (placental ALP).	Exclude hepatic origin by checking LFTs and GGT levels.
α-fetoprotein	Hepatocellular carcinoma, Endodermal sinus (yolk sac) tumor, Mixed germ cell tumor, Ataxia-telangiectasia, Neural tube defects. (HE-MAN is the alpha male!)	Normally made by fetus. Transiently elevated in pregnancy. High levels associated with neural tube and abdominal wall defects, low levels associated with Down syndrome.
β-hCG	Hydatidiform moles and Choriocarcinomas (Gestational trophoblastic disease), testicular cancer, mixed germ cell tumor.	Produced by syncytiotrophoblasts of the placenta.
CA 15-3/CA 27-29	Breast cancer.	
CA 19-9	Pancreatic adenocarcinoma.	
CA 125	Ovarian cancer.	
Calcitonin	Medullary thyroid carcinoma (alone and in MEN2A, MEN2B).	

CEA	Major associations: colorectal and pancreatic cancers. Minor associations: gastric, breast, and medullary thyroid carcinomas.	Carcinoembryonic antigen. Very nonspecific.
Chromogranin	Neuroendocrine tumors.	Can be used as an indicator of tumor burden.

Important immunohistochemical stains	Determine primary site of origin for metastatic tumors and characterize tumors that are difficult to classify. Can have prognostic and predictive value.	
STAIN	target	EXAMPLES IDENTIFIED
Vimentin	Mesenchymal tissue (eg, fibroblasts, endothelial cells, macrophages)	Mesenchymal tumors (eg, sarcoma), but also many other tumors (eg, endometrial carcinoma, renal cell carcinoma, meningioma)
S-100	Neural crest cells	Melanoma, schwannoma, Langerhans cell histiocytosis
DesMin	Muscle	Muscle tumors (eg, rhabdomyosarcoma)
Cytokeratin	Epithelial cells	Epithelial tumors (eg, squamous cell carcinoma)
GFAP	NeuroGlia (eg, astrocytes, Schwann cells, oligodendrocytes)	Astrocytoma, Glioblastoma
Neurofilament	Neurons	Neuronal tumors (eg, neuroblastoma)
PSA	Prostatic epithelium	Prostate cancer
TRAP	Tartrate-resistant acid phosphatase	Hairy cell leukemia
Chromogranin and synaptophysin	Neuroendocrine cells	Small cell carcinoma of the lung, carcinoid tumor

P-glycoprotein

Also known as multidrug resistance protein 1 (MDR1). Classically seen in adrenocortical carcinoma but also expressed by other cancer cells (eg, colon, liver). Used to pump out toxins, including chemotherapeutic agents (one mechanism of \downarrow responsiveness or resistance to chemotherapy over time).

Cachexia

Weight loss, muscle atrophy, and fatigue that occur in chronic disease (eg, cancer, AIDS, heart failure, COPD). Mediated by TNF, IFN- γ, IL-1, and IL-6.

Cancer epidemiology Skin cancer (basal > squamous >> melanoma) is the most common cancer (not included below).

	MEN	WOMEN	CHILDREN (AGE $0-14)$	NOTES
Cancer incidence	1. Prostate	1. Breast	1. Leukemia	Lung cancer incidence has \downarrow in
	2. Lung	2. Lung	2. CNS	men, but has not changed
	3. Colon/rectum	3. Colon/rectum	3. Neuroblastoma	significantly in women.
Cancer mortality	1. Lung	1. Lung	1. Leukemia	Cancer is the 2nd leading cause
	2. Prostate	2. Breast	2. CNS	of death in the United States
	3. Colon/rectum	3. Colon/rectum	3. Neuroblastoma	(heart disease is lst).

Common metastases Most sarcomas spread hematogenously; most carcinomas spread via lymphatics. However, Four Carcinomas Route Hematogenously: Follicular thyroid carcinoma, Choriocarcinoma, Renal cell carcinoma, and Hepatocellular carcinoma.

SITE OF METASTASIS	1° TUMOR	NOTES
Brain	Lung > breast > melanoma, colon, kidney.	50% of brain tumors are from metastases A B. Commonly seen as multiple well-circumscribed tumors at gray/white matter junction.
Liver	Colon \gg stomach $>$ pancreas.	Liver \mathbb{C} and lung are the most common sites of metastasis after the regional lymph nodes.
Bone	Prostate, Breast > Kidney, Thyroid, Lung. Lead (PB) KeTtLe.	Bone metastasis $\boldsymbol{F} \gg 1^{\circ}$ bone tumors (eg, multiple myeloma, lytic). Common mets to bone: breast (mixed), lung (lytic), thyroid (lytic), kidney (lytic), prostate (blastic). Predilection for axial skeleton G.

HIGH-YIELD PRINCIPLES IN

Pharmacology

"Take me, I am the drug; take me, I am hallucinogenic."
-Salvador Dali
"I was under medication when I made the decision not to burn the tapes."
-Richard Nixon
"I wondher why ye can always read a doctor's bill an' ye niver can read his purscription."
-Finley Peter Dunne
"Once you get locked into a serious drug collection, the tendency is to push it as far as you can."
-Hunter S. Thompson

Preparation for pharmacology questions is straightforward. Know all the mechanisms, clinical use, and important adverse effects of key drugs and their major variants. Obscure derivatives are low-yield. Learn their classic and distinguishing toxicities as well as major drug-drug interactions. Reviewing associated biochemistry, physiology, and microbiology concepts can be useful while studying pharmacology. The exam has a strong emphasis on ANS, CNS, antimicrobial, and cardiovascular agents as well as on NSAIDs, which are covered throughout the text. Specific drug dosages or trade names are generally not testable. The exam may use graphs to test various pharmacology content, so make sure you are comfortable interpreting them.

PHARMACOLOGY—PHARMACOKINETICS AND PHARMACODYNAMICS

Enzyme kinetics

Michaelis-Menten kinetics
K_{m} is inversely related to the affinity of the enzyme for its substrate.
$\mathrm{V}_{\max }$ is directly proportional to the enzyme concentration.
Most enzymatic reactions follow a hyperbolic curve (ie, Michaelis-Menten kinetics); however, enzymatic reactions that exhibit a sigmoid curve usually indicate cooperative kinetics (eg, hemoglobin).
$[\mathrm{S}]=$ concentration of substrate; $\mathrm{V}=$ velocity.

Effects of enzyme inhibition

\uparrow y-intercept, $\downarrow V_{\text {max }}$.
The further to the right the x-intercept (ie, closer to zero), the greater the K_{m} and the lower the affinity.

Competitive inhibitors cross each other, whereas noncompetitive inhibitors do not.

Kompetitive inhibitors increase \mathbf{K}_{m}.

Effects of enzyme inhibition

	Competitive inhibitors, reversible	Competitive inhibitors, irreversible	Noncompetitive inhibitors
Resemble substrate	Yes	Yes	No
Overcome by $\uparrow[S]$	Yes	No	No
Bind active site	Yes	Yes	No
Effect on $V_{\text {max }}$	Unchanged	\downarrow	\downarrow
Effect on K_{m}	\uparrow	Unchanged	Unchanged
Pharmacodynamics	\downarrow potency	\downarrow efficacy	\downarrow efficacy

Pharmacokinetics

Bioavailability (F)	Fraction of administered drug reaching systemic circulation unchanged. For an IV dose, $\mathrm{F}=100 \%$ Orally: F typically $<100 \%$ due to incomplete absorption and first-pass metabolism.	
Volume of distribution $\left(\mathrm{V}_{\mathrm{d}}\right)$	Theoretical volume occupied by the total amount of drug in the body relative to its plasma concentration. Apparent V_{d} of plasma protein-bound drugs can be altered by liver and kidney disease $\left(\downarrow\right.$ protein binding, $\left.\uparrow \mathrm{V}_{\mathrm{d}}\right)$. Drugs may distribute in more than one compartment.	
	$\mathrm{V}_{\mathrm{d}}=\frac{\text { amount of drug in the body }}{\text { plasma drug concentration }}$	COMPARTMENT

$C L=\frac{\text { rate of elimination of drug }}{\text { plasma drug concentration }}=\mathrm{V}_{\mathrm{d}} \times \mathrm{K}_{\mathrm{e}}$ (elimination constant)
Half-life $\left(\mathrm{t}_{1 / 2}\right) \quad$ The time required to change the amount of drug in the body by $1 / 2$ during elimination.
In first-order kinetics, a drug infused at a constant rate takes 4-5 half-lives to reach steady state. It takes 3.3 half-lives to reach 90% of the steady-state level.
$\mathrm{t}_{1 / 2}=\frac{0.7 \times \mathrm{V}_{\mathrm{d}}}{\mathrm{CL}}$ in first-order elimination

\# of half-lives	1	2	3	4
\% remaining	50%	25%	12.5%	6.25%

Dosage calculations

Loading dose $=\frac{C_{p} \times V_{d}}{F}$
Maintenance dose $=\frac{\mathrm{C}_{\mathrm{p}} \times \mathrm{CL} \times \tau}{\mathrm{F}}$
$C_{p}=$ target plasma concentration at steady state
$\tau=$ dosage interval (time between doses), if not administered continuously

In renal or liver disease, maintenance dose \downarrow and loading dose is usually unchanged.
Time to steady state depends primarily on $t_{1 / 2}$ and is independent of dose and dosing frequency.

Types of drug interactions

TERM	DEFINITION	EXAMPLE
Additive	Effect of substance A and B together is equal to the sum of their individual effects	Aspirin and acetaminophen
Permissive	Presence of substance A is required for the full effects of substance B	Cortisol on catecholamine responsiveness
Synergistic	Effect of substance A and B together is greater than the sum of their individual effects	Clopidogrel with aspirin
Tachyphylactic	Acute decrease in response to a drug after initial/repeated administration	Nitrates, niacin, phenylephrine, LSD, MDMA

Receptor binding

Elimination of drugs

Zero-order elimination

Rate of elimination is constant regardless of C_{p} (ie, constant amount of drug eliminated per unit time). $\mathrm{C}_{\mathrm{p}} \downarrow$ linearly with time. Examples of drugs-Phenytoin, Ethanol, and Aspirin (at high or toxic concentrations).
First-order elimination

Rate of First-order elimination is directly proportional to the drug concentration (ie, constant Fraction of drug eliminated per unit time). $\mathrm{C}_{\mathrm{p}} \downarrow$ exponentially with time. Applies to most drugs.

Capacity-limited elimination.
PEA (a pea is round, shaped like the " 0 " in zero-order).

Flow-dependent elimination.

Urine pH and drug elimination	Ionized species are trapped in urine and cleared quickly. Neutral forms can be reabsorbed.
Weak acids	Examples: phenobarbital, methotrexate, aspirin (salicylates). Trapped in basic environments. Treat overdose with sodium bicarbonate to alkalinize urine.
	$\underset{\text { (lipid soluble) }}{\mathrm{RCOOH}} \rightleftharpoons \underset{\text { (trapped) }}{\mathrm{RCOO}^{-}+\mathrm{H}^{+}}$
Weak bases	Example: TCAs, amphetamines. Trapped in acidic environments. Treat overdose with ammonium chloride to acidify urine.
	$\underset{\text { (trapped) }}{\mathrm{RNH}_{3}^{+}} \rightleftharpoons \underset{\text { (lipid soluble) }}{\mathrm{RNH}_{2}+\mathrm{H}^{+}}$
	TCA toxicity is generally treated with sodium bicarbonate to overcome the sodium channelblocking activity of TCAs, but not for accelerating drug elimination.
Drug metabolism	
Phase I	Reduction, Oxidation, Hydrolysis with cytochrome P-450 usually yield slightly polar, water-soluble metabolites (often still active). Geriatric patients lose phase I first. R-OH
Phase II	Conjugation (Methylation, Glucuronidation, Acetylation, Sulfation) usually yields very polar, inactive metabolites (renally excreted). Geriatric patients have More GAS (phase II). Patients who are slow acetylators have \uparrow side effects from certain drugs because of \downarrow rate of metabolism.

Efficacy vs potency

Efficacy

Maximal effect a drug can produce. Represented by the y-value $\left(V_{\max }\right) \cdot \uparrow y$-value $=\uparrow \mathrm{V}_{\text {max }}=$ \uparrow efficacy. Unrelated to potency (ie, efficacious drugs can have high or low potency). Partial agonists have less efficacy than full agonists.

RELATIVE EFFICACY

Potency Amount of drug needed for a given effect. Represented by the x -value $\left(\mathrm{EC}_{50}\right)$. Left shifting $=$ $\downarrow \mathrm{EC}_{50}=\uparrow$ potency $=\downarrow$ drug needed. Unrelated to efficacy (ie, potent drugs can have high or low efficacy).

RELATIVE POTENCY

Therapeutic index

Measurement of drug safety.
$\frac{\mathrm{TD}_{50}}{\mathrm{ED}_{50}}=\frac{\text { median toxic dose }}{\text { median effective dose }}$
Therapeutic window-dosage range that can safely and effectively treat disease.

TITE: Therapeutic Index $=\mathrm{TD}_{50} / \mathrm{ED}_{50}$.
Safer drugs have higher TI values. Drugs with lower TI values frequently require monitoring (eg, Warfarin, Theophylline, Digoxin, Lithium; Warning! These Drugs are Lethal!). LD_{50} (lethal median dose) often replaces TD_{50} in animal studies.

PHARMACOLOGY—AUTONOMIC DRUGS

Central and peripheral nervous system

Pelvic splanchnic nerves and CNs III, VII, IX and X are part of the parasympathetic nervous system. Adrenal medulla is directly innervated by preganglionic sympathetic fibers.
Sweat glands are part of the sympathetic pathway but are innervated by cholinergic fibers.

Acetylcholine receptors

Nicotinic ACh receptors are ligand-gated $\mathrm{Na}^{+} / \mathrm{K}^{+}$channels. Two subtypes: N_{N} (found in autonomic ganglia, adrenal medulla) and N_{M} (found in neuromuscular junction of skeletal muscle).
Muscarinic ACh receptors are G-protein-coupled receptors that usually act through 2nd messengers. 5 subtypes: M_{1-5} found in heart, smooth muscle, brain, exocrine glands, and on sweat glands (cholinergic sympathetic).

G-protein-linked second messengers

RECPPTOR	G-PRoteln class	MAJor functions
Sympathetic		
α_{1}	q	\uparrow vascular smooth muscle contraction, \uparrow pupillary dilator muscle contraction (mydriasis), \uparrow intestinal and bladder sphincter muscle contraction
α_{2}	i	\downarrow sympathetic (adrenergic) outflow, \downarrow insulin release, \downarrow lipolysis, \uparrow platelet aggregation, \downarrow aqueous humor production
β_{1}	s	\uparrow heart rate, \uparrow contractility (one heart), \uparrow renin release, \uparrow lipolysis
β_{2}	s	Vasodilation, bronchodilation (two lungs), \uparrow lipolysis, \uparrow insulin release, \uparrow glycogenolysis, \downarrow uterine tone (tocolysis), \uparrow aqueous humor production, \uparrow cellular K^{+}uptake
β_{3}	s	\uparrow lipolysis, \uparrow thermogenesis in skeletal muscle, \uparrow bladder relaxation
Parasympathetic		
M	q	Mediates higher cognitive functions, stimulates enteric nervous system
M_{2}	i	\downarrow heart rate and contractility of atria
M_{3}	q	\uparrow exocrine gland secretions (eg, lacrimal, sweat, salivary, gastric acid), \uparrow gut peristalsis, \uparrow bladder contraction, bronchoconstriction, \uparrow pupillary sphincter muscle contraction (miosis), ciliary muscle contraction (accommodation), \uparrow insulin release
Dopamine		
D_{1}	s	Relaxes renal vascular smooth muscle, activates direct pathway of striatum
D_{2}	i	Modulates transmitter release, especially in brain, inhibits indirect pathway of striatum
Histamine		
H_{1}	q	\uparrow nasal and bronchial mucus production, \uparrow vascular permeability, bronchoconstriction, pruritus, pain
H_{2}	s	\uparrow gastric acid secretion
Vasopressin		
v_{1}	q	\uparrow vascular smooth muscle contraction
v_{2}	s	$\uparrow \mathrm{H}_{2} \mathrm{O}$ permeability and reabsorption via upregulating aquaporin-2 in collecting twobules (tubules) of kidney

"After qisses (kisses), you get a qiq (kick) out of siq (sick) sqs (super qinky sex)."

MAD 2's.

Autonomic drugs

Release of norepinephrine from a sympathetic nerve ending is modulated by NE itself, acting on presynaptic α_{2}-autoreceptors \rightarrow negative feedback.
Amphetamines use the NE transporter (NET) to enter the presynaptic terminal, where they utilize the vesicular monoamine transporter (VMAT) to enter neurosecretory vesicles. This displaces NE from the vesicles. Once NE reaches a concentration threshold within the presynaptic terminal, the action of NET is reversed, and NE is expelled into the synaptic cleft, contributing to the characteristics and effects of \uparrow NE observed in patients taking amphetamines.

CHOLINERGIC

NORADRENERGIC

Cholinomimetic agents	Watch for exacerbation of COPD, asthma, and peptic ulcers in susceptible patients.	
DRUG	ACTION	APPLICATIONS
Direct agonists		
Bethanechol	Activates bowel and bladder smooth muscle; resistant to AChE. No nicotinic activity. "Bethany, call (bethanechol) me to activate your bowels and bladder."	Postoperative ileus, neurogenic ileus, urinary retention
Carbachol	Carbon copy of acetylcholine (but resistant to AChE).	Constricts pupil and relieves intraocular pressure in open-angle glaucoma
Methacholine	Stimulates muscarinic receptors in airway when inhaled.	Challenge test for diagnosis of asthma
Pilocarpine	Contracts ciliary muscle of eye (open-angle glaucoma), pupillary sphincter (closed-angle glaucoma); resistant to AChE, can cross bloodbrain barrier (tertiary amine). "You cry, drool, and sweat on your 'pilow.'"	Potent stimulator of sweat, tears, and saliva Open-angle and closed-angle glaucoma, xerostomia (Sjögren syndrome)
Indirect agonists (anticholinesterases)		
Donepezil, rivastigmine, galantamine	\uparrow ACh.	Alzheimer disease (Dona Riva dances at the gala).
Edrophonium	\uparrow ACh.	Historically used to diagnose myasthenia gravis; replaced by anti-AChR Ab (anti-acetylcholine receptor antibody) test.
Neostigmine	\uparrow ACh. Neo CNS $=$ No CNS penetration (quaternary amine).	Postoperative and neurogenic ileus and urinary retention, myasthenia gravis, reversal of neuromuscular junction blockade (postoperative).
Physostigmine	\uparrow ACh. Phreely (freely) crosses blood-brain barrier \rightarrow CNS (tertiary amine).	Antidote for anticholinergic toxicity; physostigmine "phyxes" atropine overdose.
Pyridostigmine	\uparrow ACh; \uparrow muscle strength. Pyridostigmine gets rid of myasthenia gravis.	Myasthenia gravis (long acting); does not penetrate CNS (quaternary amine).

Cholinesterase inhibitor poisoning

Often due to organophosphates, such as parathion, that irreversibly inhibit AChE. Causes Diarrhea, Urination, Miosis, Bronchospasm, Bradycardia, Emesis, Lacrimation, Sweating, and Salivation. May lead to respiratory failure if untreated.

DUMBBELSS.

Organophosphates are often components of insecticides; poisoning usually seen in farmers. Antidote-atropine (competitive inhibitor) + pralidoxime (regenerates AChE if given early).

Muscarinic antagonists

DRUGS	ORGAN SYSTEMS	APPLLCATIONS
Atropine, homatropine, tropicamide	Eye	Produce mydriasis and cycloplegia.
Benztropine, trihexyphenidyl	CNS	Parkinson disease ("park my Benz"). Acute dystonia.
Glycopyrrolate	GI, respiratory	Parenteral: preoperative use to reduce airway secretions. Oral: drooling, peptic ulcer.
Hyoscyamine, dicyclomine	GI	Antispasmodics for irritable bowel syndrome.
Ipratropium, tiotropium	Respiratory	COPD, asthma ("I pray I can breathe soon!").
Oxybutynin, solifenacin, tolterodine	Genitourinary	Reduce bladder spasms and urge urinary
incontinence (overactive bladder).		

Atropine Muscarinic antagonist. Used to treat bradycardia and for ophthalmic applications.

ORGAN SYSTEM	ACTION	NOTES
Eye	\uparrow pupil dilation, cycloplegia	Blocks DUMBBeLSS in cholinesterase inhibitor poisoning. Does not block excitation
Airway	Bronchodilation, \downarrow secretions	of skeletal muscle and CNS (mediated by nicotinic receptors).
Stomach	\downarrow acid secretion	
Gut	\downarrow motility	
Bladder	\downarrow urgency in cystitis	Side effects:
ADVERSE EFFECTS	\uparrow body temperature (due to \downarrow sweating);	Hot as a hare
	rapid pulse; dry mouth; dry, flushed skin;	Dry as a bone
	cycloplegia; constipation; disorientation	Red as a beet
	elderly (due to mydriasis), urinary retention	Blind as a bat
	in men with prostatic hyperplasia, and	Mad as a hatter
	hyperthermia in infants.	Full as a flask

Sympathomimetics		
DRUG	ACtion	APPLCATIONS
Direct sympathomimetics		
Albuterol, salmeterol, terbutaline	$\beta_{2}>\beta_{1}$	Albuterol for acute asthma or COPD. Salmeterol for long-term asthma or COPD management. Terbutaline for acute bronchospasm in asthma and tocolysis.
Dobutamine	$\beta_{1}>\beta_{2}, \alpha$	Heart failure (HF), cardiogenic shock (inotropic > chronotropic), cardiac stress testing.
Dopamine	$\mathrm{D}_{1}=\mathrm{D}_{2}>\beta>\alpha$	Unstable bradycardia, HF, shock; inotropic and chronotropic effects at lower doses due to β effects; vasoconstriction at high doses due to α effects.
Epinephrine	$\beta>\alpha$	Anaphylaxis, asthma, open-angle glaucoma; α effects predominate at high doses. Significantly stronger effect at β_{2}-receptor than norepinephrine.
Fenoldopam	D_{1}	Postoperative hypertension, hypertensive crisis. Vasodilator (coronary, peripheral, renal, and splanchnic). Promotes natriuresis. Can cause hypotension and tachycardia.
Isoproterenol	$\beta_{1}=\beta_{2}$	Electrophysiologic evaluation of tachyarrhythmias. Can worsen ischemia. Has negligible α effect.
Midodrine	α_{1}	Autonomic insufficiency and postural hypotension. May exacerbate supine hypertension.
Mirabegron	β_{3}	Urinary urge incontinence or overactive bladder.
Norepinephrine	$\alpha_{1}>\alpha_{2}>\beta_{1}$	Hypotension, septic shock.
Phenylephrine	$\alpha_{1}>\alpha_{2}$	Hypotension (vasoconstrictor), ocular procedures (mydriatic), rhinitis (decongestant), ischemic priapism.
Indirect sympathomimetics		
Amphetamine	Indirect general agonist, reuptake inhibitor, also releases stored catecholamines	Narcolepsy, obesity, ADHD.
Cocaine	Indirect general agonist, reuptake inhibitor	Causes vasoconstriction and local anesthesia. Caution when giving β-blockers if cocaine intoxication is suspected (can lead to unopposed α_{1} activation, activation \rightarrow extreme hypertension, coronary vasospasm).
Ephedrine	Indirect general agonist, releases stored catecholamines	Nasal decongestion (pseudoephedrine), urinary incontinence, hypotension.

Norepinephrine vs isoproterenol

NE \uparrow systolic and diastolic pressures as a result of α_{1}-mediated vasoconstriction $\rightarrow \uparrow$ mean arterial pressure \rightarrow reflex bradycardia. However, isoproterenol (rarely used) has little α effect but causes β_{2}-mediated vasodilation, resulting in \downarrow mean arterial pressure and \uparrow heart rate through β_{1} and reflex activity.

Sympatholytics (α_{2}-agonists)

DRUG	APPLCATIONS	ADVERSE EFFECTS
Clonidine, guanfacine	Hypertensive urgency (limited situations), ADHD, Tourette syndrome, symptom control in opioid withdrawal	CNS depression, bradycardia, hypotension, respiratory depression, miosis, rebound hypertension with abrupt cessation
$\boldsymbol{\alpha}$-methyldopa	Hypertension in pregnancy	Direct Coombs \oplus hemolysis, drug-induced lupus
Tizanidine	Relief of spasticity	Hypotension, weakness, xerostomia

$\boldsymbol{\alpha}$-blockers		
DRUG	APPLICATIONS	ADVERSE EFFECTS
Nonselective	Irreversible. Pheochromocytoma (used preoperatively) to prevent catecholamine (hypertensive) crisis	
Phentolamine	Reversible. Give to patients on MAO inhibitors who eat tyramine-containing foods and for severe cocaine-induced hypertension (2nd line)	Orthostatic hypotension, reflex tachycardia

Effects of α-blocker (eg, phentolamine) on BP responses to epinephrine and phenylephrine

Epinephrine response exhibits reversal of mean arterial pressure from a net increase (the α response) to a net decrease (the β_{2} response).

Phenylephrine response is suppressed but not reversed because it is a "pure" α-agonist (lacks β-agonist properties).

β-blockers	Acebutolol, atenolol, betaxolol, bisoprolol, carved nebivolol, pindolol, propranolol, timolol.	ol, esmolol, labetalol, metoprolol, nadolol,
APPLICATION	ACTIONS	NOTES/EXAMPLES
Angina pectoris	\downarrow heart rate and contractility, resulting in $\downarrow \mathrm{O}_{2}$ consumption	
Glaucoma	\downarrow production of aqueous humor	Timolol
Heart failure	\downarrow mortality	Bisoprolol, carvedilol, metoprolol
Hypertension	\downarrow cardiac output, \downarrow renin secretion (due to $\beta_{1^{-}}$ receptor blockade on JGA cells)	
Hyperthyroidism	Symptom control (\downarrow heart rate, \downarrow tremor), thyroid storm	Propranolol
Hypertrophic cardiomyopathy	\downarrow heart rate $\rightarrow \uparrow$ filling time, relieving obstruction	
Myocardial infarction	\downarrow mortality	
Supraventricular tachycardia	\downarrow AV conduction velocity (class II antiarrhythmic)	Metoprolol, esmolol
Variceal bleeding	\downarrow hepatic venous pressure gradient and portal hypertension (prophylactic use)	Nadolol, propranolol, carvedilol
ADVERSE EfFECTS	Erectile dysfunction, cardiovascular (bradycardia, AV block, HF), CNS (seizures, sleep alterations), dyslipidemia (metoprolol), and asthma/COPD exacerbations	Use with caution in cocaine users due to risk of unopposed α-adrenergic receptor agonist activity
SELECTIVITY	β_{1}-selective antagonists $\left(\beta_{1}>\beta_{2}\right)$-acebutolol (partial agonist), atenolol, betaxolol, bisoprolol, esmolol, metoprolol	Selective antagonists mostly go from \mathbf{A} to $\mathbf{M}\left(\beta_{1}\right.$ with 1st half of alphabet)
	Nonselective antagonists $\left(\beta_{1}=\beta_{2}\right)$-nadolol, pindolol (partial agonist), propranolol, timolol	Nonselective antagonists mostly go from \mathbf{N} to \mathbf{Z} (β_{2} with 2nd half of alphabet)
	Nonselective α - and β-antagonists-carvedilol, labetalol	Nonselective α - and β-antagonists have modified suffixes (instead of "-olol")
	Nebivolol combines cardiac-selective β_{1}-adrenergic blockade with stimulation of β_{3}-receptors (activate nitric oxide synthase in the vasculature and \downarrow SVR)	Nebivolol increases NO

Ingested seafood Toxin actions include Histamine release, Total block of Na^{+}channels, or opening of Na^{+}channels to toxins Cause depolarization.

Toxin	SOURCE	ACtion	SYMPToMs	treatment
Histamine (scombroid poisoning)	Spoiled dark-meat fish such as tuna, mahimahi, mackerel, and bonito.	Bacterial histidine decarboxylase converts histidine to histamine. Frequently misdiagnosed as fish allergy.	Mimics anaphylaxis: acute burning sensation of mouth, flushing of face, erythema, urticaria, itching. May progress to bronchospasm, angioedema, hypotension.	Antihistamines. Albuterol and epinephrine if needed.
Tetrodotoxin	Pufferfish.	Highly potent toxin; binds fast voltagegated Na^{+}channels in cardiac/nerve tissue, preventing depolarization.	Nausea, diarrhea, paresthesias, weakness, dizziness, loss of reflexes.	Supportive.
Ciguatoxin	Reef fish such as barracuda, snapper, and moray eel.	Opens Na^{+} channels, causing depolarization.	Nausea, vomiting, diarrhea; perioral numbness; reversal of hot and cold sensations; bradycardia, heart block, hypotension.	Supportive.

Beers criteria

Widely used criteria developed to reduce potentially inappropriate prescribing and harmful polypharmacy in the geriatric population. Includes > 50 medications that should be avoided in elderly patients due to \downarrow efficacy and/or \uparrow risk of adverse events. Examples include:

- α-blockers (\uparrow risk of hypotension)
- Anticholinergics, antidepressants, antihistamines, opioids (\uparrow risk of delirium, sedation, falls, constipation, urinary retention)
- Benzodiazepines (\uparrow risk of delirium, sedation, falls)
- NSAIDs (\uparrow risk of GI bleeding, especially with concomitant anticoagulation)
- PPIs (\uparrow risk of C difficile infection)

PHARMACOLOGY—TOXICITIES AND SIDE EFFECTS

Specific toxicity treatments	Toxin	treatment
	Acetaminophen	N -acetylcysteine (replenishes glutathione)
	AChE inhibitors, organophosphates	Atropine > pralidoxime
	Antimuscarinic, anticholinergic agents	Physostigmine, control hyperthermia
	Arsenic	Dimercaprol, succimer
	Benzodiazepines	Flumazenil
	β-blockers	Atropine, glucagon
	Carbon monoxide	$100 \% \mathrm{O}_{2}$, hyperbaric O_{2}
	Copper	Penicillamine, trientine (Copper penny)
	Cyanide	Nitrite + thiosulfate, hydroxocobalamin
	Digitalis (digoxin)	Anti-dig Fab fragments
	Heparin	Protamine sulfate
	Iron	Deferoxamine, deferasirox, deferiprone
	Lead	EDTA, dimercaprol, succimer, penicillamine
	Mercury	Dimercaprol, succimer
	Methanol, ethylene glycol (antifreeze)	Fomepizole > ethanol, dialysis
	Methemoglobin	Methylene blue, vitamin C (reducing agent)
	OpiOids	NalOxOne
	Salicylates	NaHCO_{3} (alkalinize urine), dialysis
	TCAs	NaHCO_{3} (stabilizes cardiac cell membrane)
	Warfarin	Vitamin K (delayed effect), fresh frozen plasma (immediate)

Drug reactions-cardiovascular

DRUG REACTION	CAUSAL AGENTS
Coronary vasospasm	Cocaine, Amphetamines, Sumatriptan, Ergot alkaloids (CASE)
Cutaneous flushing	Vancomycin, Adenosine, Niacin, Ca^{2+} channel blockers, Echinocandins, Nitrates (flushed from VANCEN [dancing]) Red man syndrome—rate-dependent infusion reaction to vancomycin causing widespread pruritic erythema. Manage with diphenhydramine, slower infusion rate.
Dilated cardiomyopathy	Anthracyclines (eg, Doxorubicin, Daunorubicin); prevent with Dexrazoxane
Torsades de pointes	Agents that prolong QT interval: antiArrhythmics (class IA, III), antiBiotics (eg, macrolides), anti"C"ychotics (eg, haloperidol), antiDepressants (eg, TCAs), antiEmetics (eg, ondansetron) (ABCDE)

Drug reactions-endocrine/reproductive
\(\left.\left.$$
\begin{array}{l|l|l}\hline \text { DRUG REACTION } & \text { CAUSAL AGENTS } & \text { NOTES } \\
\hline \begin{array}{l}\text { Adrenocortical } \\
\text { insufficiency }\end{array} & \begin{array}{l}\text { HPA suppression } 2^{\circ} \text { to glucocorticoid } \\
\text { withdrawal }\end{array}
$$ \&

\hline Diabetes insipidus \& Lithium, demeclocycline\end{array}\right] $$
\begin{array}{l}\text { SERMs (eg, tamoxifen, clomiphene, raloxifene) }\end{array}
$$\right]\)| Hot flashes |
| :--- |

Drug reactions-gastrointestinal

DRUG REACTION	CAUSAL AGENTS	NOTES
Acute cholestatic hepatitis, jaundice	Macrolides (eg, erythromycin)	
Diarrhea	Acamprosate, antidiabetic agents (acarbose, metformin, pramlintide), colchicine, cholinesterase inhibitors, lipid-lowering agents (eg, ezetimibe, orlistat), macrolides (eg, erythromycin), quinidine, SSRIs	
Focal to massive hepatic necrosis	Halothane, Amanita phalloides (death cap mushroom), Valproic acid, Acetaminophen	Liver "HAVAc"
Hepatitis	Rifampin, isoniazid, pyrazinamide, statins, fibrates	
Pancreatitis	Didanosine, Corticosteroids, Alcohol, Valproic acid, Azathioprine, Diuretics (furosemide, HCTZ)	Drugs Causing A Violent Abdominal Distress
Pill-induced esophagitis	Bisphosphonates, ferrous sulfate, NSAIDs, potassium chloride, tetracyclines	Caustic effect minimized with upright posture and adequate water ingestion.
Pseudomembranous colitis	Ampicillin, cephalosporins, clindamycin, fluoroquinolones	Antibiotics predispose to superinfection by resistant C difficile

Drug reactions-hematologic

DRUG REACTION	CAUSAL AGENTS	Notes
Agranulocytosis	Clozapine, Carbamazepine, Propylthiouracil, Methimazole, Colchicine, Ganciclovir	Can Cause Pretty Major Collapse of Granulocytes
Aplastic anemia	Carbamazepine, Methimazole, NSAIDs, Benzene, Chloramphenicol, Propylthiouracil	Can't Make New Blood Cells Properly
Direct Coombspositive hemolytic anemia	Penicillin, methylDopa, Cephalosporins	P Diddy Coombs
Drug reaction with eosinophilia and systemic symptoms	Allopurinol, anticonvulsants, antibiotics, sulfa drugs	DRESS is a potentially fatal delayed hypersensitivity reaction. Latency period (2-8 weeks) followed by fever, morbilliform skin rash, and frequent multiorgan involvement. Treatment: withdrawal of offending drug, corticosteroids.
Gray baby syndrome	Chloramphenicol	
Hemolysis in G6PD deficiency	Isoniazid, Sulfonamides, Dapsone, Primaquine, Aspirin, Ibuprofen, Nitrofurantoin	Hemolysis IS D PAIN
Megaloblastic anemia	Hydroxyurea, Phenytoin, Methotrexate, Sulfa drugs	You're having a mega blast with PMS
Thrombocytopenia	Heparin, Vancomycin, Linezolid	Help! Very Low platelets
Thrombotic complications	Combined oral contraceptives, hormone replacement therapy, SERMs (eg, tamoxifen, raloxifene, clomiphene)	Estrogen-mediated side effect

Drug reactions-musculoskeletal/skin/connective tissue

DRUG REACTION	CAUSAL AGENTS	NOTES
Drug-induced lupus	Methyldopa, Sulfa drugs, Hydralazine, Isoniazid, Procainamide, Phenytoin, Etanercept	Having lupus is Mega "SHIPP-E"
Fat redistribution	Protease inhibitors, Glucocorticoids	Fat PiG
Gingival hyperplasia	Cyclosporine, Ca^{2+} channel blockers, Phenytoin	Can Cause Puffy gums
Hyperuricemia (gout)	Pyrazinamide, Thiazides, Furosemide, Niacin, Cyclosporine	Painful Tophi and Feet Need Care
Myopathy	Statins, fibrates, niacin, colchicine, daptomycin, hydroxychloroquine, interferon- α, penicillamine, glucocorticoids	
Osteoporosis	Corticosteroids, depot medroxyprogesterone acetate, GnRH agonists, aromatase inhibitors, anticonvulsants, heparin, PPIs	
Photosensitivity	Sulfonamides, Amiodarone, Tetracyclines, 5-FU	SAT For Photo
Rash (StevensJohnson syndrome)	Anti-epileptic drugs (especially lamotrigine), allopurinol, sulfa drugs, penicillin	Steven Johnson has epileptic allergy to sulfa drugs and penicillin
Teeth discoloration	Tetracyclines	Teethracyclines
Tendon and cartilage damage	Fluoroquinolones	

Drug reactions—neurologic

| DRUG REACTION | CAUSALAGENTS | NOTES |
| :--- | :--- | :--- | :--- |
| Cinchonism | Quinidine, quinine | Can present with tinnitus, hearing/vision loss,
 psychosis, and cognitive impairment |
| Parkinson-like
 syndrome | Antipsychotics, Reserpine, Metoclopramide | Cogwheel rigidity of ARM |
| Peripheral neuropathy | Phenytoin, vincristine | |
| Pseudotumor cerebri | Growth hormones, tetracyclines, vitamin A | |
| Seizures | Isoniazid (vitamin B6 deficiency), Bupropion,
 Imipenem/cilastatin, Tramadol, Enflurane | With seizures, I BITE my tongue |
| Tardive dyskinesia | Antipsychotics, metoclopramide | |
| Visual disturbance | Topiramate (blurred vision/diplopia, haloes),
 Digoxin (yellow-tinged vision), Isoniazid (optic
 neuropathy/color vision changes), Vigabatrin
 (bilateral visual field defects), PDE-5 inhibitors | These Drugs Irritate Very Precious Eyes |

Drug reactions-renal/genitourinary

DRUG REACTION	CAUSAL AGENTS	NOTES
Fanconi syndrome	Cisplatin, ifosfamide, expired tetracyclines, tenofovir	
Hemorrhagic cystitis	Cyclophosphamide, ifosfamide	Prevent by coadministering with mesna
Interstitial nephritis	Penicillins, furosemide, NSAIDs, proton pump inhibitors, sulfa drugs	

Drug reactions-respiratory

DRUG REACTION	CAUSAL AGENTS	NOTES
Dry cough	ACE inhibitors	
Pulmonary fibrosis	Methotrexate, Nitrofurantoin, Carmustine, Bleomycin, Busulfan, Amiodarone	My Nose Cannot Breathe Bad Air

Drug reactions-multiorgan

DRUG REACTION	CAUSALAGENTS	NOTES
Antimuscarinic	Atropine, TCAs, H1-blockers, antipsychotics	
Disulfiram-like reaction	lst-generation Sulfonylureas, Procarbazine, certain Cephalosporins, Griseofulvin, Metronidazole	Sorry Pals, Can't Go Mingle.

Drugs affecting pupil size

\uparrow pupil size	\downarrow pupil size
Anticholinergics (atropine, TCA, tropicamide, scopolamine, antihistamines)	Antipsychotics (haloperidol, risperidone, olanzapine)
Drugs of abuse (amphetamines, cocaine, LSD)	Drugs of abuse (eg, heroin/opioids)
Sympathomimetics	Parasympathomimetics (pilocarpine), organophosphates

Cytochrome P-450 interactions (selected)

Inducers (+)	Substrates	Inhibitors (-)
Modafinil	Anti-epileptics	Sodium valproate
Chronic alcohol use	Theophylline	Isoniazid
St. John's wort	Warfarin	Cimetidine
Phenytoin	OCPs	Ketoconazole
Phenobarbital		Fluconazole
Nevirapine	Acute alcohol abuse	
Rifampin	Chloramphenicol	
Griseofulvin	Erythromycin/clarithromycin	
Carbamazepine		Sulfonamides
	Ciprofloxacin	
		Omeprazole
	Metronidazole	
	Amiodarone	
		Grapefruit juice
Most chronic alcoholics		Always Think When

Sulfa drugs
Sulfonamide antibiotics, Sulfasalazine, Scary Sulfa Pharm FACTS Probenecid, Furosemide, Acetazolamide, Celecoxib, Thiazides, Sulfonylureas.
Patients with sulfa allergies may develop fever, urinary tract infection, StevensJohnson syndrome, hemolytic anemia, thrombocytopenia, agranulocytosis, acute interstitial nephritis, and urticaria (hives). Symptoms range from mild to life threatening.

PHARMACOLOGY—MISCELLANEOUS

Drug names

ENDING	CATEGORY	EXAMPLE
Antimicrobial		
-azole	Ergosterol synthesis inhibitor	Ketoconazole
-bendazole	Antiparasitic/antihelminthic	Mebendazole
-cillin	Transpeptidase (penicillin-binding protein)	Ampicillin
-cycline	Protein synthesis inhibitor	Tetracycline
-ivir	Neuraminidase inhibitor	Oseltamivir
-navir	Protease inhibitor	Ritonavir
-ovir	DNA polymerase inhibitor	Acyclovir
-thromycin	Macrolide antibiotic	Azithromycin
CNS		
-ane	Inhalational general anesthetic	Halothane
-azine	Typical antipsychotic	Thioridazine
-barbital	Barbiturate	Phenobarbital
-caine	Local anesthetic	Lidocaine
-ipramine, -triptyline	TCA	Imipramine, amitriptyline
-triptan	5-HT ${ }_{\text {1B/1D }}$ agonist	Sumatriptan
-zepam, -zolam	Benzodiazepine	Diazepam, alprazolam
Autonomic		
-chol	Cholinergic agonist	Bethanechol, carbachol
-curium, -curonium	Nondepolarizing paralytic	Atracurium, vecuronium
-olol	β-blocker	Propranolol
-stigmine	AChE inhibitor	Neostigmine
-terol	β_{2}-agonist	Albuterol
-zosin	α_{1}-antagonist	Prazosin
Cardiovascular		
-afil	PDE-5 inhibitor	Sildenafil
-dipine	Dihydropyridine Ca^{2+} channel blocker	Amlodipine
-pril	ACE inhibitor	Captopril
-sartan	Angiotensin-II receptor blocker	Losartan
-xaban	Direct factor Xa inhibitor	Apixaban, edoxaban, rivaroxaban
Other		
-dronate	Bisphosphonate	Alendronate
-gliptin	DPP-4 inhibitors	Sitagliptin
-glitazone	PPAR- γ activator	Rosiglitazone
-limus	Calcineurin inhibitor	Everolimus, tacrolimus
-prazole	Proton pump inhibitor	Omeprazole
-prost	Prostaglandin analog	Latanoprost
-sentan	Endothelin receptor antagonist	Bosentan
-tidine	H_{2}-antagonist	Cimetidine
-tropin	Pituitary hormone	Somatotropin

Biologic agents

ENDING	CATEGORY	EXAMPLE
Monoclonal antibodies (-mab)-target overexpressed cell surface receptors		
-ximab	Chimeric human-mouse monoclonal Ab	Rituximab
-zumab	Humanized mouse monoclonal Ab	Bevacizumab
-mumab	Human monoclonal Ab	Ipilimumab
Small molecule inhibitors (-ib)-target intracellular molecules		
-tinib	Tyrosine kinase inhibitor	Imatinib
-zomib	Proteasome inhibitor	Bortezomib
-ciclib	Cyclin-dependent kinase inhibitor	Palbociclib
Receptor fusion proteins (-cept)		
-cept	TNF- α antagonist	Etanercept
Interleukin receptor modulators (-kin)-agonists and antagonists of interleukin receptors		
-leukin	IL-2 agonist/analog	Aldesleukin
-kinra	Interleukin receptor antagonist	Anakinra

HIGH-YIELD PRINCIPLES IN

Public Health Sciences

"It is a mathematical fact that fifty percent of all doctors graduate in the bottom half of their class."
-Unknown
"There are two kinds of statistics: the kind you look up and the kind you make up."
-Rex Stout
"On a long enough timeline, the survival rate for everyone drops to zero."
-Chuck Palahniuk
"There are three kinds of lies: lies, damned lies, and statistics."
-Mark Twain

A heterogenous mix of epidemiology, biostatistics, ethics, law, healthcare delivery, patient safety, quality improvement, and more falls under the heading of public health sciences. Biostatistics and epidemiology are the foundations of evidence-based medicine and are very high yield. Make sure you can quickly apply biostatistical equations such as sensitivity, specificity, and predictive values in a problem-solving format. Also, know how to set up your own 2×2 tables. Quality improvement and patient safety topics were introduced a few years ago on the exam and represent trends in health system science. Medical ethics questions often require application of principles. Typically, you are presented with a patient scenario and then asked how you would respond.

PUBLIC HEALTH SCIENCES—EPIDEMIOLOGY AND BIOSTATISTICS

Observational studies

STUDY TYPE	DESIGN	MEASURES/EXAMPLE
Cross-sectional study	Frequency of disease and frequency of riskrelated factors are assessed in the present. Asks, "What is happening?"	Disease prevalence. Can show risk factor association with disease, but does not establish causality.
Case-control study	Compares a group of people with disease to a group without disease. Looks to see if odds of prior exposure or risk factor differs by disease state. Asks, "What happened?"	Odds ratio (OR). Patients with COPD had higher odds of a smoking history than those without COPD.
Cohort study	Compares a group with a given exposure or risk factor to a group without such exposure. Looks to see if exposure or risk factor is associated with later development of disease. Can be prospective (asks, "Who will develop disease?") or retrospective (asks, "Who developed the disease [exposed vs nonexposed]?").	Relative risk (RR). Smokers had a higher risk of developing COPD than nonsmokers.
Twin concordance study	Compares the frequency with which both monozygotic twins vs both dizygotic twins develop the same disease.	Measures heritability and influence of environmental factors ("nature vs nurture").
Adoption study	Compares siblings raised by biological vs adoptive parents.	Measures heritability and influence of environmental factors.

Clinical trial

Experimental study involving humans. Compares therapeutic benefits of 2 or more treatments, or of treatment and placebo. Study quality improves when study is randomized, controlled, and double-blinded (ie, neither patient nor doctor knows whether the patient is in the treatment or control group). Triple-blind refers to the additional blinding of the researchers analyzing the data. Four phases ("Does the drug SWIM?").

DRUG TRIALS	TYPICAL STUDY SAMPLE	PURPOSE
Phase I	Small number of healthy volunteers or patients with disease of interest.	"Is it Safe?" Assesses safety, toxicity, pharmacokinetics, and pharmacodynamics.
Phase II	Moderate number of patients with disease of interest.	"Does it Work?" Assesses treatment efficacy, optimal dosing, and adverse effects.
Phase III	Large number of patients randomly assigned either to the treatment under investigation or to the best available treatment (or placebo).	"Is it as good or better?" Compares the new treatment to the current standard of care (any Improvement?).
Phase IV	Postmarketing surveillance of patients after treatment is approved.	"Can it stay?" Detects rare or long-term adverse effects. Can result in treatment being
		withdrawn from Market.

Evaluation of diagnostic tests

Uses 2×2 table comparing test results with the actual presence of disease.
Sensitivity and specificity are fixed properties of a test. PPV and NPV vary depending on disease prevalence in population being tested.

Positive predictive value

Proportion of all people with disease who test positive, or the probability that when the disease is present, the test is positive.
Value approaching 100% is desirable for ruling out disease and indicates a low false-negative rate. High sensitivity test used for screening in diseases with low prevalence.
Specificity (true-
negative rate) negative rate)

Proportion of all people without disease who test negative, or the probability that when the disease is absent, the test is negative. Value approaching 100% is desirable for ruling in disease and indicates a low falsepositive rate. High specificity test used for confirmation after a positive screening test.
Probability that a person who has a positive test result actually has the disease.
$=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$
$=1-\mathrm{FN}$ rate
SN-N-OUT = highly SeNsitive test, when
Negative, rules OUT disease
If sensitivity is 100%, then FN is zero. So, all negatives must be TNs.

$$
\begin{aligned}
& =\mathrm{TN} /(\mathrm{TN}+\mathrm{FP}) \\
& =1-\mathrm{FP} \text { rate }
\end{aligned}
$$

SP-P-IN = highly SPecific test, when Positive, rules IN disease
If specificity is 100%, then FP is zero. So, all positives must be TPs.
$P P V=T P /(T P+F P)$
PPV varies directly with pretest probability (baseline risk, such as prevalence of disease): high pretest probability \rightarrow high PPV

Negative predictive value

Probability that a person with a negative test result actually does not have the disease.

$$
\mathrm{NPV}=\mathrm{TN} /(\mathrm{TN}+\mathrm{FN})
$$

NPV varies inversely with prevalence or pretest probability

POSSIBLE CUTOFF VALUES
A $=100 \%$ sensitivity cutoff value
B = practical compromise between specificity and sensitivity
C $=100 \%$ specificity cutoff value

Lowering the cutoff point:	\uparrow Sensitivity \uparrow NPV
$\mathbf{B} \rightarrow \mathbf{A}$ (\uparrow FP \downarrow FN)	\downarrow Specificity \downarrow PPV
Raising the cutoff point:	\uparrow Specificity \uparrow PPV
$\mathbf{B} \rightarrow \mathbf{C}(\uparrow$ FN \downarrow FP)	\downarrow Sensitivity \downarrow NPV

Likelihood ratio

Likelihood that a given test result would be expected in a patient with the target disorder compared to the likelihood that the same result would be expected in a patient without the target disorder.
$\mathrm{LR}^{+}>10 \mathrm{and} /$ or $\mathrm{LR}^{-}<0.1$ indicate a very useful diagnostic test.
LRs can be multiplied with pretest odds of disease to estimate posttest odds.

$$
\begin{aligned}
& \mathrm{LR}^{+}=\frac{\text { sensitivity }}{1-\text { specificity }}=\frac{\mathrm{TP} \text { rate }}{\text { FP rate }} \\
& \mathrm{LR}^{-}=\frac{1-\text { sensitivity }}{\text { specificity }}=\frac{\mathrm{FN} \text { rate }}{\mathrm{TN} \text { rate }}
\end{aligned}
$$

Quantifying risk Definitions and formulas are based on the classic 2×2 or contingency table.

Odds ratio	Typically used in case-control studies. OR depicts the odds of a certain exposure given an event (eg, disease; a/c) vs the odds of exposure in the absence of that event (eg, no disease; b/d).	$\mathrm{OR}=\frac{\mathrm{a} / \mathrm{c}}{\mathrm{~b} / \mathrm{d}}=\frac{\mathrm{ad}}{\mathrm{bc}}$
Relative risk	Typically used in cohort studies. Risk of developing disease in the exposed group divided by risk in the unexposed group (eg, if 5/10 people exposed to radiation get cancer, and $1 / 10$ people not exposed to radiation get cancer, the relative risk is 5 , indicating a 5 times greater risk of cancer in the exposed than unexposed). For rare diseases (low prevalence), OR approximates RR. $R R=1 \rightarrow$ no association between exposure and disease. $R R>1 \rightarrow$ exposure associated with \uparrow disease occurrence. $R \mathrm{R}<1 \rightarrow$ exposure associated with \downarrow disease occurrence.	$R R=\frac{a /(a+b)}{c /(c+d)}$
Attributable risk	The difference in risk between exposed and unexposed groups (eg, if risk of lung cancer in smokers is 21% and risk in nonsmokers is 1%, then the attributable risk is 20%).	$A R=\frac{a}{a+b}-\frac{c}{c+d}$
Relative risk reduction	The proportion of risk reduction attributable to the intervention as compared to a control (eg, if 2% of patients who receive a flu shot develop the flu, while 8% of unvaccinated patients develop the flu, then $R R=2 / 8=0.25$, and $\operatorname{RRR}=0.75$).	$R R \mathrm{R}=1-\mathrm{RR}$
Absolute risk reduction	The difference in risk (not the proportion) attributable to the intervention as compared to a control (eg, if 8% of people who receive a placebo vaccine develop the flu vs 2% of people who receive a flu vaccine, then $\operatorname{ARR}=8 \%-2 \%=6 \%=.06)$.	$\operatorname{ARR}=\frac{c}{c+d}-\frac{a}{a+b}$
Number needed to treat	Number of patients who need to be treated for 1 patient to benefit. Lower number $=$ better treatment.	$\mathrm{NNT}=1 / \mathrm{ARR}$
Number needed to harm	Number of patients who need to be exposed to a risk factor for l patient to be harmed. Higher number $=$ safer exposure.	$\mathrm{NNH}=1 / \mathrm{AR}$

Precision vs accuracy

Precision (reliability) The consistency and reproducibility of a test. The absence of random variation in a test.

The trueness of test measurements. The absence of systematic error or bias in a test.

Random error \downarrow precision in a test. \uparrow precision $\rightarrow \downarrow$ standard deviation. \uparrow precision $\rightarrow \uparrow$ statistical power $(1-\beta)$.

Bias and study errors

TYPE	DEFINITION	EXAMPLES	STRATEGIES TO REDUCE BIAS
Recruiting participants			
Selection bias	Nonrandom sampling or treatment allocation of subjects such that study population is not representative of target population. Most commonly a sampling bias.	Berkson bias-study population selected from hospital is less healthy than general population Non-response biasparticipating subjects differ from nonrespondents in meaningful ways	Randomization Ensure the choice of the right comparison/reference group
Performing study			
Recall bias	Awareness of disorder alters recall by subjects; common in retrospective studies.	Patients with disease recall exposure after learning of similar cases	Decrease time from exposure to follow-up
Measurement bias	Information is gathered in a systemically distorted manner.	Association between HTN and MI not observed when using faulty automatic sphygmomanometer Hawthorne effect-participants change behavior upon awareness of being observed	Use objective, standardized, and previously tested methods of data collection that are planned ahead of time Use placebo group
Procedure bias	Subjects in different groups are not treated the same.	Patients in treatment group spend more time in highly specialized hospital units	Blinding and use of placebo reduce influence of participants and researchers
Observer-expectancy bias	Researcher's belief in the efficacy of a treatment changes the outcome of that treatment (aka, Pygmalion effect).	An observer expecting treatment group to show signs of recovery is more likely to document positive outcomes	on procedures and interpretation of outcomes as neither are aware of group allocation
Interpreting results			
Confounding bias	When a factor is related to both the exposure and outcome, but not on the causal pathway, it distorts or confuses effect of exposure on outcome. Contrast with effect modification.	Pulmonary disease is more common in coal workers than the general population; however, people who work in coal mines also smoke more frequently than the general population	Multiple/repeated studies Crossover studies (subjects act as their own controls) Matching (patients with similar characteristics in both treatment and control groups)
Lead-time bias	Early detection is confused with \uparrow survival.	Early detection makes it seem like survival has increased, but the disease's natural history has not changed	Measure "back-end" survival (adjust survival according to the severity of disease at the time of diagnosis)
Length-time bias	Screening test detects diseases with long latency period, while those with shorter latency period become	A slowly progressive cancer is more likely detected by a screening test than a rapidly progressive cancer	A randomized controlled trial assigning subjects to the screening program or to no screening

Measures of central tendency	Mean $=($ sum of values $) /$ (total number of values $).$	Most affected by outliers (extreme values).
	Median = middle value of a list of data sorted from least to greatest.	If there is an even number of values, the median will be the average of the middle two values.
	Mode $=$ most common value .	Least affected by outliers.
Measures of dispersion	Standard deviation $=$ how much variability exists in a set of values, around the mean of these values. Standard error $=$ an estimate of how much variability exists in a (theoretical) set of sample means around the true population mean.	$\begin{aligned} & \sigma=\text { SD; } n=\text { sample size. } \\ & \text { Variance }=(\text { SD })^{2} . \\ & \text { SE }=\sigma / \sqrt{n .} \\ & \text { SE } \downarrow \text { as } n \uparrow . \end{aligned}$
Normal distribution	Gaussian, also called bell-shaped. Mean $=$ median $=$ mode .	
Nonnormal distributions		
Bimodal	Suggests two different populations (eg, metabolic polymorphism such as fast vs slow acetylators; age at onset of Hodgkin lymphoma; suicide rate by age).	
Positive skew	Typically, mean $>$ median $>$ mode. Asymmetry with longer tail on right.	
Negative skew	Typically, mean < median < mode. Asymmetry with longer tail on left.	

Statistical hypotheses

Null (H_{0})
Hypothesis of no difference or relationship (eg, there is no association between the disease and the risk factor in the population).
Alternative $\left(\mathrm{H}_{1}\right) \quad$ Hypothesis of some difference or relationship (eg, there is some association between the disease and the risk factor in the population).

Outcomes of statistical hypothesis testing

Correct result	Stating that there is an effect or difference when one exists (null hypothesis rejected in favor of alternative hypothesis). Stating that there is no effect or difference when none exists (null hypothesis not rejected).	Reality		
		Study rejects H_{0}	H_{1}	H_{0}
			Power $(1-\beta)$	α Type I error
		Study does not reject H_{0}	β Type II error	Correct
Incorrect result				
Type I error (α)	Stating that there is an effect or difference when none exists (null hypothesis incorrectly rejected in favor of alternative hypothesis). α is the probability of making a type I error. p is judged against a preset α level of significance (usually 0.05). If $p<0.05$, then there is less than a 5% chance that the data will show something that is not really there.	$\alpha=$ you accused an innocent man. You can never "prove" the alternate hypothesis, but you can reject the null hypothesis as being very unlikely.		
Type II error (β)	Stating that there is not an effect or difference when one exists (null hypothesis is not rejected when it is in fact false).	Also known as false-negative error.		
	```\(\beta\) is the probability of making a type II error. \(\beta\) is related to statistical power \((1-\beta)\), which is the probability of rejecting the null hypothesis when it is false. \(\uparrow\) power and \(\downarrow \beta\) by: - \(\uparrow\) sample size - \(\uparrow\) expected effect size - \(\uparrow\) precision of measurement```	$\beta=$ you blindly let the guilty man go free.   If you $\uparrow$ sample size, you $\uparrow$ power. There is power in numbers.		

## Confidence interval

Range of values within which the true mean of the population is expected to fall, with a specified probability.
CI for sample mean $=\overline{\mathrm{x}} \pm \mathrm{Z}(\mathrm{SE})$
The $95 \%$ CI (corresponding to $\alpha=.05$ ) is often used.
For the $95 \% \mathrm{CI}, \mathrm{Z}=1.96$.
For the $99 \%$ CI, $Z=2.58$.

If the $95 \%$ CI for a mean difference between 2 variables includes 0 , then there is no significant difference and $\mathrm{H}_{0}$ is not rejected.
If the $95 \%$ CI for odds ratio or relative risk includes $1, \mathrm{H}_{0}$ is not rejected.
If the CIs between 2 groups do not overlap $\rightarrow$ statistically significant difference exists. If the CIs between 2 groups overlap $\rightarrow$ usually no significant difference exists.

## Meta-analysis

A method of statistical analysis that pools summary data (eg, means, RRs) from multiple studies for a more precise estimate of the size of an effect. Also estimates heterogeneity of effect sizes between studies.
Improves strength of evidence and generalizability of study findings. Limited by quality of individual studies and bias in study selection.

## Common statistical tests

Checks differences between means of 2 groups.	Tea is meant for 2.   Example: comparing the mean blood pressure   between men and women.	
ANOVA	Checks differences between means of 3 or more   groups.	3 words: ANalysis Of VAriance.   Example: comparing the mean blood pressure   between members of 3 different ethnic groups.
Chi-square $\left(\chi^{2}\right)$	Checks differences between 2 or more   percentages or proportions of categorical   outcomes (not mean values).	Pronounce Chi-tegorical.   Example: comparing the percentage of members   of 3 different ethnic groups who have essential   hypertension.

## Pearson correlation coefficient

$r$ is always between -1 and +1 . The closer the absolute value of $r$ is to $l$, the stronger the linear correlation between the 2 variables.
Positive $r$ value $\rightarrow$ positive correlation (as one variable $\uparrow$, the other variable $\uparrow$ ).
Negative $r$ value $\rightarrow$ negative correlation (as one variable $\uparrow$, the other variable $\downarrow$ ).
Coefficient of determination $=r^{2}$ (amount of variance in one variable that can be explained by variance in another variable).



Weak negative correlation


No correlation


Weak positive correlation


Strong positive correlation 㘣

## - BEHAVIORAL SCIENCE—ETHICS

## Core ethical principles

Autonomy	Obligation to respect patients as individuals (truth-telling, confidentiality), to create conditions   necessary for autonomous choice (informed consent), and to honor their preference in accepting   or not accepting medical care.
Beneficence	Physicians have a special ethical (fiduciary) duty to act in the patient's best interest. May conflict   with autonomy (an informed patient has the right to decide) or what is best for society (eg,   mandatory TB treatment). Traditionally, patient interest supersedes.
Nonmaleficence	"Do no harm." Must be balanced against beneficence; if the benefits outweigh the risks, a patient   may make an informed decision to proceed (most surgeries and medications fall into this   category).
Justice	To treat persons fairly and equitably. This does not always imply equally (eg, triage).

## Informed consent

A process (not just a document/signature) that requires:

- Disclosure: discussion of pertinent information
- Understanding: ability to comprehend
- Capacity: ability to reason and make one's own decisions (distinct from competence, a legal determination)
- Voluntariness: freedom from coercion and manipulation
Patients must have an intelligent understanding of their diagnosis and the risks/benefits of proposed treatment and alternative options, including no treatment.
Patient must be informed that he or she can revoke written consent at any time, even orally.

Exceptions to informed consent (WIPE it away):

- Waiver-patient explicitly waives the right of informed consent
- Legally Incompetent-patient lacks decisionmaking capacity (obtain consent from legal surrogate)
- Therapeutic Privilege-withholding information when disclosure would severely harm the patient or undermine informed decision-making capacity
- Emergency situation-implied consent may apply


## Consent for minors

A minor is generally any person $<18$ years old. Parental consent laws in relation to healthcare vary by state. In general, parental consent should be obtained, but exceptions exist for emergency treatment (eg, blood transfusions) or if minor is legally emancipated (eg, married, self supporting, or in the military).

Situations in which parental consent is usually not required:

- Sex (contraception, STIs, pregnancy)
- Drugs (substance abuse)
- Rock and roll (emergency/trauma)

Physicians should always encourage healthy minor-guardian communication.
Physician should seek a minor's assent even if their consent is not required.

## Decision-making capacity

Physician must determine whether the patient is psychologically and legally capable of making a particular healthcare decision. Note that decisions made with capacity cannot be revoked simply if the patient later loses capacity.
Capacity is determined by a physician for a specific healthcare-related decision (eg, to refuse medical care). Competency is determined by a judge and usually refers to more global categories of decision making (eg, legally unable to make any healthcare-related decision).
Components (think GIEMSA):

- Decision is consistent with patient's values and Goals
- Patient is Informed (knows and understands)
- Patient Expresses a choice
- Decision is not a result of altered Mental status (eg, delirium, psychosis, intoxication), Mood disorder
- Decision remains Stable over time
- Patient is $\geq 18$ years of Age or otherwise legally emancipated

Advance directives
Instructions given by a patient in anticipation of the need for a medical decision. Details vary per state law.
Oral advance directive Incapacitated patient's prior oral statements commonly used as guide. Problems arise from variance in interpretation. If patient was informed, directive was specific, patient made a choice, and decision was repeated over time to multiple people, then the oral directive is more valid.

Written advance   directive
Medical power of   attorney
Ppecifies specific healthcare interventions that a patient anticipates he or she would accept or reject   during treatment for a critical or life-threatening illness. A living will is an example.
Do not resuscitate   making capacity. Patient may also specify decisions in clinical situations. Can be revoked by   patient if decision-making capacity is intact. More flexible than a living will.
:---
follow (eg, intubation) are also typically avoided.

If a patient loses decision-making capacity and has not prepared an advance directive, individuals (surrogates) who know the patient must determine what the patient would have done. Priority of surrogates: spouse $\rightarrow$ adult Children $\rightarrow$ Parents $\rightarrow$ Siblings $\rightarrow$ other relatives (the spouse ChiPS in).

## Ethical situations

SITUATION
Patient is not adherent.

Patient desires an unnecessary procedure.

Patient has difficulty taking medications.
Family members ask for information about patient's prognosis.
A patient's family member asks you not to disclose the results of a test if the prognosis is poor because the patient will be "unable to handle it."

A 17-year-old girl is pregnant and requests an abortion.

A 15-year-old girl is pregnant and wants to keep the child. Her parents want you to tell her to give the child up for adoption.

A terminally ill patient requests physician assistance in ending his/ her own life.
Patient is suicidal.

Patient states that he/she finds you attractive.

A woman who had a mastectomy says she now feels "ugly."
Patient is angry about the long time he/she spent in the waiting room.
Patient is upset with the way he/she was treated by another doctor.

An invasive test is performed on the wrong patient.
A patient requires a treatment not covered by his/her insurance.

## APPROPRIATE RESPONSE

Attempt to identify the reason for nonadherence and determine his/her willingness to change; do not coerce the patient into adhering and do not refer him/her to another physician.
Attempt to understand why the patient wants the procedure and address underlying concerns. Do not refuse to see the patient and do not refer him/her to another physician. Avoid performing unnecessary procedures.
Provide written instructions; attempt to simplify treatment regimens; use teach-back method (ask patient to repeat regimen back to physician) to ensure comprehension.
Avoid discussing issues with relatives without the patient's permission.

Attempt to identify why the family member believes such information would be detrimental to the patient's condition. Explain that as long as the patient has decisionmaking capacity and does not indicate otherwise, communication of information concerning his/her care will not be withheld. However, if you believe the patient might seriously harm himself or others if informed, then you may invoke therapeutic privilege and withhold the information.
Many states require parental notification or consent for minors for an abortion. Unless there are specific medical risks associated with pregnancy, a physician should not sway the patient's decision for, or against, an elective abortion (regardless of maternal age or fetal condition).
The patient retains the right to make decisions regarding her child, even if her parents disagree. Provide information to the teenager about the practical issues of caring for a baby. Discuss the options, if requested. Encourage discussion between the teenager and her parents to reach the best decision.
In the overwhelming majority of states, refuse involvement in any form of physicianassisted suicide. Physicians may, however, prescribe medically appropriate analgesics that coincidentally shorten the patient's life.
Assess the seriousness of the threat. If it is serious, suggest that the patient remain in the hospital voluntarily; patient can be hospitalized involuntarily if he/she refuses.
Ask direct, closed-ended questions and use a chaperone if necessary. Romantic relationships with patients are never appropriate. It may be necessary to transition care to another physician.
Find out why the patient feels this way. Do not offer falsely reassuring statements (eg, "You still look good").
Acknowledge the patient's anger, but do not take a patient's anger personally. Apologize for any inconvenience. Stay away from efforts to explain the delay.
Suggest that the patient speak directly to that physician regarding his/her concerns. If the problem is with a member of the office staff, tell the patient you will speak to that person.
Regardless of the outcome, a physician is ethically obligated to inform a patient that a mistake has been made.
Never limit or deny care because of the expense in time or money. Discuss all treatment options with patients, even if some are not covered by their insurance companies.

Ethical situations (continued)
SITUation
A 7-year-old boy loses a sister to
cancer and now feels responsible

Patient is victim of intimate partner violence.

Patient wants to try alternative or holistic medicine.
Physician colleague presents to work impaired.

Patient is officially determined to suffer brain death. Patient's family insists on maintaining life support indefinitely because patient is still moving when touched.
A pharmaceutical company offers you a sponsorship in exchange for advertising its new drug.

An adult refuses care because it is against his/her religious beliefs.

Mother and 15 -year-old daughter are unresponsive following a car accident and are bleeding internally. Father says do not transfuse because they are Jehovah's Witnesses.

A 2-year-old girl presents with injuries inconsistent with parental story.

APPROPRIATE RESPONSE
At ages 5-7, children begin to understand that death is permanent, that all life functions end completely at death, and that everything that is alive eventually dies. Provide a direct, concrete description of his sister's death. Avoid clichés and euphemisms. Reassure the boy that he is not responsible. Identify and normalize fears and feelings. Encourage play and healthy coping behaviors (eg, remembering her in his own way).

Ask if patient is safe and has an emergency plan. Do not necessarily pressure patient to leave his or her partner, or disclose the incident to the authorities (unless required by state law).

Find out why and allow patient to do so as long as there are no contraindications, medication interactions, or adverse effects to the new treatment.
If impaired or incompetent, colleague is a threat to patient safety. Report the situation to local supervisory personnel. Should the organization fail to take action, alert the state licensing board.
Gently explain to family that there is no chance of recovery, and that brain death is equivalent to death. Movement is due to spinal arc reflex and is not voluntary. Bring case to appropriate ethics board regarding futility of care and withdrawal of life support.

Reject this offer. Generally, decline gifts and sponsorships to avoid any appearance of conflict of interest. The AMA Code of Ethics does make exceptions for gifts directly benefitting patients; gifts of minimal value; special funding for medical education of students, residents, fellows; grants whose recipients are chosen by independent institutional criteria; and funds that are distributed without attribution to sponsors.
Work with the patient by either explaining the treatment or pursuing alternative treatments. However, a physician should never force a competent adult to receive care if it is contrary to the patient's religious beliefs.

Transfuse daughter, but do not transfuse mother. Emergent care can be refused by the healthcare proxy for an adult, particularly when patient preferences are known or reasonably inferred, but not for a minor based solely on faith.

Contact child protective services and ensure child is in a safe location. Physicians are required by law to report any reasonable suspicion of child abuse or endangerment.

## Confidentiality

Confidentiality respects patient privacy and autonomy. If the patient is incapacitated or the situation is emergent, disclosing information to family and friends should be guided by professional judgment of patient's best interest. The patient may voluntarily waive the right to confidentiality (eg, insurance company request).
General principles for exceptions to confidentiality:

- Potential physical harm to others is serious and imminent
- Likelihood of harm to self is great
- No alternative means exist to warn or to protect those at risk
- Physicians can take steps to prevent harm

Examples of exceptions to patient confidentiality (many are state-specific) include the following
("The physician's good judgment SAVED the day"):

- Suicidal/homicidal patients
- Abuse (children, elderly, and/or prisoners)
- Duty to protect-State-specific laws that sometimes allow physician to inform or somehow protect potential Victim from harm.
- Epileptic patients and other impaired automobile drivers.
- Reportable Diseases (eg, STIs, hepatitis, food poisoning); physicians may have a duty to warn public officials, who will then notify people at risk. Dangerous communicable diseases, such as TB or Ebola, may require involuntary treatment.


## - PUBLIC HEALTH SCIENCES - THE WELL PATIENT

Car seats for children Children should ride in rear-facing car seats until they are 2 years old and in car seats with a harness until they are 4 years. Older children should use a booster seat until they are 8 years old or until the seat belt fits properly. Children $<12$ years old should not ride in a seat with a frontfacing airbag.

## Changes in the elderly

Sexual changes:

- Men-slower erection/ejaculation, longer refractory period.
- Women-vaginal shortening, thinning, and dryness.

Sleep patterns: $\downarrow$ REM and slow-wave sleep; $\uparrow$ sleep onset latency; $\uparrow$ early awakenings.
$\uparrow$ suicide rate.
$\downarrow$ vision and hearing.
$\downarrow$ immune response.
$\downarrow$ renal, pulmonary, and GI function.
$\downarrow$ muscle mass, $\uparrow$ fat.
Intelligence does not decrease.

## PUBLIC HEALTH SCIENCES—HEALTHCARE DELIVERY

## Disease prevention

## prevention

Secondary disease prevention

Tertiary disease prevention
Quaternary disease prevention

Primary disease Prevent disease before it occurs (eg, HPV vaccination)

Screen early for and manage existing but asymptomatic disease (eg, Pap smear for cervical cancer)

Treatment to reduce complications from disease that is ongoing or has long-term effects (eg, chemotherapy)
Identifying patients at risk of unnecessary treatment, protecting from the harm of new interventions (eg, electronic sharing of patient records to avoid duplicating recent imaging studies)

## Major medical insurance plans

PLAN	PROVIDERS	PAYMENTS	SPECIALISTCARE
Exclusive provider   organization	Restricted to limited panel   (except emergencies)		No referral required
Health maintenance   organization	Restricted to limited panel   (except emergencies)	Denied for any service that   does not meet established,   evidence-based guidelines	Requires referral from   primary care provider
Point of service	Patient can see providers   outside network	Higher copays and   deductibles for out-of-   network services	Requires referral from   primary care provider
Preferred provider   organization	Patient can see providers   outside network	Higher copays and   deductibles for all services	No referral required

## Healthcare payment models

Bundled payment

Discounted fee-forservice

Fee-for-service
Global payment

Capitation Physicians receive a set amount per patient assigned to them per period of time, regardless of how much the patient uses the healthcare system. Used by some HMOs.
Healthcare organization receives a set amount per service, regardless of ultimate cost, to be divided among all providers and facilities involved.

Patient pays for each individual service at a discounted rate predetermined by providers and payers (eg, PPOs).
Patient pays for each individual service.
Patient pays for all expenses associated with a single incident of care with a single payment. Most commonly used during elective surgeries, as it covers the cost of surgery as well as the necessary pre- and postoperative visits.

## Medicare and Medicaid

Medicare and Medicaid-federal social healthcare programs that originated from amendments to the Social Security Act.
Medicare is available to patients $\geq 65$ years old, $<65$ with certain disabilities, and those with end-stage renal disease.
Medicaid is joint federal and state health assistance for people with limited income and/ or resources.

MedicarE is for Elderly. MedicaiD is for Destitute.

The 4 parts of Medicare:

- Part A: HospitAl insurance, home hospice care
- Part B: Basic medical bills (eg, doctor's fees, diagnostic testing)
- Part C: (parts A + B = Combo) delivered by approved private companies
- Part D: Prescription Drugs


## Hospice care

Medical care focused on providing comfort and palliation instead of definitive cure. Available to patients on Medicare or Medicaid and in most private insurance plans whose life expectancy is $<6$ months.
During end-of-life care, priority is given to improving the patient's comfort and relieving pain (often includes opioid, sedative, or anxiolytic medications). Facilitating comfort is prioritized over potential side effects (eg, respiratory depression). This prioritization of positive effects over negative effects is known as the principle of double effect.

Common causes of death (US) by age

	$<1$ YR	1-14YR	$15-34$ YR	$35-44$ YR	$45-64$ YR	65+YR
\#1	Congenital   malformations	Unintentional   injury	Unintentional   injury	Unintentional   injury	Cancer	Heart disease
\#2	Preterm birth	Cancer	Suicide	Cancer	Heart disease	Cancer
\#3	SIDS	Congenital   malformations	Homicide	Heart disease	Unintentional   injury	Chronic   respiratory   disease

Hospitalized conditions with frequent readmissions
$\left.\begin{array}{lllll}\hline & \text { MEDICARE } & \text { MEDICAID } & \text { PRIVATE INSURANCE } & \text { UNINSURED } \\ \hline \text { \#1 } & \text { Congestive HF } & \text { Mood disorders } & \begin{array}{c}\text { Maintenance of } \\ \text { chemotherapy or }\end{array} & \text { Mood disorders } \\ \text { radiotherapy }\end{array}\right]$

## PUBLIC HEALTH SCIENCES—QUALITY AND SAFETY

Safety culture

Organizational environment in which everyone can freely bring up safety concerns without fear of censure. Facilitates error identification.

Event reporting systems collect data on errors for internal and external monitoring.

## Human factors design

Forcing functions (those that prevent undesirable actions [eg, connecting feeding syringe to IV tubing]) are the most effective. Standardization improves process reliability (eg, clinical pathways, guidelines, checklists). Simplification reduces wasteful activities (eg, consolidating electronic medical records).

Deficient designs hinder workflow and lead to staff workarounds that bypass safety features (eg, patient ID barcodes affixed to computers due to unreadable wristbands).

PDSA cycle
Process improvement model to test changes in real clinical setting. Impact on patients:

- Plan-define problem and solution
- Do-test new process
- Study-measure and analyze data
- Act-integrate new process into regular workflow


Quality measurements

	MEASURE	EXAMPLE
Structural	Physical equipment, resources, facilities	Number of diabetes educators
Process	Performance of system as planned	Percentage of diabetic patients whose $\mathrm{HbA}_{l \mathrm{l}}$ was   measured in the past 6 months
Outcome	Impact on patients	Average $\mathrm{HbA} \mathrm{ll}_{\mathrm{lc}}$ of patients with diabetes

## Swiss cheese model

Focuses on systems and conditions rather than an individual's error. The risk of a threat becoming a reality is mitigated by differing layers and types of defenses. Patient harm can occur despite multiple safeguards when "the holes in the cheese line up."


Types of medical errors

Active error

Latent error

May involve patient identification, diagnosis, monitoring, nosocomial infection, medications, procedures, devices, documentation, handoffs. Medical errors should be disclosed to patients, independent of immediate outcome (harmful or not).

$$
4-1-2+2+2
$$

Occurs at level of frontline operator (eg, wrong Immediate impact.
IV pump dose programmed).
Occurs in processes indirect from operator but
Accident waiting to happen.

Medical error analysis

	DESIGN	METHODS
Root cause analysis	Retrospective approach. Applied after failure   event to prevent recurrence.	Uses records and participant interviews to identify   all the underlying problems (eg, process,   people, environment, equipment, materials,   management) that led to an error.
Failure mode and   effects analysis	Forward-looking approach. Applied before   process implementation to prevent failure   occurrence.	Uses inductive reasoning to identify all the ways   a process might fail and prioritizes them by   their probability of occurrence and impact on   patients.

## SECTION III

## High-Yield Organ Systems

"Symptoms, then, are in reality nothing but the cry from suffering organs." -Jean-Martin Charcot
"Man is an intelligence in servitude to his organs."

> -Aldous Huxley
"When every part of the machine is correctly adjusted and in perfect harmony, health will hold dominion over the human organism by laws as natural and immutable as the laws of gravity."
-Andrew T. Still

Approaching the	
Organ Systems	270
Cardiovascular	273
Endocrine	319
Gastrointestinal	351
Hematology and   Oncology	395

> Musculoskeletal,
Skin, and Connective
Tissue
$>$ Neurology and
Special Senses

## - APPROACHING THE ORGAN SYSTEMS

In this section, we have divided the High-Yield Facts into the major Organ Systems. Within each Organ System are several subsections, including Embryology, Anatomy, Physiology, Pathology, and Pharmacology. As you progress through each Organ System, refer back to information in the previous subsections to organize these basic science subsections into a "vertically integrated" framework for learning. Below is some general advice for studying the organ systems by these subsections.

## Embryology

Relevant embryology is included in each organ system subsection. Embryology tends to correspond well with the relevant anatomy, especially with regard to congenital malformations.

## Anatomy

Several topics fall under this heading, including gross anatomy, histology, and neuroanatomy. Do not memorize all the small details; however, do not ignore anatomy altogether. Review what you have already learned and what you wish you had learned. Many questions require two or more steps. The first step is to identify a structure on anatomic cross section, electron micrograph, or photomicrograph. The second step may require an understanding of the clinical significance of the structure.

When studying, stress clinically important material. For example, be familiar with gross anatomy and radiologic anatomy related to specific diseases (eg, Pancoast tumor, Horner syndrome), traumatic injuries (eg, fractures, sensory and motor nerve deficits), procedures (eg, lumbar puncture), and common surgeries (eg, cholecystectomy). There are also many questions on the exam involving x-rays, CT scans, and neuro MRI scans. Many students suggest browsing through a general radiology atlas, pathology atlas, and histology atlas. Focus on learning basic anatomy at key levels in the body (eg, sagittal brain MRI; axial CT of the midthorax, abdomen, and pelvis). Basic neuroanatomy (especially pathways, blood supply, and functional anatomy), associated neuropathology, and neurophysiology have good yield. Please note that many of the photographic images in this book are for illustrative purposes and are not necessarily reflective of Step 1 emphasis.

## Physiology

The portion of the examination dealing with physiology is broad and concept oriented and thus does not lend itself as well to fact-based review. Diagrams are often the best study aids, especially given the increasing number of questions requiring the interpretation of diagrams. Learn to apply basic physiologic relationships in a variety of ways (eg, the Fick equation, clearance equations). You are seldom asked to perform complex
calculations. Hormones are the focus of many questions, so learn their sites of production and action as well as their regulatory mechanisms.

A large portion of the physiology tested on the USMLE Step 1 is clinically relevant and involves understanding physiologic changes associated with pathologic processes (eg, changes in pulmonary function with COPD). Thus, it is worthwhile to review the physiologic changes that are found with common pathologies of the major organ systems (eg, heart, lungs, kidneys, GI tract) and endocrine glands.

## Pathology

Questions dealing with this discipline are difficult to prepare for because of the sheer volume of material involved. Review the basic principles and hallmark characteristics of the key diseases. Given the clinical orientation of Step l, it is no longer sufficient to know only the "buzzword" associations of certain diseases (eg, café-au-lait macules and neurofibromatosis); you must also know the clinical descriptions of these findings.

Given the clinical slant of the USMLE Step 1, it is also important to review the classic presenting signs and symptoms of diseases as well as their associated laboratory findings. Delve into the signs, symptoms, and pathophysiology of major diseases that have a high prevalence in the United States (eg, alcoholism, diabetes, hypertension, heart failure, ischemic heart disease, infectious disease). Be prepared to think one step beyond the simple diagnosis to treatment or complications.

The examination includes a number of color photomicrographs and photographs of gross specimens that are presented in the setting of a brief clinical history. However, read the question and the choices carefully before looking at the illustration, because the history will help you identify the pathologic process. Flip through an illustrated pathology textbook, color atlases, and appropriate Web sites in order to look at the pictures in the days before the exam. Pay attention to potential clues such as age, sex, ethnicity, occupation, recent activities and exposures, and specialized lab tests.

## Pharmacology

Preparation for questions on pharmacology is straightforward. Memorizing all the key drugs and their characteristics (eg, mechanisms, clinical use, and important side effects) is high yield. Focus on understanding the prototype drugs in each class. Avoid memorizing obscure derivatives. Learn the "classic" and distinguishing toxicities of the major drugs. Do not bother with drug dosages or trade names. Reviewing associated biochemistry, physiology, and microbiology can be useful while studying pharmacology. There is a strong emphasis on ANS, CNS, antimicrobial, and cardiovascular agents as well as NSAIDs. Much of the material is clinically relevant. Newer drugs on the market are also fair game.

## HIGH-YIELD SYSTEMS

## Cardiovascular

"As for me, except for an occasional heart attack, I feel as young as I ever did."
-Robert Benchley
"Hearts will never be practical until they are made unbreakable."
-The Wizard of Oz
"As the arteries grow hard, the heart grows soft."
-H. L. Mencken
"Nobody has ever measured, not even poets, how much the heart can hold."
-Zelda Fitzgerald
"Only from the heart can you touch the sky."
-Rumi
"It is not the size of the man but the size of his heart that matters."
-Evander Holyfield

The cardiovascular system is one of the highest yield areas for the boards and, for some students, may be the most challenging. Focusing on understanding the mechanisms instead of memorizing the details can make a big difference, especially for this topic. Pathophysiology of atherosclerosis and heart failure, MOA of drugs (particular physiology interactions) and their adverse effects, ECGs of heart blocks, the cardiac cycle, and the Starling curve are some of the more high-yield topics. Differentiating between systolic and diastolic dysfunction is also very important. Heart murmurs and maneuvers that affect these murmurs have also been high yield.

Dmbryology	274
D Anatomy	277
>Physiology	278
DPathology	294
PPharmacology	310

## - CARDIOVASCULAR—EMBRYOLOGY

Heart embryology	embryonic structure	GIVES RISETo
	Truncus arteriosus	Ascending aorta and pulmonary trunk
	Bulbus cordis	Smooth parts (outflow tract) of left and right ventricles
	Endocardial cushion	Atrial septum, membranous interventricular septum; AV and semilunar valves
	Primitive atrium	Trabeculated part of left and right atria
	Primitive ventricle	Trabeculated part of left and right ventricles
	Primitive pulmonary vein	Smooth part of left atrium
	Left horn of sinus venosus	Coronary sinus
	Right horn of sinus venosus	Smooth part of right atrium (sinus venarum)
	Right common cardinal vein and right anterior cardinal vein	Superior vena cava (SVC)

Heart morphogenesis First functional organ in vertebrate embryos; beats spontaneously by week 4 of development.

Cardiac looping Primary heart tube loops to establish left-right polarity; begins in week 4 of gestation.

Defect in left-right Dynein (involved in L/R asymmetry) can lead to Dextrocardia, as seen in Kartagener syndrome ( $1^{\circ}$ ciliary Dyskinesia).

## Septation of the chambers

Atria
(1) Septum primum grows toward endocardial cushions, narrowing foramen primum.
(2) Foramen secundum forms in septum primum (foramen primum disappears).
(3) Septum secundum develops as foramen secundum maintains right-to-left shunt.
(4) Septum secundum expands and covers most of the foramen secundum. The residual foramen is the foramen ovale.
5 Remaining portion of septum primum forms valve of foramen ovale.
6. (Not shown) Septum secundum and septum primum fuse to form the atrial septum.
7. (Not shown) Foramen ovale usually closes soon after birth because of $\uparrow$ LA pressure.
Patent foramen ovale - caused by failure of septum primum and septum secundum to fuse after birth; most are left untreated. Can lead to paradoxical emboli (venous thromboemboli that enter systemic arterial circulation), similar to those resulting from an ASD.


## Heart morphogenesis (continued)

Ventricles	(1) Muscular interventricular septum forms.
Opening is called interventricular foramen.	
2 Aorticopulmonary septum rotates and fuses	
with muscular ventricular septum to form	
membranous interventricular septum, closing	
interventricular foramen.	
(3) Growth of endocardial cushions separates	
atria from ventricles and contributes to both	
atrial septation and membranous portion of	
the interventricular septum.	
congenital cardiac anomaly, usually occurs in	

## Fetal circulation



Blood in umbilical vein has a $\mathrm{PO}_{2}$ of $\approx 30 \mathrm{~mm} \mathrm{Hg}$ and is $\approx 80 \%$ saturated with $\mathrm{O}_{2}$. Umbilical arteries have low $\mathrm{O}_{2}$ saturation.
3 important shunts:
(1) Blood entering fetus through the umbilical vein is conducted via the ductus venosus into the IVC, bypassing hepatic circulation.
(2) Most of the highly Oxygenated blood reaching the heart via the IVC is directed through the foramen Ovale and pumped into the aorta to supply the head and body.
(3) Deoxygenated blood from the SVC passes through the $\mathrm{RA} \rightarrow \mathrm{RV} \rightarrow$ main pulmonary artery $\rightarrow$ Ductus arteriosus $\rightarrow$ Descending aorta; shunt is due to high fetal pulmonary artery resistance (due partly to low $\mathrm{O}_{2}$ tension).
At birth, infant takes a breath $\rightarrow \downarrow$ resistance in pulmonary vasculature $\rightarrow \uparrow$ left atrial pressure vs right atrial pressure $\rightarrow$ foramen ovale closes (now called fossa ovalis); $\uparrow$ in $\mathrm{O}_{2}$ (from respiration) and $\downarrow$ in prostaglandins (from placental separation) $\rightarrow$ closure of ductus arteriosus.
Indomethacin helps close PDA $\rightarrow$ ligamentum arteriosum (remnant of ductus arteriosus). Prostaglandins $\mathrm{E}_{1}$ and $\mathrm{E}_{2} \mathrm{kEEp}$ PDA open.

Fetal-postnatal derivatives

FETAL STRUCTURE	POSTNATAL DERIVATVE	NOTES
AllaNtois $\rightarrow$ urachus	MediaN umbilical ligament	Urachus is part of allantoic duct between   bladder and umbilicus.
Ductus arteriosus	Ligamentum arteriosum	
Ductus venosus	Ligamentum venosum	
Foramen ovale	Fossa ovalis	
Notochord	Nucleus pulposus	CediaL umbilical ligaments

## - CARDIOVASCULAR-ANATOMY

## Anatomy of the heart



SA node commonly supplied by RCA (blood supply independent of dominance); AV node supplied by PDA. Infarct may cause nodal dysfunction (bradycardia or heart block).
Right-dominant circulation (85\%) $=$ PDA arises from RCA.
Left-dominant circulation (8\%) $=$ PDA arises from LCX.
Codominant circulation (7\%) $=\mathrm{PDA}$ arises from both LCX and RCA.
Coronary artery occlusion most commonly occurs in the LAD.
Coronary blood flow peaks in early diastole.


The most posterior part of the heart is the left atrium $\boldsymbol{A}$; enlargement can cause dysphagia (due to compression of the esophagus) or hoarseness (due to compression of the left recurrent laryngeal nerve, a branch of the vagus nerve).
Pericardium consists of 3 layers (from outer to inner):

- Fibrous pericardium
- Parietal layer of serous pericardium
- Visceral layer of serous pericardium

Pericardial cavity lies between parietal and visceral layers.
Pericardium innervated by phrenic nerve. Pericarditis can cause referred pain to the shoulder.

## CARDIOVASCULAR—PHYSIOLOGY

Cardiac output $\quad$ CO $=$ stroke volume $(\mathrm{SV}) \times$ heart rate $(\mathrm{HR})$
Fick principle:
$\mathrm{CO}=\frac{\text { rate of } \mathrm{O}_{2} \text { consumption }}{\text { arterial } \mathrm{O}_{2} \text { content }- \text { venous } \mathrm{O}_{2} \text { content }}$
Mean arterial pressure $(\mathrm{MAP})=\mathrm{CO} \times$ total peripheral resistance (TPR)

MAP (at resting HR$)=2 / 3$ diastolic pressure $+1 / 3$ systolic pressure

Pulse pressure $=$ systolic pressure - diastolic pressure Pulse pressure is proportional to SV , inversely proportional to arterial compliance.
SV = end-diastolic volume (EDV) - end-systolic volume (ESV)

During the early stages of exercise, CO is maintained by $\uparrow \mathrm{HR}$ and $\uparrow \mathrm{SV}$. During the late stages of exercise, CO is maintained by $\uparrow \mathrm{HR}$ only (SV plateaus).
Diastole is preferentially shortened with $\uparrow \mathrm{HR}$; less filling time $\rightarrow \downarrow \mathrm{CO}$ (eg, ventricular tachycardia).
$\uparrow$ pulse pressure in hyperthyroidism, aortic regurgitation, aortic stiffening (isolated systolic hypertension in elderly), obstructive sleep apnea ( $\uparrow$ sympathetic tone), anemia, exercise (transient).
$\downarrow$ pulse pressure in aortic stenosis, cardiogenic shock, cardiac tamponade, advanced heart failure (HF).

Stroke volume	Stroke Volume affected by Contractility, Afterload, and Preload.   $\uparrow S V$ with:   - $\uparrow$ Contractility (eg, anxiety, exercise)   - $\uparrow$ Preload (eg, early pregnancy)   - $\downarrow$ Afterload	SV CAP.   A failing heart has $\downarrow$ SV (systolic and/or diastolic dysfunction)
Contractility	Contractility (and SV) $\uparrow$ with:   - Catecholamine stimulation via $\beta_{1}$ receptor:   - $\mathrm{Ca}^{2+}$ channels phosphorylated $\rightarrow \uparrow \mathrm{Ca}^{2+}$ entry $\rightarrow \uparrow \mathrm{Ca}^{2+}$-induced $\mathrm{Ca}^{2+}$ release and $\uparrow \mathrm{Ca}^{2+}$ storage in sarcoplasmic reticulum   - Phospholamban phosphorylation $\rightarrow$ active $\mathrm{Ca}^{2+}$ ATPase $\rightarrow \uparrow \mathrm{Ca}^{2+}$ storage in sarcoplasmic reticulum   - $\uparrow$ intracellular $\mathrm{Ca}^{2+}$   - $\downarrow$ extracellular $\mathrm{Na}^{+}\left(\downarrow\right.$ activity of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger)   - Digitalis (blocks $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump $\rightarrow \uparrow$ intracellular $\mathrm{Na}^{+} \rightarrow \downarrow \mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger activity $\rightarrow \uparrow$ intracellular $\mathrm{Ca}^{2+}$ )	Contractility (and SV) $\downarrow$ with:   - $\beta_{1}$-blockade ( $\downarrow$ cAMP)   - HF with systolic dysfunction   - Acidosis   - Hypoxia/hypercapnia ( $\downarrow \mathrm{Po}_{2} / \uparrow \mathrm{Pco}_{2}$ )   - Non-dihydropyridine $\mathrm{Ca}^{2+}$ channel blockers
Preload	Preload approximated by ventricular EDV; depends on venous tone and circulating blood volume.	VEnous vasodilators (eg, nitroglycerin) $\downarrow$ prEload.
Afterload	Afterload approximated by MAP.   $\uparrow$ afterload $\rightarrow \uparrow$ pressure $\rightarrow \uparrow$ wall tension per Laplace's law.   LV compensates for $\uparrow$ afterload by thickening (hypertrophy) in order to $\downarrow$ wall tension.	Arterial vasodilators (eg, hydrAlAzine)   $\downarrow$ Afterload.   ACE inhibitors and ARBs $\downarrow$ both preload and afterload.   Chronic hypertension ( $\uparrow$ MAP) $\rightarrow$ LV hypertrophy.
Myocardial oxygen demand	MyoCARDial $\mathrm{O}_{2}$ demand is $\uparrow$ by:   - $\uparrow$ Contractility   - $\uparrow$ Afterload (proportional to arterial pressure)   - $\uparrow$ heart Rate   - $\uparrow$ Diameter of ventricle ( $\uparrow$ wall tension)	Wall tension follows Laplace's law:   Wall tension $=$ pressure $\times$ radius   Wall stress $=\frac{\text { pressure } \times \text { radius }}{2 \times \text { wall thickness }}$
Ejection fraction	$\mathrm{EF}=\frac{\mathrm{SV}}{\mathrm{EDV}}=\frac{\mathrm{EDV}-\mathrm{ESV}}{\mathrm{EDV}}$   Left ventricular EF is an index of ventricular contractility.	EF $\downarrow$ in systolic HF.   EF normal in HF with preserved ejection fraction.

## Starling curve



Ventricular EDV (preload)

Force of contraction is proportional to enddiastolic length of cardiac muscle fiber (preload).
$\uparrow$ contractility with catecholamines, positive inotropes (eg, digoxin).
$\downarrow$ contractility with loss of myocardium (eg, MI), $\beta$-blockers (acutely), non-dihydropyridine $\mathrm{Ca}^{2+}$ channel blockers, dilated cardiomyopathy.

Resistance, pressure, flow
$\Delta \mathrm{P}=\mathrm{Q} \times \mathrm{R}$
Similar to Ohm's law: $\Delta \mathrm{V}=\mathrm{IR}$
Volumetric flow rate $(\mathrm{Q})=$ flow velocity $(\mathrm{v}) \times$ cross-sectional area (A)
Resistance
$=\frac{\text { driving pressure }(\Delta \mathrm{P})}{\text { flow }(\mathrm{Q})}=\frac{8 \eta \text { (viscosity }) \times \text { length }}{\pi r^{4}}$
Total resistance of vessels in series:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \cdots
$$

Total resistance of vessels in parallel:

$$
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}} \cdots
$$

Capillaries have highest total cross-sectional area and lowest flow velocity.
Pressure gradient drives flow from high pressure to low pressure.
Arterioles account for most of TPR. Veins provide most of blood storage capacity.
Viscosity depends mostly on hematocrit.
Viscosity $\uparrow$ in hyperproteinemic states (eg, multiple myeloma), polycythemia.
Viscosity $\downarrow$ in anemia.
Compliance $=\Delta \mathrm{V} / \Delta \mathrm{P}$.

## Cardiac and vascular function curves



Intersection of curves $=$ operating point of heart (ie, venous return and CO are equal).

GRAPH	Effect	Examples
(A) Inotropy	Changes in contractility $\rightarrow$ altered CO for a given RA pressure (preload).	(1) Catecholamines, digoxin $\oplus$, exercise (2) HF with reduced EF, narcotic overdose, sympathetic inhibition $\Theta$
(B) Venous return	Changes in circulating volume or venous tone $\rightarrow$ altered RA pressure for a given CO. Mean systemic pressure (x-intercept) changes with volume/venous tone.	(3) Fluid infusion, sympathetic activity $\oplus$ (4) Acute hemorrhage, spinal anesthesia $\Theta$
© Total peripheral resistance	At a given mean systemic pressure (x-intercept) and RA pressure, changes in TPR $\rightarrow$ altered CO.	(5) Vasopressors $\oplus$   (6) Exercise, AV shunt $\Theta$

Changes often occur in tandem, and may be reinforcing (eg, exercise $\uparrow$ inotropy and $\downarrow$ TPR to maximize CO) or compensatory (eg, HF $\downarrow$ inotropy $\rightarrow$ fluid retention to $\uparrow$ preload to maintain CO).

## Pressure-volume loops and cardiac cycle




The black loop represents normal cardiac physiology.

Phases-left ventricle:
(1) Isovolumetric contraction-period between mitral valve closing and aortic valve opening; period of highest $\mathrm{O}_{2}$ consumption
(2) Systolic ejection-period between aortic valve opening and closing
(3) Isovolumetric relaxation-period between aortic valve closing and mitral valve opening
(4) Rapid filling-period just after mitral valve opening
(5) Reduced filling-period just before mitral valve closing

Heart sounds:
Sl-mitral and tricuspid valve closure. Loudest at mitral area.
S2-aortic and pulmonary valve closure. Loudest at left upper sternal border.
S3-in early diastole during rapid ventricular filling phase. Associated with $\uparrow$ filling pressures (eg, mitral regurgitation, HF) and more common in dilated ventricles (but can be normal in children, young adults, and pregnant women).
S4-in late diastole ("atrial kick"). Best heard at apex with patient in left lateral decubitus position. High atrial pressure. Associated with ventricular noncompliance (eg, hypertrophy). Left atrium must push against stiff LV wall. Consider abnormal, regardless of patient age.

Jugular venous pulse (JVP):
a wave-atrial contraction. Absent in atrial fibrillation (AF).
c wave-RV contraction (closed tricuspid valve bulging into atrium).
x descent-downward displacement of closed tricuspid valve during rapid ventricular ejection phase. Reduced or absent in tricuspid regurgitation and right HF because pressure gradients are reduced.
v wave $-\uparrow$ right atrial pressure due to filling ("villing") against closed tricuspid valve. y descent-RA emptying into RV. Prominent in constrictive pericarditis, absent in cardiac tamponade.

Splitting

Normal splitting \begin{tabular}{l}
Inspiration $\rightarrow$ drop in intrathoracic pressure <br>
$\rightarrow \uparrow$ venous return $\rightarrow \uparrow \mathrm{RV}$ filling $\rightarrow \uparrow \mathrm{RV}$ <br>
stroke volume $\rightarrow \uparrow \mathrm{RV}$ ejection time <br>
$\rightarrow$ delayed closure of pulmonic valve. <br>
$\downarrow$ pulmonary impedance ( $\uparrow$ capacity of the <br>
pulmonary circulation) also occurs during <br>
inspiration, which contributes to delayed <br>
closure of pulmonic valve.

$\quad$

Seen in conditions that delay RV emptying (eg, <br>
pulmonic stenosis, right bundle branch block). <br>
Causes delayed pulmonic sound (especially <br>
on inspiration). An exaggeration of normal <br>
splitting.

$\quad$

Heard in ASD. ASD $\rightarrow$ left-to-right shunt <br>
$\rightarrow \uparrow$ RA and RV volumes $\rightarrow \uparrow$ flow through <br>
pulmonic valve such that, regardless of breath, <br>
pulmonic closure is greatly delayed.
\end{tabular}

## Auscultation of the heart



Systolic heart sounds include the murmurs of aortic/pulmonic stenosis, mitral/tricuspid regurgitation, VSD, MVP, hypertrophic cardiomyopathy.
Diastolic heart sounds include the murmurs of aortic/pulmonic regurgitation, mitral/tricuspid stenosis.

## Heart murmurs

Systolic	
Aortic stenosis ${ }_{\text {S1 }}{ }_{\text {S2 }}$	Crescendo-decrescendo systolic ejection murmur and soft S2 (ejection click may be present). LV >> aortic pressure during systole. Loudest at heart base; radiates to carotids. "Pulsus parvus et tardus"-pulses are weak with a delayed peak. Can lead to Syncope, Angina, and Dyspnea on exertion (SAD). Most commonly due to agerelated calcification in older patients ( $>60$ years old) or in younger patients with early-onset calcification of bicuspid aortic valve.
Mitral/tricuspid regurgitation S1 S2 МИИМИИИМ~	Holosystolic, high-pitched "blowing murmur."   Mitral-loudest at apex and radiates toward axilla. MR is often due to ischemic heart disease (post-MI), MVP, LV dilatation.   Tricuspid-loudest at tricuspid area. TR commonly caused by RV dilatation. Rheumatic fever and infective endocarditis can cause either MR or TR.
Mitral valve prolapse S1 MC	Late systolic crescendo murmur with midsystolic click (MC; due to sudden tensing of chordae tendineae). Most frequent valvular lesion. Best heard over apex. Loudest just before $S 2$. Usually benign. Can predispose to infective endocarditis. Can be caused by myxomatous degeneration ( $1^{\circ}$ or $2^{\circ}$ to connective tissue disease such as Marfan or Ehlers-Danlos syndrome), rheumatic fever, chordae rupture.
Ventricular septal defect	Holosystolic, harsh-sounding murmur. Loudest at tricuspid area.
Diastolic	
Aortic regurgitation S1 S2 S2	High-pitched "blowing" early diastolic decrescendo murmur. Long diastolic murmur, hyperdynamic pulse, and head bobbing when severe and chronic. Wide pulse pressure. Often due to aortic root dilation, bicuspid aortic valve, endocarditis, rheumatic fever. Progresses to left HF.
Mitral stenosis	Follows opening snap (OS; due to abrupt halt in leaflet motion in diastole, after rapid opening due to fusion at leaflet tips). Delayed rumbling mid-to-late diastolic murmur ( $\downarrow$ interval between $S 2$ and OS correlates with $\uparrow$ severity). LA $\gg$ LV pressure during diastole.   Often a late (and highly specific) sequela of rheumatic fever. Chronic MS can result in LA dilatation $\rightarrow$ dysphagia/hoarseness via compression of esophagus/left recurrent laryngeal nerve, respectively.
Continuous	
Patent ductus arteriosus	Continuous machine-like murmur. Best heard at left infraclavicular area. Loudest at S2. Often due to congenital rubella or prematurity. "PDA's (Public Displays of Affection) are continuously annoying."

## Myocardial action potential

Also occurs in bundle of His and Purkinje fibers.
Phase $0=$ rapid upstroke and depolarization-voltage-gated $\mathrm{Na}^{+}$channels open.
Phase 1 = initial repolarization-inactivation of voltage-gated $\mathrm{Na}^{+}$channels. Voltage-gated $\mathrm{K}^{+}$ channels begin to open.
Phase $2=$ plateau $-\mathrm{Ca}^{2+}$ influx through voltage-gated $\mathrm{Ca}^{2+}$ channels balances $\mathrm{K}^{+}$efflux. $\mathrm{Ca}^{2+}$ influx triggers $\mathrm{Ca}^{2+}$ release from sarcoplasmic reticulum and myocyte contraction.

Phase 3 = rapid repolarization-massive $\mathrm{K}^{+}$efflux due to opening of voltage-gated slow $\mathrm{K}^{+}$ channels and closure of voltage-gated $\mathrm{Ca}^{2+}$ channels.

Phase 4 = resting potential-high $\mathrm{K}^{+}$permeability through $\mathrm{K}^{+}$channels.
In contrast to skeletal muscle:

- Cardiac muscle action potential has a plateau, which is due to $\mathrm{Ca}^{2+}$ influx and $\mathrm{K}^{+}$efflux.
- Cardiac muscle contraction requires $\mathrm{Ca}^{2+}$ influx from ECF to induce $\mathrm{Ca}^{2+}$ release from sarcoplasmic reticulum ( $\mathrm{Ca}^{2+}$-induced $\mathrm{Ca}^{2+}$ release).
- Cardiac myocytes are electrically coupled to each other by gap junctions.



## Pacemaker action potential

Occurs in the SA and AV nodes. Key differences from the ventricular action potential include:
Phase $0=$ upstroke - opening of voltage-gated $\mathrm{Ca}^{2+}$ channels. Fast voltage-gated $\mathrm{Na}^{+}$channels are permanently inactivated because of the less negative resting potential of these cells. Results in a slow conduction velocity that is used by the AV node to prolong transmission from the atria to ventricles.
Phases 1 and 2 are absent.
Phase $\mathbf{3}=$ repolarization - inactivation of the $\mathrm{Ca}^{2+}$ channels and $\uparrow$ activation of $\mathrm{K}^{+}$channels $\rightarrow \uparrow$ $\mathrm{K}^{+}$efflux.

Phase 4 = slow spontaneous diastolic depolarization due to $\mathrm{I}_{\mathrm{f}}$ ("funny current"). $\mathrm{I}_{\mathrm{f}}$ channels responsible for a slow, mixed $\mathrm{Na}^{+} / \mathrm{K}^{+}$inward current; different from $\mathrm{I}_{\mathrm{Na}}$ in phase 0 of ventricular action potential. Accounts for automaticity of SA and AV nodes. The slope of phase 4 in the SA node determines HR. ACh/adenosine $\downarrow$ the rate of diastolic depolarization and $\downarrow \mathrm{HR}$, while catecholamines $\uparrow$ depolarization and $\uparrow$ HR. Sympathetic stimulation $\uparrow$ the chance that $I_{f}$ channels are open and thus $\uparrow$ HR.


Electrocardiogram
Conduction pathway: SA node $\rightarrow$ atria $\rightarrow$ AV node $\rightarrow$ bundle of His $\rightarrow$ right and left bundle branches $\rightarrow$ Purkinje fibers $\rightarrow$ ventricles; left bundle branch divides into left anterior and posterior fascicles.
SA node "pacemaker" inherent dominance with slow phase of upstroke.
AV node-located in posteroinferior part of interatrial septum. Blood supply usually from RCA. 100-msec delay allows time for ventricular filling.
Pacemaker rates-SA $>\mathrm{AV}>$ bundle of His/ Purkinje/ventricles.
Speed of conduction-Purkinje $>$ atria $>$ ventricles $>$ AV node.

P wave-atrial depolarization. Atrial repolarization is masked by QRS complex. PR interval-time from start of atrial depolarization to start of ventricular depolarization (normally $<200 \mathrm{msec}$ ).
QRS complex-ventricular depolarization (normally < 120 msec ).
QT interval-ventricular depolarization, mechanical contraction of the ventricles, ventricular repolarization.
T wave-ventricular repolarization. T-wave inversion may indicate ischemia or recent MI.
J point-junction between end of QRS complex and start of ST segment.
ST segment-isoelectric, ventricles depolarized.
U wave-prominent in hypokalemia (think hyp"U"kalemia), bradycardia.


Torsades de pointes

## Congenital long QT

 syndromePolymorphic ventricular tachycardia, characterized by shifting sinusoidal waveforms on ECG; can progress to ventricular fibrillation (VF). Long QT interval predisposes to torsades de pointes. Caused by drugs, $\downarrow \mathrm{K}^{+}, \downarrow \mathrm{Mg}^{2+}$, congenital abnormalities. Treatment includes magnesium sulfate.

Drug-induced long QT (ABCDE):
AntiArrhythmics (class IA, III)
AntiBiotics (eg, macrolides)
Anti"C"ychotics (eg, haloperidol)
AntiDepressants (eg, TCAs)
AntiEmetics (eg, ondansetron)
Torsades de pointes $=$ twisting of the points

Brugada syndrome
Autosomal dominant disorder most common in Asian males. ECG pattern of pseudo-right bundle branch block and ST elevations in $V_{1}-V_{3} . \uparrow$ risk of ventricular tachyarrhythmias and SCD. Prevent SCD with implantable cardioverter-defibrillator (ICD).

Wolff-Parkinson-White Most common type of ventricular presyndrome
excitation syndrome. Abnormal fast accessory conduction pathway from atria to ventricle (bundle of Kent) bypasses the rate-slowing AV node $\rightarrow$ ventricles begin to partially depolarize earlier $\rightarrow$ characteristic delta wave with widened QRS complex and shortened PR interval on ECG. May result in reentry circuit $\rightarrow$ supraventricular tachycardia.


## ECG tracings

RHYTHM	DESCRIPTION
Atrial fibrillation	Chaotic and erratic baseline with no discrete P waves in between   irregularly spaced QRS complexes. Irregularly irregular   heartbeat. Most common risk factors include hypertension and   coronary artery disease (CAD). Can lead to thromboembolic   events, particularly stroke.   Treatment includes anticoagulation, rate control, rhythm control,   and/or cardioversion.
A rapid succession of identical, back-to-back atrial depolarization   waves. The identical appearance accounts for the "sawtooth"   appearance of the flutter waves.   Treat like atrial fibrillation. Definitive treatment is catheter   ablation.	
A completely erratic rhythm with no identifiable waves. Fatal	
arrhythmia without immediate CPR and defibrillation.	

## Second-degree

AV block
Mobitz type I Progressive lengthening of PR interval until a beat is "dropped"
(Wenckebach)
(a P wave not followed by a QRS complex). Usually asymptomatic. Variable RR interval with a pattern (regularly irregular).


Mobitz type II Dropped beats that are not preceded by a change in the length of the PR interval (as in type I).
May progress to 3rd-degree block. Often treated with pacemaker.


Third-degree (complete) AV block

The atria and ventricles beat independently of each other. P waves and QRS complexes not rhythmically associated. Atrial rate > ventricular rate. Usually treated with pacemaker. Can be caused by Lyme disease.


## Atrial natriuretic peptide

Released from atrial myocytes in response to $\uparrow$ blood volume and atrial pressure. Acts via cGMP. Causes vasodilation and $\downarrow \mathrm{Na}^{+}$reabsorption at the renal collecting tubule. Dilates afferent renal arterioles and constricts efferent arterioles, promoting diuresis and contributing to "aldosterone escape" mechanism.

## B-type (brain) natriuretic peptide

Released from ventricular myocytes in response to $\uparrow$ tension. Similar physiologic action to ANP, with longer half-life. BNP blood test used for diagnosing HF (very good negative predictive value). Available in recombinant form (nesiritide) for treatment of HF.

Baroreceptors and chemoreceptors


## Receptors:

- Aortic arch transmits via vagus nerve to solitary nucleus of medulla (responds to $\downarrow$ and $\uparrow$ in BP).
- Carotid sinus (dilated region at carotid bifurcation) transmits via glossopharyngeal nerve to solitary nucleus of medulla (responds to $\downarrow$ and $\uparrow$ in BP).


## Baroreceptors:

- Hypotension $-\downarrow$ arterial pressure $\rightarrow \downarrow$ stretch $\rightarrow \downarrow$ afferent baroreceptor firing $\rightarrow \uparrow$ efferent sympathetic firing and $\downarrow$ efferent parasympathetic stimulation $\rightarrow$ vasoconstriction, $\uparrow \mathrm{HR}, \uparrow$ contractility, $\uparrow \mathrm{BP}$. Important in the response to severe hemorrhage.
- Carotid massage $-\uparrow$ pressure on carotid sinus $\rightarrow \uparrow$ stretch $\rightarrow \uparrow$ afferent baroreceptor firing $\rightarrow \uparrow$ AV node refractory period $\rightarrow \downarrow \mathrm{HR}$.
- Component of Cushing reflex (triad of hypertension, bradycardia, and respiratory depression) - $\uparrow$ intracranial pressure constricts arterioles $\rightarrow$ cerebral ischemia $\rightarrow \uparrow \mathrm{pCO}_{2}$ and $\downarrow \mathrm{pH} \rightarrow$ central reflex sympathetic $\uparrow$ in perfusion pressure (hypertension) $\rightarrow \uparrow$ stretch $\rightarrow$ peripheral reflex baroreceptorinduced bradycardia.


## Chemoreceptors:

- Peripheral-carotid and aortic bodies are stimulated by $\downarrow \mathrm{PO}_{2}$ $(<60 \mathrm{~mm} \mathrm{Hg}), \uparrow \mathrm{PCO}_{2}$, and $\downarrow \mathrm{pH}$ of blood.
- Central-are stimulated by changes in pH and $\mathrm{PCO}_{2}$ of brain interstitial fluid, which in turn are influenced by arterial $\mathrm{CO}_{2}$. Do not directly respond to $\mathrm{PO}_{2}$.


## Normal cardiac pressures

Pulmonary capillary wedge pressure (PCWP; in mm Hg ) is a good approximation of left atrial pressure. In mitral stenosis, PCWP > LV end diastolic pressure. PCWP is measured with pulmonary artery catheter (Swan-Ganz catheter).


Autoregulation
How blood flow to an organ remains constant over a wide range of perfusion pressures.

Organ	factors detterminng autoregulation	
Heart	Local metabolites (vasodilatory): adenosine, $\mathrm{NO}, \mathrm{CO}_{2}, \downarrow \mathrm{O}_{2}$	The pulmonary vasculature is unique in that alveolar hypoxia causes vasoconstriction so that only well-ventilated areas are perfused. In other organs, hypoxia causes vasodilation.
Brain	Local metabolites (vasodilatory): $\mathrm{CO}_{2}(\mathrm{pH})$	
Kidneys	Myogenic and tubuloglomerular feedback	
Lungs	Hypoxia causes vasoconstriction	
Skeletal muscle	Local metabolites during exercise: $\mathrm{CO}_{2}, \mathrm{H}^{+}$, Adenosine, Lactate, $\mathrm{K}^{+}$ At rest: sympathetic tone	CHALK.
Skin	Sympathetic stimulation most important mechanism for temperature control	

## Capillary fluid exchange

Starling forces determine fluid movement through capillary membranes:

- $P_{c}$ = capillary pressure-pushes fluid out of capillary
- $P_{i}=$ interstitial fluid pressure-pushes fluid into capillary
- $\pi_{\mathrm{c}}=$ plasma colloid osmotic (oncotic) pressure-pulls fluid into capillary
- $\pi_{\mathrm{i}}=$ interstitial fluid colloid osmotic pressure-pulls fluid out of capillary
$\mathrm{J}_{\mathrm{v}}=$ net fluid flow $=\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{c}}-\mathrm{P}_{\mathrm{i}}\right)-\sigma\left(\pi_{\mathrm{c}}-\pi_{\mathrm{i}}\right)\right]$
$\mathrm{K}_{\mathrm{f}}=$ capillary permeability to fluid
$\sigma=$ reflection coefficient (measure of capillary permeability to protein)
Edema-excess fluid outflow into interstitium commonly caused by:
- $\uparrow$ capillary pressure ( $\uparrow \mathrm{P}_{\mathrm{c}}$; eg, HF)
- $\downarrow$ plasma proteins ( $\downarrow \pi_{c}$; eg, nephrotic syndrome, liver failure, protein malnutrition)
- $\uparrow$ capillary permeability ( $\uparrow K_{f}$; eg, toxins, infections, burns)
- $\uparrow$ interstitial fluid colloid osmotic pressure ( $\uparrow \pi_{\mathrm{i}}$; eg, lymphatic blockage)



## - CARDIOVASCULAR —PATHOLOGY

## Congenital heart diseases

RIGHT-T0-LEFT shunts	Early cyanosis-"blue babies." Often diagnosed   prenatally or become evident immediately   after birth. Usually require urgent surgical   treatment and/or maintenance of a PDA.

## Congenital heart diseases (continued)



Atrial septal defect


Patent ductus arteriosus


Eisenmenger syndrome


Acyanotic at presentation; cyanosis may occur years later.

Most common congenital cardiac defect. Asymptomatic at birth, may manifest weeks later or remain asymptomatic throughout life. Most self resolve; larger lesions may lead to LV overload and HF.

Right-to-Left shunts: eaRLy cyanosis. Left-to-Right shunts: "LateR" cyanosis.
$\mathrm{O}_{2}$ saturation $\uparrow$ in RV and pulmonary artery. Frequency: VSD $>\mathrm{ASD}>$ PDA.

Defect in interatrial septum C; wide, fixed split S2. Ostium secundum defects most common and usually an isolated finding; ostium primum defects rarer and usually occur with other cardiac anomalies. Symptoms range from none to HF. Distinct from patent foramen ovale in that septa are missing tissue rather than unfused.

In fetal period, shunt is right to left (normal). In neonatal period, $\downarrow$ pulmonary vascular resistance $\rightarrow$ shunt becomes left to right $\rightarrow$ progressive RVH and/or LVH and HF. Associated with a continuous, "machine-like" murmur. Patency is maintained by PGE synthesis and low $\mathrm{O}_{2}$ tension. Uncorrected PDA D can eventually result in late cyanosis in the lower extremities (differential cyanosis).
Uncorrected left-to-right shunt (VSD, ASD, PDA) $\rightarrow \uparrow$ pulmonary blood flow $\rightarrow$ pathologic remodeling of vasculature $\rightarrow$ pulmonary arterial hypertension. RVH occurs to compensate $\rightarrow$ shunt becomes right to left. Causes late cyanosis, clubbing $\boldsymbol{E}$, and polycythemia. Age of onset varies.
$\mathrm{O}_{2}$ saturation $\uparrow$ in RA, RV, and pulmonary artery. May lead to paradoxical emboli (systemic venous emboli use ASD to bypass lungs and become systemic arterial emboli).
"Endomethacin" (indomethacin) ends patency of PDA; PGE keeps ductus Going (may be necessary to sustain life in conditions such as transposition of the great vessels).
PDA is normal in utero and normally closes only after birth.


Aortic narrowing F near insertion of ductus arteriosus ("juxtaductal"). Associated with bicuspid aortic valve, other heart defects, and Turner syndrome. Hypertension in upper extremities and weak, delayed pulse in lower extremities (brachial-femoral delay). With age, intercostal arteries enlarge due to collateral circulation; arteries erode ribs $\rightarrow$ notched appearance on CXR.
Complications include HF, $\uparrow$ risk of cerebral hemorrhage (berry aneurysms), aortic rupture, and possible endocarditis.

## Congenital cardiac defect associations

DISORDER	DEFECT
Alcohol exposure in utero (fetal alcohol   syndrome)	VSD, PDA, ASD, tetralogy of Fallot
Congenital rubella	PDA, pulmonary artery stenosis, septal defects
Down syndrome	AV septal defect (endocardial cushion defect),   VSD, ASD
Infant of diabetic mother	Transposition of great vessels, VSD
Marfan syndrome	MVP, thoracic aortic aneurysm and dissection,   aortic regurgitation
Prenatal lithium exposure	Ebstein anomaly
Turner syndrome	Bicuspid aortic valve, coarctation of aorta
Williams syndrome	Supravalvular aortic stenosis
22qll syndromes	Truncus arteriosus, tetralogy of Fallot

Hypertension
RISK FACTORS

FEATURES


PREDISPOSES TO

Defined as persistent systolic BP $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic BP $\geq 90 \mathrm{~mm} \mathrm{Hg}$
$\uparrow$ age, obesity, diabetes, physical inactivity, excess salt intake, excess alcohol intake, cigarette smoking, family history; African American > Caucasian > Asian.
$90 \%$ of hypertension is $1^{\circ}$ (essential) and related to $\uparrow$ CO or $\uparrow$ TPR. Remaining $10 \%$ mostly $2^{\circ}$ to renal/renovascular diseases such as fibromuscular dysplasia (characteristic "string of beads" appearance of renal artery (A) and atherosclerotic renal artery stenosis or to $1^{\circ}$ hyperaldosteronism.
Hypertensive urgency-severe ( $\geq 180 / \geq 120 \mathrm{~mm} \mathrm{Hg}$ ) hypertension without acute end-organ damage.
Hypertensive emergency-severe hypertension with evidence of acute end-organ damage (eg, encephalopathy, stroke, retinal hemorrhages and exudates, papilledema, MI, HF, aortic dissection, kidney injury, microangiopathic hemolytic anemia, eclampsia).

CAD, LVH, HF, atrial fibrillation; aortic dissection, aortic aneurysm; stroke; chronic kidney disease (hypertensive nephropathy); retinopathy.

Hyperlipidemia signs

Xanthomas
Plaques or nodules composed of lipid-laden histiocytes in skin $\boldsymbol{A}$, especially the eyelids (xanthelasma B).

Tendinous xanthoma
Corneal arcus

Lipid deposit in tendon ©, especially Achilles.
Lipid deposit in cornea. Common in elderly (arcus senilis $\boldsymbol{D}$ ), but appears earlier in life with hypercholesterolemia.


Arteriosclerosis
Arteriolosclerosis

Mönckeberg sclerosis (medial calcific sclerosis)

Hardening of arteries, with arterial wall thickening and loss of elasticity.
Common. Affects small arteries and arterioles. Two types: hyaline (thickening of vessel walls in essential hypertension or diabetes mellitus A) and hyperplastic ("onion skinning" in severe hypertension B with proliferation of smooth muscle cells).

Uncommon. Affects medium-sized arteries. Calcification of internal elastic lamina and media of arteries $\rightarrow$ vascular stiffening without obstruction. "Pipestem" appearance on x-ray C. Does not obstruct blood flow; intima not involved.


Atherosclerosis	Very common. Disease of elastic arteries and large- and medium-sized muscular arteries; a form of arteriosclerosis caused by buildup of cholesterol plaques.
location	Abdominal aorta $>$ coronary artery $>$ popliteal artery $>$ carotid artery $\boldsymbol{A}$. "After I workout my abs, I grab a Corona and pop my collar up to my carotid."
RISK Factors	Modifiable: smoking, hypertension, dyslipidemia ( $\uparrow$ LDL, $\downarrow$ HDL), diabetes. Non-modifiable: age, sex ( $\uparrow$ in men and postmenopausal women), family history.
SYMptoms	Angina, claudication, but can be asymptomatic.
Progression	Inflammation important in pathogenesis: endothelial cell dysfunction $\rightarrow$ macrophage and LDL accumulation $\rightarrow$ foam cell formation $\rightarrow$ fatty streaks $\rightarrow$ smooth muscle cell migration (involves PDGF and FGF), proliferation, and extracellular matrix deposition $\rightarrow$ fibrous plaque $\rightarrow$ complex atheromas $B$.

Aortic aneurysm Localized pathologic dilatation of the aorta. May cause abdominal and/or back pain, which is a sign of leaking, dissection, or imminent rupture.


Associated with atherosclerosis. Risk factors include history of tobacco use, $\uparrow$ age, male sex, family history. May present as palpable pulsatile abdominal mass (arrows in $\Delta$ point to outer dilated calcified aortic wall, with partial crescent-shaped non-opacification of aorta due to flap/clot). Most often infrarenal (distal to origin of renal arteries).

Thoracic aortic aneurysm

Associated with cystic medial degeneration. Risk factors include hypertension, bicuspid aortic valve, connective tissue disease (eg, Marfan syndrome). Also associated with $3^{\circ}$ syphilis (obliterative endarteritis of the vasa vasorum). Aortic root dilatation may lead to aortic valve regurgitation.

Traumatic aortic rupture

Due to trauma and/or deceleration injury, most commonly at aortic isthmus (proximal descending aorta just distal to origin of left subclavian artery).

## Aortic dissection



Longitudinal intimal tear forming a false lumen. Associated with hypertension, bicuspid aortic valve, inherited connective tissue disorders (eg, Marfan syndrome). Can present with tearing, sudden-onset chest pain radiating to the back $+/$ - markedly unequal BP in arms. CXR shows mediastinal widening. Can result in organ ischemia, aortic rupture, death. Two types:

- Stanford type A (proximal): involves Ascending aorta A. May extend to aortic arch or descending aorta. May result in acute aortic regurgitation or cardiac tamponade. Treatment: surgery.
- Stanford type B (distal): involves only descending aorta (Below ligamentum arteriosum). Treat medically with $\beta$-blockers, then vasodilators.


## Ischemic heart disease manifestations

Angina

## Coronary steal syndrome

Chest pain due to ischemic myocardium $2^{\circ}$ to coronary artery narrowing or spasm; no myocyte necrosis.

- Stable-usually $2^{\circ}$ to atherosclerosis ( $\geq 70 \%$ occlusion); exertional chest pain in classic distribution (usually with ST depression on ECG), resolving with rest or nitroglycerin.
- Vasospastic (also known as Prinzmetal or Variant) -occurs at rest $2^{\circ}$ to coronary artery spasm; transient ST elevation on ECG. Smoking is a risk factor; hypertension and hypercholesterolemia are not. Triggers include cocaine, alcohol, and triptans. Treat with $\mathrm{Ca}^{2+}$ channel blockers, nitrates, and smoking cessation (if applicable).
- Unstable-thrombosis with incomplete coronary artery occlusion; +/- ST depression and/or T-wave inversion on ECG but no cardiac biomarker elevation (unlike NSTEMI); $\uparrow$ in frequency or intensity of chest pain or any chest pain at rest.
Distal to coronary stenosis, vessels are maximally dilated at baseline. Administration of vasodilators (eg, dipyridamole, regadenoson) dilates normal vessels $\rightarrow$ blood is shunted toward well-perfused areas $\rightarrow$ ischemia in myocardium perfused by stenosed vessels. Principle behind pharmacologic stress tests with coronary vasodilators.
Sudden cardiac death
Death from cardiac causes within l hour of onset of symptoms, most commonly due to a lethal arrhythmia (eg, VF). Associated with CAD (up to 70\% of cases), cardiomyopathy (hypertrophic, dilated), and hereditary ion channelopathies (eg, long QT syndrome, Brugada syndrome). Prevent with ICD.


## Chronic ischemic heart disease

Myocardial infarction
Progressive onset of HF over many years due to chronic ischemic myocardial damage.

Most often due to rupture of coronary artery atherosclerotic plaque $\rightarrow$ acute thrombosis. $\uparrow$ cardiac biomarkers (CK-MB, troponins) are diagnostic.

## ST-segment elevation MI (STEMI)

Transmural infarcts
Full thickness of myocardial wall involved ST elevation on ECG, Q waves


## Non-ST-segment elevation MI (NSTEMI)

Subendocardial infarcts
Subendocardium (inner $1 / 3$ ) especially vulnerable to ischemia
ST depression on ECG


Evolution of myocardial infarction

Commonly occluded coronary arteries: LAD $>$ RCA $>$ circumflex.
Symptoms: diaphoresis, nausea, vomiting, severe retrosternal pain, pain in left arm and/or jaw, shortness of breath, fatigue.

time	GROSS	LIGHT MICROSCOPE	COMPLICATIONS
0-24 hr	None	Early coagulative necrosis, release of necrotic cell contents into blood; edema, hemorrhage, wavy fibers. Neutrophils appear. Reperfusion injury, associated with generation of free radicals, leads to hypercontraction of myofibrils through $\uparrow$ free calcium influx.	Ventricular arrhythmia, HF, cardiogenic shock.
1-3 days		Extensive coagulative necrosis. Tissue surrounding infarct shows acute inflammation with neutrophils.	Postinfarction fibrinous pericarditis.
3-14 days		Macrophages, then granulation tissue at margins.	Free wall rupture $\rightarrow$ tamponade; papillary muscle rupture $\rightarrow$ mitral regurgitation; interventricular septal rupture due to macrophage-mediated structural degradation.   LV pseudoaneurysm (risk of rupture).
2 weeks to several months		Contracted scar complete.	Dressler syndrome, HF, arrhythmias, true ventricular aneurysm (risk of mural thrombus).

Diagnosis of myocardial infarction

In the first 6 hours, ECG is the gold standard. Cardiac troponin I rises after 4 hours (peaks at 24 hr ) and is $\uparrow$ for $7-10$ days; more specific than other protein markers.
CK-MB rises after 6-12 hours (peaks at $16-24 \mathrm{hr}$ ) and is predominantly found in myocardium but can also be released from skeletal muscle. Useful in diagnosing reinfarction following acute MI because levels return to normal after 48 hours.
Large MIs lead to greater elevations in troponin I and CK-MB. Exact curves vary with testing procedure.
ECG changes can include ST elevation (STEMI, transmural infarct), ST depression (NSTEMI, subendocardial infarct), hyperacute (peaked) T waves, T-wave inversion, new left bundle branch block, and pathologic Q waves or poor R wave progression (evolving or old transmural infarct).

## ECG localization of STEMI

Infarct Location	Leads with st elevations or o waves
Anteroseptal (LAD)	$\mathrm{V}_{1}-\mathrm{V}_{2}$
Anteroapical (distal LAD)	$\mathrm{V}_{3}-\mathrm{V}_{4}$
Anterolateral (LAD or LCX)	$\mathrm{V}_{5}-\mathrm{V}_{6}$
Lateral (LCX)	I, aV
InFerior (RCA)	$\mathrm{II}, \mathrm{III}$, aVF
Posterior (PDA)	$\mathrm{V}_{7}-\mathrm{V}_{9}$, ST depression in $\mathrm{V}_{1}-\mathrm{V}_{3}$ with tall R waves

## Myocardial infarction complications

Cardiac arrhythmia	Occurs within the first few days after MI. Important cause of death before reaching the hospital and within the first 24 hours post-MI.
Postinfarction fibrinous pericarditis	Occurs l-3 days after MI. Friction rub.
Papillary muscle rupture	Occurs 2-7 days after MI. Posteromedial papillary muscle rupture $\boldsymbol{A} \uparrow$ risk due to single blood supply from posterior descending artery. Can result in severe mitral regurgitation.
Interventricular septal rupture	Occurs 3-5 days after MI. Macrophage-mediated degradation $\rightarrow$ VSD $\rightarrow \uparrow \mathrm{O}_{2}$ saturation and pressure in RV.
Ventricular pseudoaneurysm formation	Occurs 3-14 days after MI. Contained free wall rupture [B; $\downarrow$ CO, risk of arrhythmia, embolus from mural thrombus.
Ventricular free wall rupture	Occurs 5-14 days after MI. Free wall rupture $\mathbf{C} \rightarrow$ cardiac tamponade. LV hypertrophy and previous MI protect against free wall rupture. Acute form usually leads to sudden death.
True ventricular aneurysm	Occurs 2 weeks to several months after MI. Outward bulge with contraction ("dyskinesia"), associated with fibrosis.
Dressler syndrome	Occurs several weeks after MI. Autoimmune phenomenon resulting in fibrinous pericarditis.
LV failure and pulmonary edema	Can occur $2^{\circ}$ to LV infarction, VSD, free wall rupture, papillary muscle rupture with mitral regurgitation.



## Acute coronary syndrome treatments

Unstable angina/NSTEMI-Anticoagulation (eg, heparin), antiplatelet therapy (eg, aspirin) + ADP receptor inhibitors (eg, clopidogrel), $\beta$-blockers, ACE inhibitors, statins. Symptom control with nitroglycerin and morphine.
STEMI-In addition to above, reperfusion therapy most important (percutaneous coronary intervention preferred over fibrinolysis).

## Cardiomyopathies



Most common cardiomyopathy ( $90 \%$ of cases). Often idiopathic or familial. Other etiologies include chronic Alcohol abuse, wet Beriberi, Coxsackie B viral myocarditis, chronic Cocaine use, Chagas disease, Doxorubicin toxicity, hemochromatosis, sarcoidosis, thyrotoxicosis, peripartum cardiomyopathy. Findings: HF, S3, systolic regurgitant murmur, dilated heart on echocardiogram, balloon appearance of heart on CXR. Treatment: $\mathrm{Na}^{+}$restriction, ACE inhibitors, $\beta$-blockers, diuretics, digoxin, ICD, heart transplant.
Hypertrophic obstructive cardiomyopathy

$60-70 \%$ of cases are familial, autosomal dominant (most commonly due to mutations in genes encoding sarcomeric proteins, such as myosin binding protein C and $\beta$-myosin heavy chain). Causes syncope during exercise and may lead to sudden death (eg, in young athletes) due to ventricular arrhythmia.
Findings: S4, systolic murmur. May see mitral regurgitation due to impaired mitral valve closure.
Treatment: cessation of high-intensity athletics, use of $\beta$-blocker or non-dihydropyridine $\mathrm{Ca}^{2+}$ channel blockers (eg, verapamil). ICD if patient is high risk.
Restrictive/infiltrative cardiomyopathy

Postradiation fibrosis, Löffler endocarditis, Endocardial fibroelastosis (thick fibroelastic tissue in endocardium of young children), Amyloidosis, Sarcoidosis, Hemochromatosis (although dilated cardiomyopathy is more common) (Puppy LEASH).

Leads to systolic dysfunction.
Dilated cardiomyopathy displays eccentric hypertrophy $\boldsymbol{A}$ (sarcomeres added in series). ABCCCD.
Takotsubo cardiomyopathy: broken heart syndrome-ventricular apical ballooning likely due to increased sympathetic stimulation (eg, stressful situations).

Diastolic dysfunction ensues.
Marked ventricular concentric hypertrophy (sarcomeres added in parallel) B, often septal predominance. Myofibrillar disarray and fibrosis.
Physiology of HOCM—asymmetric septal hypertrophy and systolic anterior motion of mitral valve $\rightarrow$ outflow obstruction $\rightarrow$ dyspnea, possible syncope.
Other causes of concentric LV hypertrophy: chronic HTN, Friedreich ataxia.

Diastolic dysfunction ensues. Can have lowvoltage ECG despite thick myocardium (especially in amyloidosis).
Löffler endocarditis—associated with hypereosinophilic syndrome; histology shows eosinophilic infiltrates in myocardium.

Heart failure


Clinical syndrome of cardiac pump dysfunction $\rightarrow$ congestion and low perfusion. Symptoms include dyspnea, orthopnea, fatigue; signs include S3 heart sound, rales, jugular venous distention (JVD), pitting edema $\boldsymbol{A}$.
Systolic dysfunction-reduced EF, $\uparrow$ EDV; $\downarrow$ contractility often $2^{\circ}$ to ischemia/MI or dilated cardiomyopathy.
Diastolic dysfunction-preserved EF, normal EDV; $\downarrow$ compliance ( $\uparrow$ EDP) often $2^{\circ}$ to myocardial hypertrophy.
Right HF most often results from left HF. Cor pulmonale refers to isolated right HF due to pulmonary cause.
ACE inhibitors or angiotensin II receptor blockers, $\beta$-blockers (except in acute decompensated HF), and spironolactone $\downarrow$ mortality. Thiazide or loop diuretics are used mainly for symptomatic relief. Hydralazine with nitrate therapy improves both symptoms and mortality in select patients.

## Left heart failure

## Orthopnea

Shortness of breath when supine: $\uparrow$ venous return from redistribution of blood (immediate gravity effect) exacerbates pulmonary vascular congestion.

Paroxysmal nocturnal dyspnea

Breathless awakening from sleep: $\uparrow$ venous return from redistribution of blood, reabsorption of peripheral edema, etc.
$\uparrow$ pulmonary venous pressure $\rightarrow$ pulmonary venous distention and transudation of fluid. Presence of hemosiderin-laden macrophages ("HF" cells) in lungs.

Right heart failure
Hepatomegaly $\uparrow$ central venous pressure $\rightarrow \uparrow$ resistance to portal flow. Rarely, leads to "cardiac cirrhosis." (nutmeg liver)

Jugular venous   distention	$\uparrow$ venous pressure.
Peripheral edema	$\uparrow$ venous pressure $\rightarrow$ fluid transudation.



Shock
Inadequate organ perfusion and delivery of nutrients necessary for normal tissue and cellular function. Initially may be reversible but life threatening if not treated promptly.


## Bacterial endocarditis

Acute-S aureus (high virulence). Large vegetations on previously normal valves $\boldsymbol{A}$. Rapid onset.
Subacute-viridans streptococci (low virulence). Smaller vegetations on congenitally abnormal or diseased valves. Sequela of dental procedures. Gradual onset.
Symptoms: fever (most common), new murmur, Roth spots (round white spots on retina surrounded by hemorrhage [B), Osler nodes (tender raised lesions on finger or toe pads [C due to immune complex deposition), Janeway lesions (small, painless, erythematous lesions on palm or sole) $\mathbb{D}$, splinter hemorrhages [ on nail bed.
Associated with glomerulonephritis, septic arterial or pulmonary emboli.
May be nonbacterial (marantic/thrombotic) $2^{\circ}$ to malignancy, hypercoagulable state, or lupus.

Bacteria FROM JANE
Fever
Roth spots
Osler nodes
Murmur
Janeway lesions
Anemia
Nail-bed hemorrhage
Emboli
Requires multiple blood cultures for diagnosis.
If culture $\Theta$, most likely Coxiella burnetti, Bartonella spp, HACEK (Haemophilus, Aggregatibacter [formerly Actinobacillus], Cardiobacterium, Eikenella, Kingella).
Mitral valve is most frequently involved.
Tricuspid valve endocarditis is associated with IV drug abuse (don't "tri" drugs). Associated with S aureus, Pseudomonas, and Candida.
$S$ bovis (gallolyticus) is present in colon cancer, S epidermidis on prosthetic valves.



A consequence of pharyngeal infection with group A $\beta$-hemolytic streptococci. Late sequelae include rheumatic heart disease, which affects heart valves-mitral $>$ aortic $\gg$ tricuspid (high-pressure valves affected most). Early lesion is mitral valve regurgitation; late lesion is mitral stenosis.
Associated with Aschoff bodies (granuloma with giant cells [blue arrows in A]), Anitschkow cells (enlarged macrophages with ovoid, wavy, rod-like nucleus [red arrow in $\boldsymbol{A}$ ]), $\uparrow$ antistreptolysin O (ASO) titers.
Immune mediated (type II hypersensitivity); not a direct effect of bacteria. Antibodies to M protein cross-react with self antigens (molecular mimicry).
Treatment/prophylaxis: penicillin.

JVNES (major criteria):
Joint (migratory polyarthritis)
$\checkmark$ (carditis)
Nodules in skin (subcutaneous)
Erythema marginatum (evanescent rash with ring margin)
Sydenham chorea

Acute pericarditis


Inflammation of the pericardium [ $\mathbf{A}$, red arrows]. Commonly presents with sharp pain, aggravated by inspiration, and relieved by sitting up and leaning forward. Often complicated by pericardial effusion [between yellow arrows in A]. Presents with friction rub. ECG changes include widespread ST-segment elevation and/or PR depression.
Causes include idiopathic (most common; presumed viral), confirmed infection (eg, coxsackievirus B), neoplasia, autoimmune (eg, SLE, rheumatoid arthritis), uremia, cardiovascular (acute STEMI or Dressler syndrome), radiation therapy.

## Myocarditis

Inflammation of myocardium $\rightarrow$ global enlargement of heart and dilation of all chambers. Major cause of SCD in adults $<40$ years old.
Presentation highly variable, can include dyspnea, chest pain, fever, arrhythmias (persistent tachycardia out of proportion to fever is characteristic).
Multiple causes:

- Viral (eg, adenovirus, coxsackie B, parvovirus B19, HIV, HHV-6); lymphocytic infiltrate with focal necrosis highly indicative of viral myocarditis.
- Parasitic (eg, Trypanosoma cruzi, Toxoplasma gondii)
- Bacterial (eg, Borrelia burgdorferi, Mycoplasma pneumoniae)
- Toxins (eg, carbon monoxide, black widow venom)
- Rheumatic fever
- Drugs (eg, doxorubicin, cocaine)
- Autoimmune (eg, Kawasaki disease, sarcoidosis, SLE, polymyositis/dermatomyositis)

Complications include sudden death, arrhythmias, heart block, dilated cardiomyopathy, HF, mural thrombus with systemic emboli.


Compression of the heart by fluid (eg, blood, effusions [arrows in $\boldsymbol{A}]$ in pericardial space) $\rightarrow \downarrow$ CO. Equilibration of diastolic pressures in all 4 chambers.
Findings: Beck triad (hypotension, distended neck veins, distant heart sounds), $\uparrow$ HR, pulsus paradoxus. ECG shows low-voltage QRS and electrical alternans (due to "swinging" movement of heart in large effusion).

Pulsus paradoxus $-\downarrow$ in amplitude of systolic BP by $>10 \mathrm{~mm} \mathrm{Hg}$ during inspiration. Seen in cardiac tamponade, asthma, obstructive sleep apnea, pericarditis, croup.

## Syphilitic heart disease

$3^{\circ}$ syphilis disrupts the vasa vasorum of the aorta with consequent atrophy of vessel wall and dilatation of aorta and valve ring.
May see calcification of aortic root, ascending aortic arch, and thoracic aorta. Leads to "tree bark" appearance of aorta.

Can result in aneurysm of ascending aorta or aortic arch, aortic insufficiency.

## Vasculitides

	EPIIEMIOLOGY/PRESENTATION	PATHOLOGY/LABS
Large-vessel vasculitis		
Giant cell (temporal) arteritis	Usually elderly females.   Unilateral headache (temporal artery), jaw claudication.   May lead to irreversible blindness due to ophthalmic artery occlusion.   Associated with polymyalgia rheumatica.	Most commonly affects branches of carotid artery.   Focal granulomatous inflammation A.   $\uparrow$ ESR.   Treat with high-dose corticosteroids prior to temporal artery biopsy to prevent blindness.
Takayasu arteritis	Usually Asian females $<40$ years old. "Pulseless disease" (weak upper extremity pulses), fever, night sweats, arthritis, myalgias, skin nodules, ocular disturbances.	Granulomatous thickening and narrowing of aortic arch and proximal great vessels B.   $\uparrow$ ESR.   Treat with corticosteroids.
Medium-vessel vasculitis		
Polyarteritis nodosa	Usually middle-aged men.   Hepatitis B seropositivity in $30 \%$ of patients. Fever, weight loss, malaise, headache.   GI: abdominal pain, melena.   Hypertension, neurologic dysfunction, cutaneous eruptions, renal damage.	Typically involves renal and visceral vessels, not pulmonary arteries.   Transmural inflammation of the arterial wall with fibrinoid necrosis.   Different stages of inflammation may coexist in different vessels.   Innumerable renal microaneurysms $\mathbf{C}$ and spasms on arteriogram.   Treat with corticosteroids, cyclophosphamide.
Kawasaki disease (mucocutaneous lymph node syndrome)	Asian children $<4$ years old.   Conjunctival injection, Rash (polymorphous   $\rightarrow$ desquamating), Adenopathy (cervical), Strawberry tongue (oral mucositis) D, Handfoot changes (edema, erythema), fever.	CRASH and burn.   May develop coronary artery aneurysms E; thrombosis or rupture can cause death. Treat with IV immunoglobulin and aspirin.
Buerger disease (thromboangiitis obliterans)	Heavy smokers, males $<40$ years old. Intermittent claudication may lead to gangrene [F, autoamputation of digits, superficial nodular phlebitis.   Raynaud phenomenon is often present.	Segmental thrombosing vasculitis with vein and nerve involvement.   Treat with smoking cessation.
Small-vessel vasculitis		
Granulomatosis with polyangiitis (Wegener)	Upper respiratory tract: perforation of nasal septum, chronic sinusitis, otitis media, mastoiditis.   Lower respiratory tract: hemoptysis, cough, dyspnea.   Renal: hematuria, red cell casts.	Triad:   - Focal necrotizing vasculitis   - Necrotizing granulomas in the lung and upper airway   - Necrotizing glomerulonephritis PR3-ANCA/c-ANCA G (anti-proteinase 3).   CXR: large nodular densities.   Treat with cyclophosphamide, corticosteroids.
Microscopic polyangiitis	Necrotizing vasculitis commonly involving lung, kidneys, and skin with pauci-immune glomerulonephritis and palpable purpura. Presentation similar to granulomatosis with polyangiitis but without nasopharyngeal involvement.	No granulomas.   MPO-ANCA/p-ANCA H (anti-   myeloperoxidase).   Treat with cyclophosphamide, corticosteroids.


	EPIDEMIOLOGY/PRESENTATION	PATHOLOGY/LABS
Small-vessel vasculitis (continued)		
Behçet syndrome	High incidence in Turkish and eastern Mediterranean descent.   Recurrent aphthous ulcers, genital ulcerations, uveitis, erythema nodosum. Can be precipitated by HSV or parvovirus. Flares last 1-4 weeks.	Immune complex vasculitis. Associated with HLA-B5l.
Eosinophilic granulomatosis with polyangiitis (ChurgStrauss)	Asthma, sinusitis, skin nodules or purpura, peripheral neuropathy (eg, wrist/foot drop). Can also involve heart, GI, kidneys (pauciimmune glomerulonephritis).	Granulomatous, necrotizing vasculitis with eosinophilia $\square$.   MPO-ANCA/p-ANCA, $\uparrow$ IgE level.
Immunoglobulin A vasculitis	Also known as Henoch-Schönlein purpura.   Most common childhood systemic vasculitis.   Often follows URI.   Classic triad:   - Skin: palpable purpura on buttocks/legs J   - Arthralgias   - GI: abdominal pain (associated with intussusception)	Vasculitis $2^{\circ}$ to IgA immune complex deposition.   Associated with IgA nephropathy (Berger disease).

Cardiac tumors
Myxomas


Most common heart tumor is a metastasis (eg, melanoma).
Most common $1^{\circ}$ cardiac tumor in adults (arrows in A). $90 \%$ occur in the atria (mostly left atrium). Myxomas are usually described as a "ball valve" obstruction in the left atrium (associated with multiple syncopal episodes). May auscultate early diastolic "tumor plop" sound. Histology: gelatinous material, myxoma cells immersed in glycosaminoglycans.

Most frequent $l^{\circ}$ cardiac tumor in children (associated with tuberous sclerosis). Histology: hamartomatous growths.

Kussmaul sign	$\uparrow$ in JVP on inspiration instead of a normal $\downarrow$.
Inspiration $\rightarrow$ negative intrathoracic pressure not transmitted to heart $\rightarrow$ impaired filling of right	
ventricle $\rightarrow$ blood backs up into vena cava $\rightarrow$ JVD. May be seen with constrictive pericarditis,	
restrictive cardiomyopathies, right atrial or ventricular tumors.	

Hereditary hemorrhagic telangiectasia

Also known as Osler-Weber-Rendu syndrome. Inherited disorder of blood vessels. Findings: blanching lesions (telangiectasias) on skin and mucous membranes, recurrent epistaxis, skin discolorations, arteriovenous malformations (AVMs), GI bleeding, hematuria.

- CARDIOVASCULAR—PHARMACOLOGY

Hypertension treatment

Primary (essential) hypertension	Thiazide diuretics, ACE inhibitors, angiotensin II receptor blockers (ARBs), dihydropyridine $\mathrm{Ca}^{2+}$ channel blockers.	
Hypertension with heart failure	Diuretics, ACE inhibitors/ARBs, $\beta$-blockers (compensated HF), aldosterone antagonists.	$\beta$-blockers must be used cautiously in decompensated HF and are contraindicated in cardiogenic shock.   In HF, ARBs may be combined with the neprilysin inhibitor sacubitril.
Hypertension with diabetes mellitus	ACE inhibitors/ARBs, $\mathrm{Ca}^{2+}$ channel blockers, thiazide diuretics, $\beta$-blockers.	ACE inhibitors/ARBs are protective against diabetic nephropathy.
Hypertension in asthma	$\mathrm{ARBs}, \mathrm{Ca}^{2+}$ channel blockers, thiazide diuretics, selective $\beta$-blockers.	Avoid nonselective $\beta$-blockers to prevent $\beta_{2}$-receptor-induced bronchoconstriction. Avoid ACE inhibitors to prevent confusion between drug or asthma-related cough.
Hypertension in pregnancy	Hydralazine, labetalol, methyldopa, nifedipine.	"He likes my neonate."


Calcium channel blockers	Amlodipine, clevidipine, nicardipine, nifedipine, nimodipine (dihydropyridines, act on vascular smooth muscle); diltiazem, verapamil (non-dihydropyridines, act on heart).
mechanism	Block voltage-dependent L-type calcium channels of cardiac and smooth muscle $\rightarrow \downarrow$ muscle contractility.   Vascular smooth muscle - amlodipine $=$ nifedipine $>$ diltiazem $>$ verapamil.   Heart - verapamil $>$ diltiazem $>$ amlodipine $=$ nifedipine (verapamil $=$ ventricle).
clinical use	Dihydropyridines (except nimodipine): hypertension, angina (including Prinzmetal), Raynaud phenomenon.   Nimodipine: subarachnoid hemorrhage (prevents cerebral vasospasm).   Nicardipine, clevidipine: hypertensive urgency or emergency.   Non-dihydropyridines: hypertension, angina, atrial fibrillation/flutter.
adverse effects	Non-dihydropyridine: cardiac depression, AV block, hyperprolactinemia, constipation, gingival hyperplasia.   Dihydropyridine: peripheral edema, flushing, dizziness.

Hydralazine

MECHANISM	$\uparrow$ cGMP $\rightarrow$ smooth muscle relaxation. Vasodilates arterioles $>$ veins; afterload reduction.
cLINICAL UsE	Severe hypertension (particularly acute), HF (with organic nitrate). Safe to use during pregnancy.
	Frequently coadministered with a $\beta$-blocker to prevent reflex tachycardia.
ADVERSE EFFECTS	Compensatory tachycardia (contraindicated in angina/CAD), fluid retention, headache, angina.
	SLE-like syndrome.


Hypertensive   emergency	Treat with clevidipine, fenoldopam, labetalol, nicardipine, or nitroprusside.
Nitroprusside	Short acting; $\uparrow$ cGMP via direct release of NO. Can cause cyanide toxicity (releases cyanide).
Fenoldopam	Dopamine $\mathrm{D}_{1}$ receptor agonist-coronary, peripheral, renal, and splanchnic vasodilation. $\downarrow \mathrm{BP}$,   $\uparrow$ natriuresis. Also used postoperatively as an antihypertensive. Can cause hypotension and   tachycardia.


Nitrates	Nitroglycerin, isosorbide dinitrate, isosorbide mononitrate.
MECHANSM	Vasodilate by $\uparrow$ NO in vascular smooth muscle $\rightarrow \uparrow$ in cGMP and smooth muscle relaxation.   Dilate veins $\gg$ arteries. $\downarrow$ preload.
CLINCAL usE	Angina, acute coronary syndrome, pulmonary edema.
ADVERSE Effects	Reflex tachycardia (treat with $\beta$-blockers), hypotension, flushing, headache, "Monday disease" in   industrial exposure: development of tolerance for the vasodilating action during the work week   and loss of tolerance over the weekend $\rightarrow$ tachycardia, dizziness, headache upon reexposure.   Contraindicated in right ventricular infarction.

Antianginal therapy Goal is reduction of myocardial $\mathrm{O}_{2}$ consumption $\left(\mathrm{MVO}_{2}\right)$ by $\downarrow 1$ or more of the determinants of $\mathrm{MVO}_{2}$ : end-diastolic volume, $\mathrm{BP}, \mathrm{HR}$, contractility.

COMPONENT	NITRATES	$\beta$-BLOCKERS	NITRATES $+\beta$-BLOCKERS
End-diastolic volume	$\downarrow$	No effect or $\uparrow$	No effect or $\downarrow$
Blood pressure	$\downarrow$	$\downarrow$	$\downarrow$
Contractility	No effect	$\downarrow$	Little/no effect
Heart rate	$\uparrow$ (reflex response)	$\downarrow$	No effect or $\downarrow$
Ejection time	$\downarrow$	$\uparrow$	Little/no effect
$\mathrm{MVO}_{2}$	$\downarrow$	$\downarrow$	$\downarrow \downarrow$

Verapamil is similar to $\beta$-blockers in effect.
Pindolol and acebutolol are partial $\beta$-agonists that should be used with caution in angina.

## Ranolazine

MECHANSM	Inhibits the late phase of sodium current thereby reducing diastolic wall tension and oxygen   consumption. Does not affect heart rate or contractility.
CLINICAL USE	Angina refractory to other medical therapies.
ADVERSE EFFECTS	Constipation, dizziness, headache, nausea, QT prolongation.
Milrinone	Selective PDE-3 inhibitor. In cardiomyocytes: $\uparrow$ cAMP accumulation $\rightarrow \uparrow \mathrm{Ca}^{2+}$ influx $\rightarrow \uparrow$ inotropy   and chronotropy. In vascular smooth muscle: $\uparrow$ cAMP accumulation $\rightarrow$ inhibition of MLCK   activity $\rightarrow$ general vasodilation.
MECHANSM	Short-term use in acute decompensated HF.
CLINICAL USE	Arrhythmias, hypotension.

## Lipid-lowering agents



Cardiac glycosides	Digoxin.
mechanism	Direct inhibition of $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase   $\rightarrow$ indirect inhibition of $\mathrm{Na}^{+} / \mathrm{Ca}^{2+}$ exchanger. $\uparrow\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}} \rightarrow$ positive inotropy. Stimulates vagus nerve $\rightarrow \downarrow$ HR.
CLINICAL USE	HF ( $\uparrow$ contractility); atrial fibrillation ( $\downarrow$ conduction at AV node and depression of SA node).
ADVERSE EfFects	Cholinergic—nausea, vomiting, diarrhea, blurry yellow vision (think van Gogh), arrhythmias, AV block.   Can lead to hyperkalemia, which indicates poor prognosis.   Factors predisposing to toxicity: renal failure ( $\downarrow$ excretion), hypokalemia (permissive for digoxin binding at $\mathrm{K}^{+}$-binding site on $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase), drugs that displace digoxin from tissue-binding sites, and $\downarrow$ clearance (eg, verapamil, amiodarone, quinidine).
Antidote	Slowly normalize $\mathrm{K}^{+}$, cardiac pacer, anti-digoxin Fab fragments, $\mathrm{Mg}^{2+}$.

Antiarrhythmicssodium channel blockers (class I)


Antiarrhythmics-
$\beta$-blockers (class II) $\beta$-blockers (class II)

Metoprolol, propranolol, esmolol, atenolol, timolol, carvedilol.

MECHANISM

ADVERSE EFFECTS

Decrease SA and AV nodal activity by $\downarrow$ cAMP, $\downarrow \mathrm{Ca}^{2+}$ currents. Suppress abnormal pacemakers by $\downarrow$ slope of phase 4 .
AV node particularly sensitive- $\uparrow$ PR interval. Esmolol very short acting.
SVT, ventricular rate control for atrial fibrillation and atrial flutter.
Impotence, exacerbation of COPD and asthma, cardiovascular effects (bradycardia, AV block, HF), CNS effects (sedation, sleep alterations). May mask the signs of hypoglycemia.
Metoprolol can cause dyslipidemia. Propranolol can exacerbate vasospasm in Prinzmetal angina.
$\beta$-blockers (except the nonselective $\alpha$ - and $\beta$-antagonists carvedilol and labetalol) cause unopposed $\alpha_{1}$-agonism if given alone for pheochromocytoma or cocaine toxicity. Treat $\beta$-blocker overdose with saline, atropine, glucagon.


Antiarrhythmicspotassium channel blockers (class III)

Amiodarone, Ibutilide, Dofetilide, Sotalol.
AIDS.
$\uparrow$ AP duration, $\uparrow$ ERP, $\uparrow$ QT interval.
Atrial fibrillation, atrial flutter; ventricular tachycardia (amiodarone, sotalol).
Sotalol-torsades de pointes, excessive $\beta$ blockade.
Ibutilide-torsades de pointes.
Amiodarone-pulmonary fibrosis, hepatotoxicity, hypothyroidism or hyperthyroidism (amiodarone is $40 \%$ iodine by weight), acts as hapten (corneal deposits, blue/ gray skin deposits resulting in photodermatitis), neurologic effects, constipation, cardiovascular effects (bradycardia, heart block, HF).

Remember to check PFTs, LFTs, and TFTs when using amiodarone.
Amiodarone is lipophilic and has class I, II, III, and IV effects.

mechanism	$\uparrow$ AP duration, $\uparrow$ ERP, ¢ QT interval.	
CLINICAL USE	Atrial fibrillation, atrial flutter; ventricular tachycardia (amiodarone, sotalol).	
adverse effects	Sotalol-torsades de pointes, excessive $\beta$ blockade.   Ibutilide-torsades de pointes. Amiodarone - pulmonary fibrosis, hepatotoxicity, hypothyroidism or hyperthyroidism (amiodarone is $40 \%$ iodine by weight), acts as hapten (corneal deposits, blue/ gray skin deposits resulting in photodermatitis), neurologic effects, constipation, cardiovascular effects (bradycardia, heart block, HF).	Remember to check PF using amiodarone. Amiodarone is lipophili and IV effects.
	Class III	

Antiarrhythmics-
calcium channel blockers (class IV)

MECHANISM	$\downarrow$ conduction velocity, $\uparrow$ ERP, $\uparrow$ PR interval.
CLINICAL USE	Prevention of nodal arrhythmias (eg, SVT), rate control in atrial fibrillation.
ADVERSE EFFECTS	Constipation, flushing, edema, cardiovascular effects (HF, AV block, sinus node depression).



## Other antiarrhythmics

Adenosine $\quad \uparrow \mathrm{K}^{+}$out of cells $\rightarrow$ hyperpolarizing the cell and $\downarrow \mathrm{I}_{\mathrm{Ca}}$, decreasing AV node conduction. Drug of choice in diagnosing/terminating certain forms of SVT. Very short acting ( $\sim 15 \mathrm{sec}$ ). Effects blunted by theophylline and caffeine (both are adenosine receptor antagonists). Adverse effects include flushing, hypotension, chest pain, sense of impending doom, bronchospasm.
$\mathrm{Mg}^{2+}$
Effective in torsades de pointes and digoxin toxicity.

## Ivabradine

MECHANSM Selective inhibition of funny sodium channels ( $\mathrm{I}_{\mathrm{f}}$ ), prolonging slow depolarization phase (phase 4). $\downarrow$ SA node firing; negative chronotropic effect without inotropy. Reduces cardiac $\mathrm{O}_{2}$ requirement.
CLINICAL USE $\quad$ Chronic stable angina in patients who cannot take $\beta$-blockers. Chronic HF with reduced ejection fraction.

ADVERSE EFFECTS
Luminous phenomena/visual brightness, hypertension, bradycardia.

## HIGH-YIELD SYSTEMS

## Endocrine

"If you skew the endocrine system, you lose the pathways to self."
-Hilary Mantel
"We have learned that there is an endocrinology of elation and despair, a chemistry of mystical insight, and, in relation to the autonomic nervous system, a meteorology and even . . . an astro-physics of changing moods."
-Aldous (Leonard) Huxley
"Chocolate causes certain endocrine glands to secrete hormones that affect your feelings and behavior by making you happy."
-Elaine Sherman, Book of Divine Indulgences

The endocrine system comprises widely distributed organs that work in a highly integrated manner to orchestrate a state of hormonal equilibrium within the body. Generally speaking, endocrine diseases can be classified either as diseases of underproduction or overproduction, or as conditions involving the development of mass lesions-which themselves may be associated with underproduction or overproduction of hormones. Therefore, study the endocrine system first by learning the glands, their hormones, and their regulation, and then by integrating disease manifestations with diagnosis and management. Take time to learn the multisystem connections.

Dembryology	320
DAnatomy	320
Physiology	322
Pathology	331
Pharmacology	348

## ENDOCRINE-EMBRYOLOGY

Thyroid development


Thyroid diverticulum arises from floor of primitive pharynx and descends into neck. Connected to tongue by thyroglossal duct, which normally disappears but may persist as cysts or the pyramidal lobe of thyroid. Foramen cecum is normal remnant of thyroglossal duct.
Most common ectopic thyroid tissue site is the tongue (lingual thyroid). Removal may result in hypothyroidism if it is the only thyroid tissue present.
Thyroglossal duct cyst A presents as an anterior midline neck mass that moves with swallowing or protrusion of the tongue (vs persistent cervical sinus leading to branchial cleft cyst in lateral neck).
Thyroid follicular cells are derived from endoderm; parafollicular cells (aka, C cells, produce Calcitonin) are derived from neural crest.

## ENDOCRINE—ANATOMY

Adrenal cortex and Adrenal cortex (derived from mesoderm) and medulla (derived from neural crest). medulla


GFR corresponds with Salt (mineralocorticoids), Sugar (glucocorticoids), and Sex (androgens).
"The deeper you go, the sweeter it gets."

## Pituitary gland

Anterior pituitary (adenohypophysis)	Secretes FSH, LH, ACTH, TSH, prolactin, GH, and $\beta$-endorphin. Melanotropin (MSH) secreted from intermediate lobe of pituitary. Derived from oral ectoderm (Rathke pouch). - $\alpha$ subunit-hormone subunit common to TSH, LH, FSH, and hCG.   - $\beta$ subunit-determines hormone specificity.	ACTH, MSH, and $\beta$-endorphin are derivatives of proopiomelanocortin.   FLAT PiG: FSH, LH, ACTH, TSH, PRL, GH. B-FLAT: Basophils-FSH, LH, ACTH, TSH. Acidophils: GH, PRL.
Posterior pituitary (neurohypophysis)	Stores and releases vasopressin (antidiuretic hormone, or ADH) and oxytocin, both made in the hypothalamus (supraoptic and paraventricular nuclei) and transported to posterior pituitary via neurophysins (carrier proteins). Derived from neuroectoderm.	

## Endocrine pancreas cell types

Islets of Langerhans are collections of $\alpha, \beta$, and
$\delta$ endocrine cells. Islets arise from pancreatic buds.

- $\alpha=$ glucagon (peripheral)
- $\beta=$ insulin (central)
- $\delta=$ somatostatin (interspersed)

Insulin ( $\beta$ cells) inside.


## - ENDOCRINE—PHYSIOLOGY

## Insulin

SYNTHESIS

FUNCTION

Preproinsulin (synthesized in RER) $\rightarrow$ cleavage of "presignal" $\rightarrow$ proinsulin (stored in secretory granules) $\rightarrow$ cleavage of proinsulin $\rightarrow$ exocytosis of insulin and C-peptide equally. Insulin and C-peptide are $\uparrow$ in insulinoma and sulfonylurea use, whereas exogenous insulin lacks C-peptide.
Released from pancreatic $\beta$ cells. Binds insulin receptors (tyrosine kinase activity (1), inducing glucose uptake (carrier-mediated transport) into insulin-dependent tissue (2) and gene transcription.
Anabolic effects of insulin:

- $\uparrow$ glucose transport in skeletal muscle and adipose tissue
- $\uparrow$ glycogen synthesis and storage
- $\uparrow$ triglyceride synthesis
- $\uparrow \mathrm{Na}^{+}$retention (kidneys)
- $\uparrow$ protein synthesis (muscles)
- $\uparrow$ cellular uptake of $\mathrm{K}^{+}$and amino acids
- $\downarrow$ glucagon release
- $\downarrow$ lipolysis in adipose tissue

Unlike glucose, insulin does not cross placenta.


Insulin-dependent glucose transporters:

- GLUT4: adipose tissue, striated muscle (exercise can also $\uparrow$ GLUT4 expression) Insulin-independent transporters:
- GLUT1: RBCs, brain, cornea, placenta
- GLUT2 (bidirectional): $\beta$ islet cells, liver, kidney, small intestine (think 2-way street)
- GLUT3: brain, placenta
- GLUT5 (Fructose): spermatocytes, GI tract
- SGLT1/SGLT2 ( $\mathrm{Na}^{+}$-glucose cotransporters): kidney, small intestine
Brain utilizes glucose for metabolism but ketone bodies during starvation. RBCs utilize glucose, as they lack mitochondria for aerobic metabolism.
BRICK LIPS (insulin-independent glucose uptake): Brain, RBCs, Intestine, Cornea, Kidney, Liver, Islet ( $\beta$ ) cells, Placenta, Spermatocytes

Glucose is the major regulator of insulin release. $\uparrow$ insulin response with oral vs IV glucose due to incretins (eg, glucagon-like peptide 1 [GLP-1], glucose-dependent insulinotropic polypeptide [GIP]), which are released after meals and $\uparrow \beta$ cell sensitivity to glucose. Release $\downarrow$ by $\alpha_{2}, \uparrow$ by $\beta_{2}$ ( 2 = regulates insulin)
Glucose enters $\beta$ cells $\mathbf{3} \rightarrow \uparrow$ ATP generated from glucose metabolism $\mathbf{4}$ closes $\mathrm{K}^{+}$channels (target of sulfonylureas) $\boldsymbol{6}$ and depolarizes $\beta$ cell membrane $\boldsymbol{\bullet}$. Voltage-gated $\mathrm{Ca}^{2+}$ channels open $\rightarrow \mathrm{Ca}^{2+}$ influx $\boldsymbol{\square}$ and stimulation of insulin exocytosis $\boldsymbol{8}$.



Insulin secretion by pancreatic $\beta$ cells

Glucagon

SOURCE	Made by $\alpha$ cells of pancreas.
FUNCTION	Promotes glycogenolysis, gluconeogenesis, lipolysis, and ketone production. Elevates blood sugar   levels to maintain homeostasis when concentration of bloodstream glucose falls too low (ie,   fasting state).
REGULATION	Secreted in response to hypoglycemia. Inhibited by insulin, hyperglycemia, and somatostatin.

Hypothalamic-pituitary hormones

HORMONE	FUNCTION	CLINICAL NOTES
ADH	$\uparrow$ water permeability of distal convoluted tubule and collecting duct cells in kidney to $\uparrow$ water reabsorption	Stimulus for secretion is $\uparrow$ plasma osmolality, except in cases of SIADH, where ADH is inappropriately elevated despite $\downarrow$ plasma osmolality.
CRH	$\uparrow$ ACTH, MSH, $\beta$-endorphin	$\downarrow$ in chronic exogenous steroid use.
Dopamine	$\downarrow$ prolactin, TSH	Dopamine antagonists (eg, antipsychotics) can cause galactorrhea due to hyperprolactinemia.
GHRH	$\uparrow \mathrm{GH}$	Analog (tesamorelin) used to treat HIV-associated lipodystrophy.
GnRH	$\uparrow$ FSH, LH	Suppressed by hyperprolactinemia.   Tonic GnRH suppresses HPG axis.   Pulsatile GnRH leads to puberty, fertility.
MSH	$\uparrow$ melanogenesis by melanocytes	Causes hyperpigmentation in Cushing disease, as MSH and ACTH share the same precursor molecule, proopiomelanocortin.
Oxytocin	Causes uterine contractions during labor. Responsible for milk letdown reflex in response to suckling.	
Prolactin	$\downarrow$ GnRH	Pituitary prolactinoma $\rightarrow$ amenorrhea, osteoporosis, hypogonadism, galactorrhea.
Somatostatin	$\downarrow$ GH, TSH	Analogs used to treat acromegaly.
TRH	$\uparrow$ TSH, prolactin	$\uparrow$ TRH (eg, in $1 \circ / 2^{\circ}$ hypothyroidism) may increase prolactin secretion $\rightarrow$ galactorrhea.

## Prolactin



Growth hormone (somatotropin)

SOURCE	Secreted by anterior pituitary.	
FUNCTION	Stimulates linear growth and muscle mass   through IGF-l (somatomedin C) secretion by   liver. $\uparrow$ insulin resistance (diabetogenic).	Somatostatin keeps your growth static.   Somatomedin mediates your growth.
REGULATION	Released in pulses in response to growth   hormone-releasing hormone (GHRH).	Excess secretion of GH (eg, pituitary adenoma)   may cause acromegaly (adults) or gigantism   (children). Treat with somatostatin analogs (eg,
	Secretion $\uparrow$ during exercise, deep sleep,   puberty, hypoglycemia. Secretion inhibited by   octreotide) or surgery.	
glucose and somatostatin release via negative		
feedback by somatomedin.		

## Appetite regulation

Ghrelin	Stimulates hunger (orexigenic effect) and GH release (via GH secretagogue receptor). Produced by stomach. Sleep deprivation or Prader-Willi syndrome $\rightarrow \uparrow$ ghrelin production.	Ghrelin makes you hunghre and ghreow (grow). Acts via lateral area of hypothalamus to $\uparrow$ appetite (hunger center).
Leptin	Satiety hormone. Produced by adipose tissue. Mutation of leptin gene $\rightarrow$ congenital obesity. Sleep deprivation or starvation $\rightarrow \downarrow$ leptin production.	Leptin keeps you thin. Acts via ventromedial area of hypothalamus to $\downarrow$ appetite (satiety center).
Endocannabinoids	Act at cannabinoid receptors in hypothalamus and nucleus accumbens, two key brain areas for the homeostatic and hedonic control of food intake $\rightarrow \uparrow$ appetite.	Exogenous cannabinoids cause "the munchies."

Antidiuretic hormone (vasopressin)

Source	Synthesized in hypothalamus (supraoptic and paraventricular nuclei), stored and secreted by posterior pituitary.	
function	Regulates serum osmolality ( $\mathrm{V}_{2}$-receptors) and blood pressure ( $\mathrm{V}_{1}$-receptors). Primary function is serum osmolality regulation (ADH $\downarrow$ serum osmolality, $\uparrow$ urine osmolality) via regulation of aquaporin channel insertion in principal cells of renal collecting duct.	ADH level is $\downarrow$ in central diabetes insipidus (DI), normal or $\uparrow$ in nephrogenic DI.   Nephrogenic DI can be caused by mutation in $\mathrm{V}_{2}$-receptor.   Desmopressin (ADH analog) is a treatment for central DI and nocturnal enuresis.
regulation	Osmoreceptors in hypothalamus $\left(1^{\circ}\right)$; hypovolemia.	

## Adrenal steroids and congenital adrenal hyperplasias


aRate-limiting step.

ENZYME DEFICIENCY	MINERALOCORTICOIDS	CORTISOL	SEX HORMONES	BP	${ }^{[k+]}$	LABS	Presentation
(A) 17 $\alpha$-hydroxylase ${ }^{\text {a }}$	$\uparrow$	$\downarrow$	$\downarrow$	$\uparrow$	$\downarrow$	$\downarrow$ androstenedione	XY: ambiguous genitalia, undescended testes $\mathrm{XX}:$ lacks $2^{\circ}$ sexual development
B 21-hydroxylase ${ }^{\text {a }}$	$\downarrow$	$\downarrow$	$\uparrow$	$\downarrow$	$\uparrow$	$\uparrow$ renin activity $\uparrow$ 17-hydroxyprogesterone	Most common   Presents in infancy (salt wasting) or childhood (precocious puberty) XX: virilization
C 11 1 -hydroxylase ${ }^{\text {a }}$	$\downarrow$ aldosterone   † ll-deoxycorticosterone (results in † BP)	$\downarrow$	$\uparrow$	$\uparrow$	$\downarrow$	$\downarrow$ renin activity	XX: virilization

${ }^{a}$ All congenital adrenal enzyme deficiencies are characterized by skin hyperpigmentation (due to $\uparrow$ MSH production, which is coproduced and secreted with ACTH) and bilateral adrenal gland enlargement (due to $\uparrow$ ACTH stimulation).
If deficient enzyme starts with 1 , it causes hypertension; if deficient enzyme ends with 1 , it causes virilization in females.

## Cortisol

source	Adrenal zona fasciculata.	Bound to corticosteroid-binding globulin.
FUNCTION	$\uparrow$ Appetite   $\uparrow$ Blood pressure:   - Upregulates $\alpha_{1}$-receptors on arterioles $\rightarrow \uparrow$ sensitivity to norepinephrine and epinephrine (permissive action)   - At high concentrations, can bind to mineralocorticoid (aldosterone) receptors   $\uparrow$ Insulin resistance (diabetogenic)   $\uparrow$ Gluconeogenesis, lipolysis, and proteolysis   ( $\downarrow$ glucose utilization)   $\downarrow$ Fibroblast activity (poor wound healing, $\downarrow$ collagen synthesis, $\uparrow$ striae)   $\downarrow$ Inflammatory and Immune responses:   - Inhibits production of leukotrienes and prostaglandins   - Inhibits WBC adhesion $\rightarrow$ neutrophilia   - Blocks histamine release from mast cells   - Eosinopenia, lymphopenia   - Blocks IL-2 production   $\downarrow$ Bone formation ( $\downarrow$ osteoblast activity)	Cortisol is a A BIG FIB.   Exogenous corticosteroids can cause reactivation of TB and candidiasis (blocks IL-2 production).
regulation	CRH (hypothalamus) stimulates ACTH release (pituitary) $\rightarrow$ cortisol production in adrenal zona fasciculata. Excess cortisol $\downarrow$ CRH, ACTH, and cortisol secretion.	Chronic stress induces prolonged secretion.

Calcium homeostasis Plasma $\mathrm{Ca}^{2+}$ exists in three forms:

- Ionized/free ( $\sim 45 \%$, active form)
- Bound to albumin ( $\sim 40 \%$ )
- Bound to anions (~ 15\%)
$\uparrow$ in $\mathrm{pH} \rightarrow \uparrow$ affinity of albumin ( $\uparrow$ negative charge) to bind $\mathrm{Ca}^{2+} \rightarrow$ hypocalcemia (eg, cramps, pain, paresthesias, carpopedal spasm).
Ionized/free $\mathrm{Ca}^{2+}$ is $1^{\circ}$ regulator of PTH; changes in pH alter PTH secretion, whereas changes in albumin do not.


## Parathyroid hormone

source
function

Chief cells of parathyroid.
$\uparrow$ bone resorption of $\mathrm{Ca}^{2+}$ and $\mathrm{PO}_{4}{ }^{3-}$.
$\uparrow$ kidney reabsorption of $\mathrm{Ca}^{2+}$ in distal convoluted tubule.
$\downarrow$ reabsorption of $\mathrm{PO}_{4}{ }^{3-}$ in proximal convoluted tubule.
$\uparrow 1,25-(\mathrm{OH})_{2} \mathrm{D}_{3}$ (calcitriol) production by stimulating kidney $1 \alpha$-hydroxylase in proximal convoluted tubule.
$\downarrow$ serum $\mathrm{Ca}^{2+} \rightarrow \uparrow$ PTH secretion.
$\uparrow$ serum $\mathrm{PO}_{4}{ }^{3-} \rightarrow \uparrow$ PTH secretion.
$\downarrow$ serum $\mathrm{Mg}^{2+} \rightarrow \uparrow$ PTH secretion.
$\downarrow$ serum $\mathrm{Mg}^{2+} \rightarrow \downarrow$ PTH secretion.
Common causes of $\downarrow \mathrm{Mg}^{2+}$ include diarrhea, aminoglycosides, diuretics, alcohol abuse.

PTH $\uparrow$ serum $\mathrm{Ca}^{2+}, \downarrow$ serum $\left(\mathrm{PO}_{4}{ }^{3-}\right), \uparrow$ urine $\left(\mathrm{PO}_{4}{ }^{3-}\right), \uparrow$ urine cAMP.
$\uparrow$ RANK-L (receptor activator of NF-кB ligand) secreted by osteoblasts and osteocytes. Binds RANK (receptor) on osteoclasts and their precursors to stimulate osteoclasts and $\uparrow \mathrm{Ca}^{2+}$ $\rightarrow$ bone resorption. Intermittent PTH release can also stimulate bone formation.
PTH = Phosphate-Trashing Hormone.
PTH-related peptide (PTHrP) functions like PTH and is commonly increased in malignancies (eg, squamous cell carcinoma of the lung, renal cell carcinoma).


## Calcitonin

SOURCE	Parafollicular cells $(\mathrm{C} \mathrm{cells})$ of thyroid.	Calcitonin opposes actions of PTH. Not
FUNCTION	$\downarrow$ bone resorption of $\mathrm{Ca}^{2+}$.	important in normal $\mathrm{Ca}^{2+}$ homeostasis.

FUNCTION Only free hormone is active. $\mathrm{T}_{3}$ binds nuclear receptor with greater affinity than $\mathrm{T}_{4} . \mathrm{T}_{3}$ functions

Thyroid hormones ( $\mathrm{T}_{3} / \mathrm{T}_{4}$ )
SOURCE

REGULATION

Iodine-containing hormones that control the body's metabolic rate.

Follicles of thyroid. 5'-deiodinase converts $\mathrm{T}_{4}$ (the major thyroid product) to $\mathrm{T}_{3}$ in peripheral tissue (5, 4, 3). Peripheral conversion is inhibited by glucocorticoids, $\beta$-blockers and propylthiouracil (PTU).
Functions of thyroid peroxidase include oxidation, organification of iodide and coupling of monoiodotyrosine (MIT) and diiodotyrosine (DIT). Inhibited by PTU and methimazole. DIT + DIT $=\mathrm{T}_{4}$. DIT + MIT $=\mathrm{T}_{3}$. Wolff-Chaikoff effect-excess iodine temporarily $\ominus$ thyroid peroxidase $\rightarrow \downarrow \mathrm{T}_{3} / T_{4}$ production. -6 B 's:

- Brain maturation
- Bone growth (synergism with GH)
- $\beta$-adrenergic effects. $\uparrow \beta_{1}$ receptors in heart $\rightarrow \uparrow \mathrm{CO}, \mathrm{HR}, \mathrm{SV}$, contractility; $\beta$-blockers alleviate adrenergic symptoms in thyrotoxicosis
- Basal metabolic rate $\uparrow$ (via $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase activity $\rightarrow \uparrow \mathrm{O}_{2}$ consumption, RR, body temperature)
- Blood sugar ( $\uparrow$ glycogenolysis, gluconeogenesis)
- Break down lipids ( $\uparrow$ lipolysis)

TRH $\oplus$ TSH release $\rightarrow \oplus$ follicular cells. Thyroid-stimulating immunoglobulin (TSI) may $\oplus$ follicular cells in Graves disease.
Negative feedback primarily by free $T_{3} / T_{4}$ :

- Anterior pituitary $\rightarrow \downarrow$ sensitivity to TRH
- Hypothalamus $\rightarrow \downarrow$ TRH secretion

Thyroxine-binding globulin (TBG) binds most $\mathrm{T}_{3} / \mathrm{T}_{4}$ in blood. Bound $\mathrm{T}_{3} / \mathrm{T}_{4}=$ inactive.

- $\uparrow$ TBG in pregnancy, OCP use (estrogen $\rightarrow \uparrow$ TBG) $\rightarrow \uparrow$ total $T_{3} / T_{4}$
- $\downarrow$ TBG in hepatic failure, steroids, nephrotic syndrome


Signaling pathways of endocrine hormones

cAMP	FSH, LH, ACTH, TSH, CRH, hCG, ADH ( $\mathrm{V}_{2}$-receptor), MSH, PTH, calcitonin, GHRH, glucagon, histamine ( $\mathrm{H}_{2}$-receptor)	FLAT ChAMP
cGMP	BNP, ANP, EDRF (NO)	BAD GraMPa   Think vasodilators
$\mathrm{IP}_{3}$	GnRH, Oxytocin, ADH ( $\mathrm{V}_{1}$-receptor), TRH, Histamine ( $\mathrm{H}_{1}$-receptor), Angiotensin II, Gastrin	GOAT HAG
Intracellular receptor	Progesterone, Estrogen, Testosterone, Cortisol, Aldosterone, $\mathrm{T}_{3} / \mathrm{T}_{4}$, Vitamin D	PET CAT on TV
Receptor tyrosine kinase	Insulin, IGF-1, FGF, PDGF, EGF	MAP kinase pathway Think Growth Factors
Nonreceptor tyrosine kinase	Prolactin, Immunomodulators (eg, cytokines IL-2, IL-6, IFN), GH, G-CSF, Erythropoietin, Thrombopoietin	JAK/STAT pathway   Think acidophils and cytokines PIGGLET

Signaling pathways of steroid hormones


Steroid hormones are lipophilic and therefore must circulate bound to specific binding globulins, which $\uparrow$ their solubility.
In men, $\uparrow$ sex hormone-binding globulin
(SHBG) lowers free testosterone
$\rightarrow$ gynecomastia.
In women, $\downarrow$ SHBG raises free testosterone
$\rightarrow$ hirsutism.
OCPs, pregnancy $\rightarrow \uparrow$ SHBG.

## ENDOCRINE—PATHOLOGY

## Cushing syndrome

EtioLogy	$\uparrow$ cortisol due to a variety of causes:   - Exogenous corticosteroids-result in $\downarrow$ ACTH, bilateral adrenal atrophy. Most common cause.   - Primary adrenal adenoma, hyperplasia, or carcinoma-result in $\downarrow$ ACTH, atrophy of uninvolved adrenal gland.   - ACTH-secreting pituitary adenoma (Cushing disease); paraneoplastic ACTH secretion (eg, small cell lung cancer, bronchial carcinoids)—result in $\uparrow$ ACTH, bilateral adrenal hyperplasia. Cushing disease is responsible for the majority of endogenous cases of Cushing syndrome.
FINDINGS	Hypertension, weight gain, moon facies $A$, abdominal striae $B$ and truncal obesity, buffalo hump, skin changes (eg, thinning, striae), hirsutism, osteoporosis, hyperglycemia (insulin resistance), amenorrhea, immunosuppression. Can also present with pseudohyperaldosteronism.
diagnosis	Screening tests include: $\uparrow$ free cortisol on 24-hr urinalysis, $\uparrow$ midnight salivary cortisol, and no suppression with overnight low-dose dexamethasone test. Measure serum ACTH. If $\downarrow$, suspect adrenal tumor or exogenous glucocorticoids. If $\uparrow$, distinguish between Cushing disease and ectopic ACTH secretion (eg, from small cell lung cancer).



Adrenal insufficiency	Inability of adrenal glands to generate enough glucocorticoids +/- mineralocorticoids for the body's needs. Symptoms include weakness, fatigue, orthostatic hypotension, muscle aches, weight loss, GI disturbances, sugar and/ or salt cravings. Treatment: glucocorticoid/ mineralocorticoid replacement.
Primary adrenal insufficiency	Deficiency of aldosterone and cortisol production due to loss of gland function $\rightarrow$ hypotension (hyponatremic volume contraction), hyperkalemia, metabolic acidosis, skin and mucosal hyperpigmentation $\boldsymbol{A}$ (due to $\uparrow \mathrm{MSH}$, a byproduct of ACTH production from proopiomelanocortin).   - Acute-sudden onset (eg, due to massive hemorrhage). May present with shock in acute adrenal crisis.   - Chronic-Addison disease. Due to adrenal atrophy or destruction by disease (autoimmune destruction most common in the Western world; TB most common in the developing world).
Secondary adrenal insufficiency	Seen with $\downarrow$ pituitary ACTH production.   No skin/mucosal hyperpigmentation, no hyperkalemia (aldosterone synthesis preserved due to intact renin-angiotensin-aldosterone axis).
Tertiary adrenal insufficiency	Seen in patients with chronic exogenous steroid use, precipitated by abrupt withdrawal. Aldosterone synthesis unaffected.

Adrenal insufficiency Inability of adrenal glands to generate enough glucocorticoids +/- mineralocorticoids for the body's needs. Symptoms include weakness, fatigue, orthostatic hypotension, muscle aches, weight loss, GI disturbances, sugar and/ or salt cravings. Treatment: glucocorticoid/ mineralocorticoid replacement.

Diagnosis involves measurement of serum electrolytes, morning/random serum cortisol and ACTH (low cortisol, high ACTH in $1^{\circ}$ adrenal insufficiency; low cortisol, low ACTH in $2^{\circ} / 3^{\circ}$ adrenal insufficiency due to pituitary/ hypothalamic disease), and response to ACTH stimulation test.
Alternatively, can use metyrapone stimulation test: metyrapone blocks last step of cortisol synthesis (11-deoxycortisol $\rightarrow$ cortisol). Normal response is $\downarrow$ cortisol and compensatory $\uparrow$ ACTH and 11-deoxycortisol. In $1^{\circ}$ adrenal insufficiency, ACTH is $\uparrow$ but ll-deoxycortisol remains $\downarrow$ after test. In $2^{\circ} / 3^{\circ}$ adrenal insufficiency, both ACTH and 11-deoxycortisol remain $\downarrow$ after test.


Secondary adrenal insufficiency

No skin/mucosal hyperpigmentation, no hyperkalemia (aldosterone synthesis preserved due to intact renin-angiotensin-aldosterone axis).
Seen in patients with chronic exogenous Aldosterone synthesis unaffected.

Primary Pigments the skin/mucosa.
Associated with autoimmune polyglandular syndromes.
Waterhouse-Friderichsen syndrome-acute $1^{\circ}$ adrenal insufficiency due to adrenal hemorrhage associated with septicemia (usually Neisseria meningitidis), DIC, endotoxic shock.

Secondary Spares the skin/mucosa.

Hyperaldosteronism
Increased secretion of aldosterone from adrenal gland. Clinical features include hypertension, $\downarrow$ or normal $\mathrm{K}^{+}$, metabolic alkalosis. $1^{\circ}$ hyperaldosteronism does not directly cause edema due to aldosterone escape mechanism. However, certain $2^{\circ}$ causes of hyperaldosteronism (eg, heart failure) impair the aldosterone escape mechanism, leading to worsening of edema.

## Primary hyperaldosteronism

## Secondary

 hyperaldosteronismSeen with adrenal adenoma (Conn syndrome) or bilateral adrenal hyperplasia. $\uparrow$ aldosterone, $\downarrow$ renin. Causes resistant hypertension.
Seen in patients with renovascular hypertension, juxtaglomerular cell tumors (renin-producing), and edema (eg, cirrhosis, heart failure, nephrotic syndrome).

## Neuroendocrine tumors

Heterogeneous group of neoplasms that begin in specialized cells called neuroendocrine cells (have traits similar to nerve cells and hormone-producing cells). Characteristics vary considerably depending on anatomical site, neuroendocrine cell(s) of origin (eg, enterochromaffin cells, enterochromaffin-like cells, insulin-producing $\beta$ cells), and secretory products. Cells contain amine precursor uptake decarboxylase (APUD) and secrete different hormones (eg, serotonin, histamine, calcitonin, neuron-specific enolase [NSE], chromogranin A).
Most tumors arise in the GI system (eg, carcinoid, gastrinoma), pancreas (eg, insulinoma, glucagonoma), and lungs (eg, small cell carcinoma). Other organs include thyroid (eg, medullary carcinoma) and adrenals (eg, pheochromocytoma).

## Neuroblastoma



Most common tumor of the adrenal medulla $\triangle$ in children, usually $<4$ years old. Originates from Neural crest cells. Occurs anywhere along the sympathetic chain.
Most common presentation is abdominal distension and a firm, irregular mass that can cross the midline (vs Wilms tumor, which is smooth and unilateral). Less likely to develop hypertension than with pheochromocytoma (Neuroblastoma is Normotensive). Can also present with opsoclonus-myoclonus syndrome ("dancing eyes-dancing feet").
$\uparrow$ HVA and VMA (catecholamine metabolites) in urine. Homer-Wright rosettes B characteristic of neuroblastoma and medulloblastoma. Bombesin and NSE $\oplus$. Associated with overexpression of $\mathrm{N}-m y c$ oncogene. Classified as an APUD tumor.

## Pheochromocytoma



SYMPTOMS

FINDINGS

TREATMENT

Most common tumor of the adrenal medulla in adults $\boldsymbol{A}$. Derived from chromaffin cells (arise from neural crest).
May be associated with germline mutations (eg, NF-1, VHL, RET [MEN 2A, 2B]).

Rule of 10 's:
10\% malignant
10\% bilateral
$10 \%$ extra-adrenal (eg, bladder wall, organ of Zuckerkandl)
$10 \%$ calcify
10\% kids

Episodic hyperadrenergic symptoms (5 P's):
Pressure ( $\uparrow$ BP)
Pain (headache)
Perspiration
Palpitations (tachycardia)
Pallor

Most tumors secrete epinephrine, norepinephrine, and dopamine, which can cause episodic hypertension. May also secrete $\mathrm{EPO} \rightarrow$ polycythemia.
Symptoms occur in "spells"-relapse and remit.
$\uparrow$ catecholamines and catecholamine metabolites (eg, metanephrines) in urine and plasma.
Irreversible $\alpha$-antagonists (eg, phenoxybenzamine) followed by $\beta$-blockers prior to tumor resection. $\alpha$-blockade must be achieved before giving $\beta$-blockers to avoid a hypertensive crisis. A before B.

Phenoxybenzamine ( 16 letters) is given for pheochromocytoma (also 16 letters).

## VIPoma

Rare neuroendocrine tumor that secretes vasoactive intestinal peptide (VIP). Most commonly arises in pancreas. Associated with MEN-1. Primary symptom is secretory diarrhea. Associated with WDHA (Watery Diarrhea, Hypokalemia, Achlorhydria) syndrome.

Hypothyroidism vs hyperthyroidism

	Hypothyroidism	Hyperthyroidism
metabolic findings	Cold intolerance, $\downarrow$ sweating, weight gain ( $\downarrow$ basal metabolic rate $\rightarrow \downarrow$ calorigenesis), hyponatremia ( $\downarrow$ free water clearance)	Heat intolerance, $\uparrow$ sweating, weight loss ( $\uparrow$ synthesis of $\mathrm{Na}^{+}-\mathrm{K}^{+}$ATPase $\rightarrow \uparrow$ basal metabolic rate $\rightarrow \uparrow$ calorigenesis)
SKIN/HAIR FINDINGS	Dry, cool skin (due to $\downarrow$ blood flow); coarse, brittle hair; diffuse alopecia; brittle nails; puffy facies and generalized nonpitting edema (myxedema) due to $\uparrow$ GAGs in interstitial spaces $\rightarrow \uparrow$ osmotic pressure $\rightarrow$ water retention	Warm, moist skin (due to vasodilation); fine hair; onycholysis ( $\mathbf{A}$ ); pretibial myxedema in Graves disease
OCULAR FINDINGS	Periorbital edema	Ophthalmopathy in Graves disease (including periorbital edema, exophthalmos), lid lag/ retraction ( $\uparrow$ sympathetic stimulation of levator palpebrae superioris)
GASTROINTEStINAL FIndings	Constipation ( $\downarrow$ GI motility), $\downarrow$ appetite	Hyperdefecation/diarrhea ( $\uparrow$ GI motility), $\uparrow$ appetite
mUSCULOSkEletal findings	Hypothyroid myopathy (proximal weakness, $\uparrow$ CK), carpal tunnel syndrome, myoedema (small lump rising on the surface of a muscle when struck with a hammer)	Thyrotoxic myopathy (proximal weakness, normal CK), osteoporosis/ $\uparrow$ fracture rate ( $\mathrm{T}_{3}$ directly stimulates bone resorption)
REPRODUCTIVE FINDINGS	Menorrhagia and/or oligomenorrhea; $\downarrow$ libido, infertility	Oligomenorrhea or amenorrhea, gynecomastia, $\downarrow$ libido, infertility
NEUROPSYCHIATRIC FINDINGS	Hypoactivity, lethargy, fatigue, weakness, depressed mood, $\downarrow$ reflexes (delayed/slow relaxing)	Hyperactivity, restlessness, anxiety, insomnia, fine tremors (due to $\uparrow \beta$-adrenergic activity), $\uparrow$ reflexes (brisk)
CARDIOVASCULAR FIndings	Bradycardia, dyspnea on exertion ( $\downarrow$ cardiac output)	Tachycardia, palpitations, dyspnea, arrhythmias (eg, atrial fibrillation), chest pain and systolic HTN due to $\uparrow$ number and sensitivity of $\beta$-adrenergic receptors, $\uparrow$ expression of cardiac sarcolemmal ATPase and $\downarrow$ expression of phospholamban
LAB FINDINGS	$\uparrow$ TSH (if $\mathrm{l}^{\circ}$ )   $\downarrow$ free $\mathrm{T}_{3}$ and $\mathrm{T}_{4}$   Hypercholesterolemia (due to $\downarrow$ LDL receptor expression)	$\downarrow$ TSH (if $1^{\circ}$ )   $\uparrow$ free $\mathrm{T}_{3}$ and $\mathrm{T}_{4}$   $\downarrow$ LDL, HDL, and total cholesterol

## Hypothyroidism

Hashimoto thyroiditis

## Postpartum thyroiditis

Congenital hypothyroidism (cretinism)

## Subacute

granulomatous
thyroiditis (de Quervain)

Riedel thyroiditis

Most common cause of hypothyroidism in iodine-sufficient regions; an autoimmune disorder with antithyroid peroxidase (antimicrosomal) and antithyroglobulin antibodies. Associated with HLADR3, $\uparrow$ risk of non-Hodgkin lymphoma (typically of B-cell origin).
May be hyperthyroid early in course due to thyrotoxicosis during follicular rupture.
Histology: Hürthle cells, lymphoid aggregates with germinal centers A.
Findings: moderately enlarged, nontender thyroid.
Self-limited thyroiditis arising up to $l$ year after delivery. Presents as transient hyperthyroidism, hypothyroidism, or hyperthyroidism followed by hypothyroidism. Majority of women are euthyroid following resolution. Thyroid usually painless and normal in size.
Histology: lymphocytic infiltrate with occasional germinal center formation.
Severe fetal hypothyroidism due to antibody-mediated maternal hypothyroidism, thyroid agenesis, thyroid dysgenesis (most common cause in US), iodine deficiency, dyshormonogenetic goiter.
Findings: Pot-bellied, Pale, Puffy-faced child with Protruding umbilicus, Protuberant tongue, and Poor brain development: the 6 P's B .

Self-limited disease often following a flu-like illness (eg, viral infection).
May be hyperthyroid early in course, followed by hypothyroidism (permanent in $\sim 15 \%$ of cases).
Histology: granulomatous inflammation.
Findings: $\uparrow$ ESR, jaw pain, very tender thyroid. (de Quervain is associated with pain.)
Thyroid replaced by fibrous tissue with inflammatory infiltrate D. Fibrosis may extend to local structures (eg, trachea, esophagus), mimicking anaplastic carcinoma. $1 / 3$ are hypothyroid.
Considered a manifestation of $\operatorname{IgG}_{4}$-related systemic disease (eg, autoimmune pancreatitis, retroperitoneal fibrosis, noninfectious aortitis).
Findings: fixed, hard (rock-like), painless goiter.
Iodine deficiency $\mathbf{E}$, goitrogens (eg, amiodarone, lithium), Wolff-Chaikoff effect (thyroid gland downregulation in response to $\uparrow$ iodide).


Hyperthyroidism

Graves disease	Most common cause of hyperthyroidism. Thyroid-stimulating immunoglobulin (IgG; type II hypersensitivity) stimulates TSH receptors on thyroid (hyperthyroidism, diffuse goiter) and dermal fibroblasts (pretibial myxedema). Infiltration of retroorbital space by activated T-cells $\rightarrow \uparrow$ cytokines (eg, TNF- $\alpha$, IFN- $\gamma$ ) $\rightarrow \uparrow$ fibroblast secretion of hydrophilic GAGs $\rightarrow \uparrow$ osmotic muscle swelling, muscle inflammation, and adipocyte count $\rightarrow$ exophthalmos $\boldsymbol{A}$. Often presents during stress (eg, pregnancy). Associated with HLA-DR3 and HLA-B8.   Histology: tall, crowded follicular epithelial cells; scalloped colloid B.
Toxic multinodular goiter	Focal patches of hyperfunctioning follicular cells distended with colloid C working independently of TSH (due to TSH receptor mutations in $60 \%$ of cases). $\uparrow$ release of $\mathrm{T}_{3}$ and $\mathrm{T}_{4}$. Hot nodules are rarely malignant.
Thyroid storm	Uncommon but serious complication that occurs when hyperthyroidism is incompletely treated/ untreated and then significantly worsens in the setting of acute stress such as infection, trauma, surgery. Presents with agitation, delirium, fever, diarrhea, coma, and tachyarrhythmia (cause of death). May see $\uparrow$ LFTs. Treat with the 4 P's: $\beta$-blockers (eg, Propranolol), Propylthiouracil, corticosteroids (eg, Prednisolone), Potassium iodide (Lugol iodine).
Jod-Basedow phenomenon	Thyrotoxicosis if a patient with iodine deficiency and partially autonomous thyroid tissue (eg, autonomous nodule) is made iodine replete. Can happen after iodine IV contrast. Opposite to Wolff-Chaikoff effect.



Causes of goiter

Smooth/diffuse	Nodular
Graves disease	Toxic multinodular goiter
Hashimoto thyroiditis	Thyroid adenoma
Iodine deficiency	Thyroid cancer
TSH-secreting pituitary adenoma	Thyroid cyst



Benign solitary growth of the thyroid. Most are nonfunctional ("cold"), can rarely cause hyperthyroidism via autonomous thyroid hormone production ("hot" or "toxic"). Most common histology is follicular $\boldsymbol{A}$; absence of capsular or vascular invasion (unlike follicular carcinoma).

Typically diagnosed with fine needle aspiration; treated with thyroidectomy. Complications of surgery include hoarseness (due to recurrent laryngeal nerve damage), hypocalcemia (due to removal of parathyroid glands), and transection of recurrent and superior laryngeal nerves (during ligation of inferior thyroid artery and superior laryngeal artery, leading to dysphagia, dysphonia).

Most common, excellent prognosis. Empty-appearing nuclei with central clearing ("Orphan Annie" eyes) $\boldsymbol{A}$, psamMoma bodies, nuclear grooves (Papi and Moma adopted Orphan Annie). $\uparrow$ risk with RET/PTC rearrangements and BRAF mutations, childhood irradiation.

Good prognosis. Invades thyroid capsule and vasculature (unlike follicular adenoma), uniform follicles; hematogenous spread is common. Associated with RAS mutation and PAX8-PPAR- $\gamma$ translocations.
Medullary carcinoma From parafollicular "C cells"; produces calcitonin, sheets of cells in an amyloid stroma (stains with


Undifferentiated/ anaplastic carcinoma

## Diagnosing parathyroid disease



Hypoparathyroidism


Due to accidental surgical excision of parathyroid glands, autoimmune destruction, or DiGeorge syndrome. Findings: tetany, hypocalcemia, hyperphosphatemia.
Chvostek sign-tapping of facial nerve (tap the Cheek) $\rightarrow$ contraction of facial muscles.
Trousseau sign—occlusion of brachial artery with BP cuff (cuff the Triceps) $\rightarrow$ carpal spasm.
Pseudohypoparathyroidism type 1A-unresponsiveness of kidney to PTH $\rightarrow$ hypocalcemia despite $\uparrow$ PTH levels. Presents as a constellation of physical findings known as Albright hereditary osteodystrophy: shortened 4th/5th digits A, short stature, obesity, developmental delay. Autosomal dominant. Due to defective $\mathrm{G}_{\mathrm{s}}$ protein $\alpha$-subunit causing end-organ resistance to PTH. Defect must be inherited from mother due to imprinting.
Pseudopseudohypoparathyroidism—physical exam features of Albright hereditary osteodystrophy but without end-organ PTH resistance (PTH level normal). Occurs when defective $\mathrm{G}_{\mathrm{s}}$ protein $\alpha$-subunit is inherited from father.

Hyperparathyroidism		
Primary hyperparathyroidism A	Usually due to parathyroid adenoma or hyperplasia. Hypercalcemia, hypercalciuria (renal stones), polyuria (thrones), hypophosphatemia, $\uparrow$ PTH, $\uparrow$ ALP, $\uparrow$ cAMP in urine. Most often asymptomatic. May present with weakness and constipation ("groans"), abdominal/flank pain (kidney stones, acute pancreatitis), neuropsychiatric disturbances ("psychiatric overtones").	Osteitis fibrosa cystica-cystic bone spaces filled with brown fibrous tissue A ("brown tumor" consisting of osteoclasts and deposited hemosiderin from hemorrhages; causes bone pain). Due to $\uparrow$ PTH, classically associated with $1^{\circ}$ (but also seen with $2^{\circ}$ ) hyperparathyroidism. "Stones, thrones, bones, groans, and psychiatric overtones."
Secondary hyperparathyroidism	$2^{\circ}$ hyperplasia due to $\downarrow \mathrm{Ca}^{2+}$ absorption and/or $\uparrow \mathrm{PO}_{4}{ }^{3-}$, most often in chronic renal disease (causes hypovitaminosis D and hyperphosphatemia $\rightarrow \downarrow \mathrm{Ca}^{2+}$ ).   Hypocalcemia, hyperphosphatemia in chronic renal failure (vs hypophosphatemia with most other causes), $\uparrow$ ALP, $\uparrow$ PTH.	Renal osteodystrophy-renal disease $\rightarrow 2^{\circ}$ and $3^{\circ}$ hyperparathyroidism $\rightarrow$ bone lesions.
Tertiary hyperparathyroidism	Refractory (autonomous) hyperparathyroidism resulting from chronic renal disease. $\uparrow \uparrow \mathrm{PTH}$, $\uparrow \mathrm{Ca}^{2+}$.	

Familial hypocalciuric hypercalcemia

Defective G-coupled $\mathrm{Ca}^{2+}$-sensing receptors in multiple tissues (eg, parathyroids, kidneys). Higher than normal $\mathrm{Ca}^{2+}$ levels required to suppress PTH. Excessive renal $\mathrm{Ca}^{2+}$ reuptake $\rightarrow$ mild hypercalcemia and hypocalciuria with normal to $\uparrow$ PTH levels.

## Nelson syndrome

Enlargement of existing ACTH-secreting pituitary adenoma after bilateral adrenalectomy for refractory Cushing disease (due to removal of cortisol feedback mechanism). Presents with hyperpigmentation, headaches and bitemporal hemianopia. Treatment: pituitary irradiation or surgical resection.

Acromegaly	Excess GH in adults. Typically caused by pituit	denoma.
FINDINGS	Large tongue with deep furrows, deep voice, large hands and feet, coarsening of facial features with aging $\boldsymbol{A}$, frontal bossing, diaphoresis (excessive sweating), impaired glucose tolerance (insulin resistance), hypertension. $\uparrow$ risk of colorectal polyps and cancer.	$\uparrow \mathrm{GH}$ in children $\rightarrow$ gigantism ( $\uparrow$ linear bone growth). HF most common cause of death.
diagnosis	$\uparrow$ serum IGF-l; failure to suppress serum GH following oral glucose tolerance test; pituitary mass seen on brain MRI.	
TREATMENT	Pituitary adenoma resection. If not cured, treat with octreotide (somatostatin analog) or pegvisomant (growth hormone receptor antagonist), dopamine agonists (eg, cabergoline).	

## Laron syndrome (dwarfism)

Defective growth hormone receptors $\rightarrow \downarrow$ linear growth. $\uparrow$ GH, $\downarrow$ IGF-l. Clinical features: short height, small head circumference, characteristic facies with saddle nose and prominent forehead, delayed skeletal maturation, small genitalia.

Diabetes insipidus Characterized by intense thirst and polyuria with inability to concentrate urine due to lack of ADH (central) or failure of response to circulating ADH (nephrogenic).

	Central DI	Nephrogenic DI
Etiology	Pituitary tumor, autoimmune, trauma, surgery, ischemic encephalopathy, idiopathic	Hereditary (ADH receptor mutation), $2^{\circ}$ to hypercalcemia, hypokalemia, lithium, demeclocycline (ADH antagonist)
FINDINGS	$\downarrow$ ADH	Normal or $\uparrow$ ADH levels
	Urine specifi Serum osmolality Hyperosmotic	$\begin{aligned} & \text { gravity }<1.006 \\ & >290 \mathrm{mOsm} / \mathrm{kg} \\ & \text { lume contraction } \end{aligned}$
Water deprivation testa	$>50 \% \uparrow$ in urine osmolality only after administration of ADH analog	Minimal change in urine osmolality, even after administration of ADH analog
treatment	Desmopressin Hydration	HCTZ, indomethacin, amiloride   Hydration, dietary salt restriction, avoidance of offending agent

${ }^{\text {a }}$ No water intake for $2-3$ hr followed by hourly measurements of urine volume and osmolality and plasma $\mathrm{Na}^{+}$concentration and osmolality. ADH analog (desmopressin) is administered if serum osmolality $>295-300 \mathrm{mOsm} / \mathrm{kg}$, plasma $\mathrm{Na}^{+} \geq 145$ $\mathrm{mEq} / \mathrm{L}$, or urine osmolality does not rise despite a rising plasma osmolality.

## Syndrome of inappropriate antidiuretic hormone secretion

Characterized by:

- Excessive free water retention
- Euvolemic hyponatremia with continued urinary $\mathrm{Na}^{+}$excretion
- Urine osmolality $>$ serum osmolality

Body responds to water retention with
$\downarrow$ aldosterone and $\uparrow$ ANP and BNP
$\rightarrow \uparrow$ urinary $\mathrm{Na}^{+}$secretion $\rightarrow$ normalization of extracellular fluid volume $\rightarrow$ euvolemic hyponatremia. Very low serum $\mathrm{Na}^{+}$levels can lead to cerebral edema, seizures. Correct slowly to prevent osmotic demyelination syndrome (formerly known as central pontine myelinolysis).

SIADH causes include:

- Ectopic ADH (eg, small cell lung cancer)
- CNS disorders/head trauma
- Pulmonary disease
- Drugs (eg, cyclophosphamide)

Treatment: fluid restriction (first line), salt tablets, IV hypertonic saline, diuretics, conivaptan, tolvaptan, demeclocycline.
Increased urine osmolality during water deprivation test indicates psychogenic polydipsia.

Undersecretion of pituitary hormones due to:

- Nonsecreting pituitary adenoma, craniopharyngioma
- Sheehan syndrome-ischemic infarct of pituitary following postpartum bleeding; pregnancyinduced pituitary growth $\rightarrow \uparrow$ susceptibility to hypoperfusion. Usually presents with failure to lactate, absent menstruation, cold intolerance
- Empty sella syndrome-atrophy or compression of pituitary (which lies in the sella turcica), often idiopathic, common in obese women; associated with idiopathic intracranial hypertension
- Pituitary apoplexy-sudden hemorrhage of pituitary gland, often in the presence of an existing pituitary adenoma. Usually presents with sudden onset severe headache, visual impairment (eg, bitemporal hemianopia, diplopia due to CN III palsy), and features of hypopituitarism.
- Brain injury
- Radiation

Treatment: hormone replacement therapy (corticosteroids, thyroxine, sex steroids, human growth hormone).

## Diabetes mellitus



Type 1 vs type 2 diabetes mellitus

	Type 1	Type 2
$1^{\circ}$ Defect	Autoimmune destruction of $\beta$ cells (eg, due to glutamic acid decarboxylase antibodies)	$\uparrow$ resistance to insulin, progressive pancreatic $\beta$-cell failure
Insulin necessary in treatment	Always	Sometimes
AGE (EXCEPTIONS COMMONLY OCCUR)	$<30 \mathrm{yr}$	$>40 \mathrm{yr}$
ASSOCIATION WITH OBESITY	No	Yes
Genetic Predisposition	Relatively weak ( $50 \%$ concordance in identical twins), polygenic	Relatively strong ( $90 \%$ concordance in identical twins), polygenic
ASSOCIATION WITH HLA SYSTEM	Yes, HLA-DR4 and -DR3 (4-3 = type 1)	No
glucose intolerance	Severe	Mild to moderate
insulin sensitivity	High	Low
ketoacioosis	Common	Rare
$\beta$-cell numbersin theisiets	$\downarrow$	Variable (with amyloid deposits)
Seruminsulin level	$\downarrow$	Variable
CLASSIC SYMPTOMS OF POLYURIA, POLYDIPSIA, POLYPHAGIA, WEIGHT Loss	Common	Sometimes
Histology	Islet leukocytic infiltrate	Islet amyloid polypeptide (IAPP) deposits

Diabetic ketoacidosis One of the most feared complications of diabetes. Usually due to insulin noncompliance or $\uparrow$ insulin requirements from $\uparrow$ stress (eg, infection). Excess fat breakdown and $\uparrow$ ketogenesis from $\uparrow$ free fatty acids, which are then made into ketone bodies ( $\beta$-hydroxybutyrate > acetoacetate). Usually occurs in type 1 diabetes, as endogenous insulin in type 2 diabetes usually prevents lipolysis.

SIGNS/SYMPTOMS	DKA is Deadly: Delirium/psychosis, Kussmaul respirations (rapid, deep breathing), Abdominal   pain/nausea/vomiting, Dehydration. Fruity breath odor (due to exhaled acetone).
LABS	Hyperglycemia, $\uparrow \mathrm{H}^{+}, \downarrow \mathrm{HCO}_{3}^{-}(\uparrow$ anion gap metabolic acidosis), $\uparrow$ blood ketone levels,   leukocytosis. Hyperkalemia, but depleted intracellular $\mathrm{K}^{+}$due to transcellular shift from $\downarrow$ insulin   and acidosis. Osmotic diuresis $\rightarrow \uparrow \mathrm{K}^{+}$loss in urine $\rightarrow$ total body $\mathrm{K}^{+}$depletion.
COMPLICATIONS	Life-threatening mucormycosis (usually caused by Rhizopus infection), cerebral edema, cardiac   arrhythmias, heart failure.
TREATMENT	IV fluids, IV insulin, and $\mathrm{K}^{+}$(to replete intracellular stores); glucose if necessary to prevent   hypoglycemia.

## Hyperosmolar hyperglycemic state

State of profound hyperglycemia-induced dehydration and $\uparrow$ serum osmolality, classically seen in elderly type 2 diabetics with limited ability to drink. Hyperglycemia $\rightarrow$ excessive osmotic diuresis $\rightarrow$ dehydration $\rightarrow$ eventual onset of HHS. Symptoms: thirst, polyuria, lethargy, focal neurological deficits (eg, seizures), can progress to coma and death if left untreated. Labs: hyperglycemia (often $>600 \mathrm{mg} / \mathrm{dL}$ ), $\uparrow$ serum osmolality ( $>320 \mathrm{mOsm} / \mathrm{kg}$ ), no acidosis ( $\mathrm{pH}>7.35$, ketone production inhibited by presence of insulin). Treatment: aggressive IV fluids, insulin therapy.

> Glucagonoma
> Tumor of pancreatic $\alpha$ cells $\rightarrow$ overproduction of glucagon. Presents with dermatitis (necrolytic migratory erythema), diabetes (hyperglycemia), DVT, declining weight, depression. Treatment: octreotide, surgery.

## Insulinoma

Tumor of pancreatic $\beta$ cells $\rightarrow$ overproduction of insulin $\rightarrow$ hypoglycemia. May see Whipple triad: low blood glucose, symptoms of hypoglycemia (eg, lethargy, syncope, diplopia), and resolution of symptoms after normalization of glucose levels. Symptomatic patients have $\downarrow$ blood glucose and $\uparrow$ C-peptide levels (vs exogenous insulin use). $\sim 10 \%$ of cases associated with MEN 1 syndrome. Treatment: surgical resection.

Tumor of pancreatic $\delta$ cells $\rightarrow$ overproduction of somatostatin $\rightarrow \downarrow$ secretion of secretin, cholecystokinin, glucagon, insulin, gastrin, gastric inhibitory peptide (GIP). May present with diabetes/glucose intolerance, steatorrhea, gallstones, achlorhydria. Treatment: surgical resection; somatostatin analogs (eg, octreotide) for symptom control.

Carcinoid syndrome


Rare syndrome caused by carcinoid tumors (neuroendocrine cells $\boldsymbol{A}$; note prominent rosettes [arrow]), especially metastatic small bowel tumors, which secrete high levels of serotonin ( $5-\mathrm{HT}$ ). Not seen if tumor is limited to GI tract (5-HT undergoes first-pass metabolism in liver).
Results in recurrent diarrhea, cutaneous flushing, asthmatic wheezing, right-sided valvular heart disease (tricuspid regurgitation, pulmonic stenosis) due to lung MAO-A enzymatic breakdown of 5-HT before left heart return. $\uparrow 5$-hydroxyindoleacetic acid (5-HIAA) in urine, niacin deficiency (pellagra). Associated with neuroendocrine tumor markers chromogranin A and synaptophysin.
Treatment: surgical resection, somatostatin analog (eg, octreotide).

Rule of $1 / 3 \mathrm{~s}$ :
1/3 metastasize
1/3 present with 2nd malignancy
$1 / 3$ are multiple
Most common malignancy in the small intestine.

## Zollinger-Ellison syndrome

Gastrin-secreting tumor (gastrinoma) of pancreas or duodenum. Acid hypersecretion causes recurrent ulcers in duodenum and jejunum. Presents with abdominal pain (peptic ulcer disease, distal ulcers), diarrhea (malabsorption). Positive secretin stimulation test: gastrin levels remain elevated after administration of secretin, which normally inhibits gastrin release. May be associated with MEN 1.

## Multiple endocrine neoplasias



All MEN syndromes have autosomal dominant inheritance.
"All MEN are dominant" (or so they think).
CHARACTERISTICS COMMENTS

Pituitary tumors (prolactin or GH) Pancreatic endocrine tumors-ZollingerEllison syndrome, insulinomas, VIPomas, glucagonomas (rare)
Parathyroid adenomas
Associated with mutation of MEN1 (menin, a tumor suppressor, chromosome ll), angiofibromas, collagenomas, meningiomas
Parathyroid hyperplasia
Medullary thyroid carcinoma-neoplasm of parafollicular or C cells; secretes calcitonin; prophylactic thyroidectomy required Pheochromocytoma (secretes catecholamines) Associated with mutation in RET (codes for receptor tyrosine kinase) in cells of neural crest origin

Medullary thyroid carcinoma
Pheochromocytoma
Mucosal neuromas A (oral/intestinal ganglioneuromatosis)
Associated with marfanoid habitus; mutation in RET gene


MEN 1 = 3 P's: Pituitary, Parathyroid, and Pancreas
MEN 2A = 2 P's: Parathyroid and
Pheochromocytoma
MEN 2B = 1 P: Pheochromocytoma

## - ENDOCRINE—PHARMACOLOGY

Diabetes mellitus management

All patients with diabetes mellitus should receive education on diet, exercise, blood glucose monitoring, and complication management. Treatment differs based on the type of diabetes:

- Type 1 DM-insulin replacement
- Type 2 DM—oral agents (metformin is first line), non-insulin injectables, insulin replacement; weight loss particularly helpful in lowering blood glucose
- Gestational DM—insulin replacement if nutrition therapy and exercise alone fail

Regular (short-acting) insulin is preferred for DKA (IV), hyperkalemia (+ glucose), stress hyperglycemia.

DRUG CLASS	MECHANISM	ADVERSE EFFECTS
Injectables		
Insulin preparations   Rapid acting (1-hr peak): Lispro, Aspart, Glulisine (no LAG) Short acting (2-3 hr peak): regular Intermediate acting (4-10 hr peak): NPH Long acting (no real peak): detemir, glargine	Bind insulin receptor (tyrosine kinase activity).   Liver: $\uparrow$ glucose stored as glycogen.   Muscle: $\uparrow$ glycogen, protein synthesis.   Fat: $\uparrow$ TG storage.   Cell membrane: $\uparrow \mathrm{K}^{+}$uptake.	Hypoglycemia, lipodystrophy, rare hypersensitivity reactions.
Amylin analogs Pramlintide	$\downarrow$ glucagon release, $\downarrow$ gastric emptying, $\uparrow$ satiety.	Hypoglycemia (in setting of mistimed prandial insulin), nausea.
GLP-1 analogs Exenatide, liraglutide	$\downarrow$ glucagon release, $\downarrow$ gastric emptying,   $\uparrow$ glucose-dependent insulin release, $\uparrow$ satiety.	Nausea, vomiting, pancreatitis.   Promote weight loss (often desired).
Oral drugs		
Biguanides Metformin	Inhibit hepatic gluconeogenesis and the action of glucagon, by inhibiting mGPD.   $\uparrow$ glycolysis, peripheral glucose uptake ( $\uparrow$ insulin sensitivity).	GI upset, lactic acidosis (use with caution in renal insufficiency), $\mathrm{B}_{12}$ deficiency. Promote weight loss (often desired).
Sulfonylureas   1st generation: chlorpropamide, tolbutamide 2nd generation: glimepiride, glipizide, glyburide	Close $\mathrm{K}^{+}$channel in pancreatic $\beta$ cell membrane $\rightarrow$ cell depolarizes $\rightarrow$ insulin release via $\uparrow \mathrm{Ca}^{2+}$ influx.	Hypoglycemia ( $\uparrow$ risk with renal failure), weight gain.   lst generation: disulfiram-like effects. 2nd generation: hypoglycemia.
Meglitinides Nateglinide, repaglinide	Close $\mathrm{K}^{+}$channel in pancreatic $\beta$ cell membrane $\rightarrow$ cell depolarizes $\rightarrow$ insulin release via $\uparrow \mathrm{Ca}^{2+}$ influx (binding site differs from sulfonylureas).	Hypoglycemia ( $\uparrow$ risk with renal failure), weight gain.

Diabetes mellitus management (continued)

DRUG CLASS	MECHANISM	ADVERSE EFFECTS
Oral drugs (continued)		
DPP-4 inhibitors   Linagliptin, saxagliptin, sitagliptin	Inhibit DPP-4 enzyme that deactivates GLP-1.   $\downarrow$ glucagon release, gastric emptying.   $\uparrow$ glucose-dependent insulin release, satiety.	Mild urinary or respiratory infections, weight neutral.
Glitazones/ thiazolidinediones Pioglitazone, rosiglitazone	Binds to PPAR- $\gamma$ nuclear transcription regulator $\rightarrow \uparrow$ insulin sensitivity and levels of adiponectin $\rightarrow$ regulation of glucose metabolism and fatty acid storage.	Weight gain, edema, HF, $\uparrow$ risk of fractures. Delayed onset of action (several weeks).
```Sodium-glucose co- transporter 2 (SGLT2) inhibitors Canagliflozin, dapagliflozin, empagliflozin```	Block reabsorption of glucose in proximal convoluted tubule.	Glucosuria, UTIs, vaginal yeast infections, hyperkalemia, dehydration (orthostatic hypotension), weight loss.
α-glucosidase inhibitors Acarbose, miglitol	Inhibit intestinal brush-border α-glucosidases \rightarrow delayed carbohydrate hydrolysis and glucose absorption $\rightarrow \downarrow$ postprandial hyperglycemia.	GI upset. Not recommended if kidney function is impaired.

Thioamides	Propylthiouracil, methimazole.
MECHANISM	Block thyroid peroxidase, inhibiting the oxidation of iodide and the organification and coupling of iodine \rightarrow inhibition of thyroid hormone synthesis. PTU also blocks 5^{\prime}-deiodinase $\rightarrow \downarrow$ peripheral conversion of T_{4} to T_{3}.
CLINICALUSE	Hyperthyroidism. PTU blocks Peripheral conversion. PTU used in first trimester of pregnancy (due to methimazole teratogenicity); methimazole used in second and third trimesters of pregnancy (due to risk of PTU-induced hepatotoxicity). Not used to treat Graves ophthalmopathy (treated with corticosteroids).
Skin rash, agranulocytosis (rare), aplastic anemia, hepatotoxicity. Methimazole is a possible teratogen (can cause aplasia cutis).	

Levothyroxine $\left(T_{4}\right)$, liothyronine $\left(T_{3}\right)$

| MECHANISM | Thyroid hormone replacement. |
| :--- | :--- | :--- |
| CLIIICAL USE | Hypothyroidism, myxedema. May be abused for weight loss. |
| ADVERSE EFFECTS | Tachycardia, heat intolerance, tremors, arrhythmias. |

Hypothalamic/pituitary drugs

DRUG	CLINICAL USE
ADH antagonists (conivaptan, tolvaptan)	SIADH, block action of ADH at V_{2}-receptor.
Desmopressin	Central (not nephrogenic) DI, von Willebrand disease, sleep enuresis, hemophilia A.
GH	GH deficiency, Turner syndrome.
Oxytocin	Labor induction (stimulates uterine contractions), milk letdown; controls uterine hemorrhage.
Somatostatin (octreotide)	Acromegaly, carcinoid syndrome, gastrinoma, glucagonoma, esophageal varices.

Demeclocycline

Mechansm	ADH antagonist (member of tetracycline family).
cIINCAL USE	SIADH.
ADVERSE EFFECTS	Nephrogenic DI, photosensitivity, abnormalities of bone and teeth.

Fludrocortisone

Mechansm	Synthetic analog of aldosterone with little glucocorticoid effects.
cIINCAL USE	Mineralocorticoid replacement in 1° adrenal insufficiency.
ADVERSE EFFECTS	Similar to glucocorticoids; also edema, exacerbation of heart failure, hyperpigmentation.

Cinacalcet

MECHANSM	Sensitizes Ca^{2+}-sensing receptor (CaSR) in parathyroid gland to circulating $\mathrm{Ca}^{2+} \rightarrow \downarrow \mathrm{PTH}$.
CIINCAL USE	Refractory hypercalcemia in 1° hyperparathyroidism, 2° hyperparathyroidism, or parathyroid carcinoma.
ADVERSE EFFECTS	Hypocalcemia.

Sevelamer

mechanism
CLINCAL USE
adverse effects

Nonabsorbable phosphate binder that prevents phosphate absorption from the GI tract.
Hyperphosphatemia in CKD.
Hypophosphatemia, GI upset.

HIGH-YIELD SYSTEMS

Gastrointestinal

"A good set of bowels is worth more to a man than any quantity of brains."

> -Josh Billings
"Man should strive to have his intestines relaxed all the days of his life."
-Moses Maimonides
"Is life worth living? It all depends on the liver."
-William James

When studying the gastrointestinal system, be sure to understand the normal embryology, anatomy, and physiology and how it is affected in the various pathologic diseases. Study not only what a disease entails, but also its specific findings, so that you can differentiate between two similar diseases. For example, what specifically makes ulcerative colitis different than Crohn disease? Also, it is important to understand bile metabolism and which lab values increase or decrease depending on the disease process. Be comfortable reading abdominal X-rays, CT scans, and endoscopy exams.

PEmbryology	352
> Anatomy	354
- Physiology	365
P Pathology	370
PPharmacology	392

- GASTROINTESTINAL—EMBRYOLOGY

Normal gastrointestinal embryology

Foregut-esophagus to upper duodenum.
Midgut-lower duodenum to proximal $2 / 3$ of transverse colon.
Hindgut-distal $1 / 3$ of transverse colon to anal canal above pectinate line.
Midgut development:

- 6th week—physiologic midgut herniates through umbilical ring
- 10th week-returns to abdominal cavity + rotates around superior mesenteric artery (SMA), total 270° counterclockwise

Ventral wall defects
Developmental defects due to failure of rostral fold closure (eg, sternal defects [ectopia cordis]), lateral fold closure (eg, omphalocele, gastroschisis), or caudal fold closure (eg, bladder exstrophy).

	Gastroschisis	Omphalocele
Etiology	Extrusion of abdominal contents through abdominal folds (typically right of umbilicus)	Failure of lateral walls to migrate at un ring \rightarrow persistent midline herniation abdominal contents into umbilical
coverage	Not covered by peritoneum or amnion; "the abdominal contents are coming out of the G"	Surrounded by peritoneum (light gray sac); "abdominal contents are sealed
ASSOCIATIONS	Not associated with chromosome abnormalities	Associated with congenital anomalies trisomies 13 and 18, Beckwith-Wied syndrome) and other structural abno (eg, cardiac, GU, neural tube)

Congenital umbilical hernia

Failure of umbilical ring to close after physiologic herniation of the intestines. Small defects usually close spontaneously.

Tracheoesophageal anomalies

Esophageal atresia (EA) with distal tracheoesophageal fistula (TEF) is the most common (85\%) and often presents as polyhydramnios in utero (due to inability of fetus to swallow amniotic fluid). Neonates drool, choke, and vomit with first feeding. TEFs allow air to enter stomach (visible on CXR). Cyanosis is 2° to laryngospasm (to avoid reflux-related aspiration). Clinical test: failure to pass nasogastric tube into stomach.
In H-type, the fistula resembles the letter H. In pure EA, CXR shows gasless abdomen.

Normal anatomy

Pure EA
(atresia or stenosis)

Pure TEF
(H-type)

EA with distal TEF (most common)

Intestinal atresia

Presents with bilious vomiting and abdominal distension within first $1-2$ days of life.
Duodenal atresia—failure to recanalize. Associated with "double bubble" (dilated stomach, proximal duodenum) on x-ray (A). Associated with Down syndrome.
Jejunal and ileal atresia-disruption of mesenteric vessels \rightarrow ischemic necrosis \rightarrow segmental resorption (bowel discontinuity or "apple peel").

Hypertrophic pyloric stenosis

Most common cause of gastric outlet obstruction in infants (1:600). Palpable olive-shaped mass in epigastric region, visible peristaltic waves, and nonbilious projectile vomiting at $\sim 2-6$ weeks old. More common in firstborn males; associated with exposure to macrolides. Results in hypokalemic hypochloremic metabolic alkalosis (2° to vomiting of gastric acid and subsequent volume contraction). Ultrasound shows thickened and lengthened pylorus A. Treatment is surgical incision (pyloromyotomy).

Pancreas and spleen embryology

Pancreas-derived from foregut. Ventral pancreatic buds contribute to uncinate process and main pancreatic duct. The dorsal pancreatic bud alone becomes the body, tail, isthmus, and accessory pancreatic duct. Both the ventral and dorsal buds contribute to pancreatic head.
Annular pancreas-abnormal rotation of ventral pancreatic bud forms a ring of pancreatic tissue \rightarrow encircles 2nd part of duodenum; may cause duodenal narrowing (arrows in A) and vomiting. Pancreas divisum - ventral and dorsal parts fail to fuse at 8 weeks. Common anomaly; mostly asymptomatic, but may cause chronic abdominal pain and/or pancreatitis.
Spleen-arises in mesentery of stomach (hence is mesodermal) but has foregut supply (celiac trunk \rightarrow splenic artery).

GASTROINTESTINAL—ANATOMY

Retroperitoneal structures

Retroperitoneal structures A include GI structures that lack a mesentery and nonGI structures. Injuries to retroperitoneal structures can cause blood or gas accumulation in retroperitoneal space.

SAD PUCKER:

Suprarenal (adrenal) glands [not shown]
Aorta and IVC
Duodenum (2nd through 4th parts)
Pancreas (except tail)
Ureters [not shown]
Colon (descending and ascending)
Kidneys
Esophagus (thoracic portion) [not shown]
Rectum (partially) [not shown]

Important gastrointestinal ligaments

Digestive tract anatomy

Layers of gut wall (inside to outside-MSMS):

- Mucosa-epithelium, lamina propria, muscularis mucosa
- Submucosa-includes Submucosal nerve plexus (Meissner), Secretes fluid
- Muscularis externa-includes Myenteric nerve plexus (Auerbach), Motility
- Serosa (when intraperitoneal), adventitia (when retroperitoneal)

Ulcers can extend into submucosa, inner or outer muscular layer. Erosions are in the mucosa only.
Frequencies of basal electric rhythm (slow waves):

- Stomach-3 waves/min
- Duodenum-12 waves/min
- Ileum-8-9 waves/min

Digestive tract histology

Esophagus
Stomach
Duodenum

Nonkeratinized stratified squamous epithelium.
Gastric glands.
Villi and microvilli \uparrow absorptive surface.
Brunner glands ($\mathrm{HCO}_{3}{ }^{-}$-secreting cells of submucosa) and crypts of Lieberkühn (contain stem cells that replace enterocytes/goblet cells and Paneth cells that secrete defensins, lysozyme, and TNF).

Jejunum Plicae circulares (also present in distal duodenum) and crypts of Lieberkühn.
lleum
Peyer patches (lymphoid aggregates in lamina propria, submucosa), plicae circulares (proximal ileum), and crypts of Lieberkühn.
Largest number of goblet cells in the small intestine.
Colon Crypts of Lieberkühn but no villi; abundant goblet cells.

Abdominal aorta and branches

Arteries supplying GI structures are single and branch anteriorly.
Arteries supplying non-GI structures are paired and branch laterally and posteriorly.

Superior mesenteric artery syndrome-

 characterized by intermittent intestinal obstruction symptoms (primarily postprandial pain) when SMA and aorta compress transverse (third) portion of duodenum. Typically occurs in conditions associated with diminished mesenteric fat (eg, low body weight/malnutrition).Two areas of the colon have dual blood supply from distal arterial branches ("watershed regions") \rightarrow susceptible in colonic ischemia:

- Splenic flexure-SMA and IMA
- Rectosigmoid junction-the last sigmoid arterial branch from the IMA and superior rectal artery

Gastrointestinal blood supply and innervation

EMBRYONIC GUT REGION	ARTERY	PARASYMPATHETIC INNERVATION	VERTEBRAL LEVEL	STRUCTURES SUPPLIED

Celiac trunk Branches of celiac trunk: common hepatic, splenic, and left gastric. These constitute the main blood supply of the stomach.
Strong anastomoses exist between:

- Left and right gastroepiploics
= Left and right gastrics
Posterior duodenal ulcers penetrate gastroduodenal artery causing hemorrhage.
Anterior duodenal ulcers perforate into the anterior abdominal cavity, potentially leading to pneumoperitoneum.

Portosystemic

anastomoses

Varices of gut, butt, and caput (medusae) are commonly seen with portal hypertension.
(4) Treatment with a transjugular intrahepatic portosystemic shunt (TIPS) between the portal vein and hepatic vein relieves portal hypertension by shunting blood to the systemic circulation, bypassing the liver. Can precipitate hepatic encephalopathy.

Pectinate (dentate) Formed where endoderm (hindgut) meets ectoderm.

line

Above pectinate line-internal hemorrhoids, adenocarcinoma.
Internal hemorrhoids receive visceral innervation and are therefore not painful.

Below pectinate line-external hemorrhoids, anal fissures, squamous cell carcinoma.
External hemorrhoids receive somatic innervation (inferior rectal branch of pudendal nerve) and are therefore painful if thrombosed.

Anal fissure-tear in the anal mucosa below the Pectinate line. Pain while Pooping; blood on toilet Paper. Located Posteriorly because this area is Poorly Perfused. Associated with low-fiber diets and constipation.

Liver tissue architecture

The functional unit of the liver is made up of hexagonally arranged lobules surrounding the central vein with portal triads on the edges (consisting of a portal vein, hepatic artery, bile ducts, as well lymphatics) \boldsymbol{A}.
Apical surface of hepatocytes faces bile canaliculi. Basolateral surface faces sinusoids.
Kupffer cells, which are specialized macrophages, are located in the sinusoids (black arrows in B; 2 yellow arrows show hepatic venule).
Hepatic stellate (Ito) cells in space of Disse store vitamin A (when quiescent) and produce extracellular matrix (when activated).
Responsible for hepatic fibrosis.

Zone I-periportal zone:

- Affected lst by viral hepatitis
- Ingested toxins (eg, cocaine)

Zone II—intermediate zone:

- Yellow fever

Zone III-pericentral vein (centrilobular) zone:

- Affected lst by ischemia
- High concentration of cytochrome P-450
- Most sensitive to metabolic toxins (eg, ethanol, CCl_{4}, halothane, rifampin)
- Site of alcoholic hepatitis

Biliary structures

Gallstones that reach the confluence of the common bile and pancreatic ducts at the ampulla of Vater can block both the common bile and pancreatic ducts (double duct sign), causing both cholangitis and pancreatitis, respectively.
Tumors that arise in head of pancreas (usually ductal adenocarcinoma) can cause obstruction of common bile duct \rightarrow enlarged gallbladder with painless jaundice (Courvoisier sign).
Cholangiography shows filling defects in gallbladder (blue arrow) and cystic duct (red arrow) A.

Femoral region

organization

Femoral triangle
Femoral sheath

Lateral to medial: Nerve-Artery-VeinLymphatics.
Contains femoral nerve, artery, vein.
Fascial tube 3-4 cm below inguinal ligament.
Contains femoral vein, artery, and canal (deep inguinal lymph nodes) but not femoral nerve.

Inguinal canal

Hernias
Protrusion of peritoneum through an opening, usually at a site of weakness. Contents may be at risk for incarceration (not reducible back into abdomen/pelvis) and strangulation (ischemia and necrosis). Complicated hernias can present with tenderness, erythema, fever.

Indirect inguinal hernia

Direct inguinal hernia

Abdominal structures enter the thorax \boldsymbol{A}; may occur due to congenital defect of pleuroperitoneal membrane or from trauma. Commonly occurs on left side due to relative protection of right hemidiaphragm by liver.
Most commonly a hiatal hernia, in which stomach herniates upward through the esophageal hiatus of the diaphragm. Sliding hiatal hernia-gastroesophageal junction is displaced upward as gastric cardia slides into hiatus; "hourglass stomach." Most common type.
Paraesophageal hiatal herniagastroesophageal junction is usually normal but gastric fundus protrudes into the thorax.
Goes through the internal (deep) inguinal ring, external (superficial) inguinal ring, and into the scrotum. Enters internal inguinal ring lateral to inferior epigastric vessels. Caused by failure of processus vaginalis to close (can form hydrocele). May be noticed in infants or discovered in adulthood. Much more common in males

Protrudes through the inguinal (Hesselbach) triangle. Bulges directly through parietal peritoneum medial to the inferior epigastric vessels but lateral to the rectus abdominis. Goes through the external (superficial) inguinal ring only. Covered by external spermatic fascia. Usually occurs in older men due to an acquired weakness in the transversalis fascia.

Femoral hernia Protrudes below inguinal ligament through

 femoral canal below and lateral to pubic tubercle. More common in females, but overall inguinal hernias are the most common.

An indirect inguinal hernia follows the path of descent of the testes. Covered by all 3 layers of spermatic fascia.

MDs don't LIe:

Medial to inferior epigastric vessels $=$ Direct hernia.
Lateral to inferior epigastric vessels $=$ Indirect hernia.

More likely to present with incarceration or strangulation than inguinal hernias.

Inguinal (Hesselbach) triangle:

- Inferior epigastric vessels
- Lateral border of rectus abdominis
- Inguinal ligament

GASTROINTESTINAL—PHYSIOLOGY

Gastrointestinal regulatory substances

REGULATORY SUBSTANCE	SOURCE	ACTION	REGULATION	NOTES
Gastrin	G cells (antrum of stomach, duodenum)	\uparrow gastric H^{+}secretion \uparrow growth of gastric mucosa \uparrow gastric motility	\uparrow by stomach distention/ alkalinization, amino acids, peptides, vagal stimulation via gastrin-releasing peptide (GRP) \downarrow by $\mathrm{pH}<1.5$	\uparrow by chronic PPI use. \uparrow in chronic atrophic gastritis (eg, H pylori). $\uparrow \uparrow$ in Zollinger-Ellison syndrome (gastrinoma).
Somatostatin	D cells (pancreatic islets, GI mucosa)	\downarrow gastric acid and pepsinogen secretion \downarrow pancreatic and small intestine fluid secretion \downarrow gallbladder contraction \downarrow insulin and glucagon release	\uparrow by acid \downarrow by vagal stimulation	Inhibits secretion of various hormones (encourages somato-stasis). Octreotide is an analog used to treat acromegaly, carcinoid syndrome, and variceal bleeding.
Cholecystokinin	I cells (duodenum, jejunum)	\uparrow pancreatic secretion \uparrow gallbladder contraction \downarrow gastric emptying \uparrow sphincter of Oddi relaxation	\uparrow by fatty acids, amino acids	Acts on neural muscarinic pathways to cause pancreatic secretion.
Secretin	S cells (duodenum)	\uparrow pancreatic $\mathrm{HCO}_{3}{ }^{-}$ secretion \downarrow gastric acid secretion \uparrow bile secretion	\uparrow by acid, fatty acids in lumen of duodenum	$\uparrow \mathrm{HCO}_{3}{ }^{-}$neutralizes gastric acid in duodenum, allowing pancreatic enzymes to function.
Glucosedependent insulinotropic peptide	K cells (duodenum, jejunum)	Exocrine: \downarrow gastric H^{+}secretion Endocrine: \uparrow insulin release	\uparrow by fatty acids, amino acids, oral glucose	Also known as gastric inhibitory peptide (GIP). Oral glucose load leads to \uparrow insulin compared to IV equivalent due to GIP secretion.
Motilin	Small intestine	Produces migrating motor complexes (MMCs)	\uparrow in fasting state	Motilin receptor agonists (eg, erythromycin) are used to stimulate intestinal peristalsis.
Vasoactive intestinal polypeptide	Parasympathetic ganglia in sphincters, gallbladder, small intestine	\uparrow intestinal water and electrolyte secretion \uparrow relaxation of intestinal smooth muscle and sphincters	\uparrow by distention and vagal stimulation \downarrow by adrenergic input	VIPoma-non- α, non- β islet cell pancreatic tumor that secretes VIP. Watery Diarrhea, Hypokalemia, and Achlorhydria (WDHA syndrome).
Nitric oxide		\uparrow smooth muscle relaxation, including lower esophageal sphincter (LES)		Loss of NO secretion is implicated in \uparrow LES tone of achalasia.
Ghrelin	Stomach	\uparrow appetite	\uparrow in fasting state \downarrow by food	\uparrow in Prader-Willi syndrome. \downarrow after gastric bypass surgery.

Gastrointestinal secretory products

PRoDUCT	SOURCE	ACtion	Regulation	Notes
Intrinsic factor	Parietal cells (stomach)	Vitamin B_{12}-binding protein (required for B_{12} uptake in terminal ileum)		Autoimmune destruction of parietal cells \rightarrow chronic gastritis and pernicious anemia.
Gastric acid	Parietal cells (stomach)	\downarrow stomach pH	\uparrow by histamine, vagal stimulation (ACh), gastrin \downarrow by somatostatin, GIP, prostaglandin, secretin	
Pepsin	Chief cells (stomach)	Protein digestion	\uparrow by vagal stimulation (ACh), local acid	Pepsinogen (inactive) is converted to pepsin (active) in the presence of H^{+}.
Bicarbonate	Mucosal cells (stomach, duodenum, salivary glands, pancreas) and Brunner glands (duodenum)	Neutralizes acid	\uparrow by pancreatic and biliary secretion with secretin	Trapped in mucus that covers the gastric epithelium.

Locations of gastrointestinal secretory cells

Gastrin \uparrow acid secretion primarily through its effects on enterochromaffin-like (ECL) cells (leading to histamine release) rather than through its direct effect on parietal cells.

Pancreatic secretions	Isotonic fluid; low flow \rightarrow high Cl^{-}, high flow \rightarrow high $\mathrm{HCO}_{3}-$	
ENZYME	ROLE	NOTES
$\boldsymbol{\alpha}$-amylase	Starch digestion	Secreted in active form
Lipases	Fat digestion	Includes trypsin, chymotrypsin, elastase, carboxypeptidases Secreted as proenzymes also known as zymogens
Proteases	Converted to active enzyme trypsin \rightarrow activation of other proenzymes and cleaving of additional trypsinogen molecules into active trypsin (positive feedback loop)	Converted to trypsin by enterokinase/ enteropeptidase, a brush-border enzyme on duodenal and jejunal mucosa
Trypsinogen		

Carbohydrate

 absorptionOnly monosaccharides (glucose, galactose, fructose) are absorbed by enterocytes. Glucose and galactose are taken up by SGLT1 $\left(\mathrm{Na}^{+}\right.$dependent). Fructose is taken up via Facilitated diffusion by GLUT5. All are transported to blood by GLUT2.
D-xylose absorption test: distinguishes GI mucosal damage from other causes of malabsorption.

Vitamin/mineral absorption

Iron	Absorbed as Fe^{2+} in duodenum.	Iron Fist, Bro
Folate	Absorbed in small bowel.	Clinically relevant in patients with small bowel
disease or after resection.		

Peyer patches

Unencapsulated lymphoid tissue A found in lamina propria and submucosa of ileum. Contain specialized \mathbf{M} cells that sample and present antigens to iMmune cells.
B cells stimulated in germinal centers of Peyer patches differentiate into IgA-secreting plasma cells, which ultimately reside in lamina propria. IgA receives protective secretory component and is then transported across the epithelium to the gut to deal with intraluminal antigen.

Think of IgA, the Intra-gut Antibody. And always say "secretory IgA."

Bile

Composed of bile salts (bile acids conjugated to glycine or taurine, making them water soluble), phospholipids, cholesterol, bilirubin, water, and ions. Cholesterol 7α-hydroxylase catalyzes rate-limiting step of bile acid synthesis.
Functions:

- Digestion and absorption of lipids and fatsoluble vitamins
- Cholesterol excretion (body's 1° means of eliminating cholesterol)
- Antimicrobial activity (via membrane disruption)
\downarrow absorption of enteric bile salts at distal ileum (as in short bowel syndrome, Crohn disease) prevents normal fat absorption. Calcium, which normally binds oxalate, binds fat instead, so free oxalate is absorbed by gut $\rightarrow \uparrow$ frequency of calcium oxalate kidney stones.

Heme is metabolized by heme oxygenase to biliverdin, which is subsequently reduced to bilirubin. Unconjugated bilirubin is removed from blood by liver, conjugated with glucuronate, and excreted in bile.
Direct bilirubin-conjugated with glucuronic acid; water soluble. Indirect bilirubin-unconjugated; water insoluble.

- GASTROINTESTINAL—PATHOLOGY

Sialolithiasis

Stone(s) in salivary gland duct \mathbf{A}. Can occur in 3 major salivary glands (parotid, submandibular, sublingual). Single stone more common in submandibular gland (Wharton duct).
Presents as recurrent pre-/periprandial pain and swelling in affected gland.
Caused by dehydration or trauma.
Treat conservatively with NSAIDs, gland massage, warm compresses, sour candies (to promote salivary flow).

Sialadenitis-inflammation of salivary gland due to obstruction, infection, or immune-mediated mechanisms.

Salivary gland tumors

Most commonly benign and in parotid gland. Tumors in smaller glands more likely malignant.
Typically present as painless mass/swelling. Facial pain or paralysis suggests malignant involvement of CN VII.

- Pleomorphic adenoma (benign mixed tumor)—most common salivary gland tumor \boldsymbol{A}. Composed of chondromyxoid stroma and epithelium and recurs if incompletely excised or ruptured intraoperatively. May undergo malignant transformation.
- Mucoepidermoid carcinoma-most common malignant tumor, has mucinous and squamous components.
- Warthin tumor (papillary cystadenoma lymphomatosum) -benign cystic tumor with germinal centers. Typically found in smokers. Bilateral in 10%; multifocal in 10%. "Warriors from Germany love smoking."

Achalasia

Failure of LES to relax due to loss of myenteric (Auerbach) plexus due to loss of postganglionic inhibitory neurons (which contain NO and VIP).
Manometry findings include uncoordinated or absent peristalsis with high LES resting pressure \rightarrow progressive dysphagia to solids and liquids (vs obstruction—solids only). Barium swallow shows dilated esophagus with an area of distal stenosis ("bird's beak" A).
Associated with \uparrow risk of esophageal cancer.

A-chalasia $=$ absence of relaxation.
2° achalasia (pseudoachalasia) may arise from Chagas disease (T cruzi infection) or extraesophageal malignancies (mass effect or paraneoplastic).

Esophageal pathologies

Boerhaave syndrome	Transmural, usually distal esophageal rupture with pneumomediastinum (arrows in A) due to violent retching. Subcutaneous emphysema may be due to dissecting air (crepitus may be felt in the neck region or chest wall). Surgical emergency.
Eosinophilic esophagitis	Infiltration of eosinophils in the esophagus often in atopic patients. Food allergens \rightarrow dysphagia, food impaction. Esophageal rings and linear furrows often seen on endoscopy. Typically unresponsive to GERD therapy.
Esophageal strictures	Associated with caustic ingestion and acid reflux.
Esophageal varices	Dilated submucosal veins (red arrows in $B \mathbf{B}$) in lower $1 / 3$ of esophagus $\boldsymbol{A} 2^{\circ}$ to portal hypertension. Common in cirrhotics, may be source of life-threatening hematemesis.
Esophagitis	Associated with reflux, infection in immunocompromised (Candida: white pseudomembrane; HSV-l: punched-out ulcers; CMV: linear ulcers), caustic ingestion, or pill esophagitis (eg, bisphosphonates, tetracycline, NSAIDs, iron, and potassium chloride).
Gastroesophageal reflux disease	Commonly presents as heartburn, regurgitation, dysphagia. May also present as chronic cough, hoarseness (laryngopharyngeal reflux). Associated with asthma. Transient decreases in LES tone.
Mallory-Weiss syndrome	Partial-thickness mucosal lacerations at gastroesophageal junction due to severe vomiting. Often presents with hematemesis. Usually found in alcoholics and bulimics.
Plummer-Vinson syndrome	Triad of Dysphagia, Iron deficiency anemia, and Esophageal webs. May be associated with glossitis. Increased risk of esophageal squamous cell carcinoma ("Plumbers DIE").
Sclerodermal esophageal dysmotility	Esophageal smooth muscle atrophy $\rightarrow \downarrow$ LES pressure and dysmotility \rightarrow acid reflux and dysphagia \rightarrow stricture, Barrett esophagus, and aspiration. Part of CREST syndrome.

Barrett esophagus

Specialized intestinal metaplasia \boldsymbol{A}-replacement of nonkeratinized stratified squamous epithelium with intestinal epithelium (nonciliated columnar with goblet cells [stained blue in [B]) in distal esophagus. Due to chronic gastroesophageal reflux disease (GERD). Associated with \uparrow risk of esophageal adenocarcinoma.

Esophageal cancer

Typically presents with progressive dysphagia (first solids, then liquids) and weight loss; poor prognosis.

CANCR	PART OF ESOPHAGUS AFFECTED	RISK FACTORS	PREVALENCE
Squamous cell carcinoma	Upper 2/3	Alcohol, hot liquids, caustic strictures, smoking, achalasia	More common worldwide
Adenocarcinoma	Lower 1/3	Chronic GERD, Barrett esophagus, obesity, smoking, achalasia	More common in America

Gastritis

Acute gastritis	Erosions can be caused by: - NSAIDs $-\downarrow$ PGE $_{2} \rightarrow \downarrow$ gastric mucosa protection - Burns (Curling ulcer)-hypovolemia \rightarrow mucosal ischemia - Brain injury (Cushing ulcer)- \uparrow vagal stimulation $\rightarrow \uparrow$ ACh $\rightarrow \uparrow \mathrm{H}^{+}$production	Especially common among alcoholics and patients taking daily NSAIDs (eg, patients with rheumatoid arthritis). Burned by the Curling iron. Always Cushion the brain.
Chronic gastritis	Mucosal inflammation, often leading to atrophy (hypochlorhydria \rightarrow hypergastrinemia) and intestinal metaplasia (\uparrow risk of gastric cancers).	
Hpylori	Most common. \uparrow risk of peptic ulcer disease, MALT lymphoma.	Affects antrum first and spreads to body of stomach.
Autoimmune	Autoantibodies to parietal cells and intrinsic factor. \uparrow risk of pernicious anemia.	Affects body/fundus of stomach.

Ménétrier disease

Hyperplasia of gastric mucosa \rightarrow hypertrophied rugae (look like brain gyri \boldsymbol{A}). Causes excess mucus production with resultant protein loss and parietal cell atrophy with \downarrow acid production.
Precancerous.
Presents with epigastric pain, anorexia, weight loss, vomiting, edema (due to protein loss).

Gastric cancer

Most commonly gastric adenocarcinoma; lymphoma, GI stromal tumor, carcinoid (rare). Early aggressive local spread with node/liver metastases. Often presents late, with weight loss, abdominal pain, early satiety, and in some cases acanthosis nigricans or Leser-Trélat sign. Associated with blood type A.

- Intestinal—associated with H pylori, dietary nitrosamines (smoked foods), tobacco smoking, achlorhydria, chronic gastritis. Commonly on lesser curvature; looks like ulcer with raised margins.
- Diffuse-not associated with H pylori; signet ring cells (mucin-filled cells with peripheral nuclei) A; stomach wall grossly thickened and leathery (linitis plastica).

Virchow node-involvement of left supraclavicular node by metastasis from stomach.
Krukenberg tumor-bilateral metastases to ovaries. Abundant mucin-secreting, signet ring cells.
Sister Mary Joseph nodule—subcutaneous periumbilical metastasis.

Peptic ulcer disease

	Gastric ulcer	Duodenal ulcer
PAIN	Can be Greater with meals-weight loss	Decreases with meals-weight gain
HPYLORIINFECTION	$\sim 70 \%$	$\sim 90 \%$
MECHANISM	\downarrow mucosal protection against gastric acid	\downarrow mucosal protection or \uparrow gastric acid secretion
OTHERCAUSES	NSAIDs	Zollinger-Ellison syndrome
RISKOFCARCINOMA	\uparrow	Generally benign
OTHER	Biopsy margins to rule out malignancy	Hypertrophy of Brunner glands

Ulcer complications

Hemorrhage

Gastric, duodenal (posterior > anterior). Most common complication.
Ruptured gastric ulcer on the lesser curvature of stomach \rightarrow bleeding from left gastric artery.
An ulcer on the posterior wall of duodenum \rightarrow bleeding from gastroduodenal artery.

Pyloric channel, duodenal.
Duodenal (anterior > posterior).
May see free air under diaphragm A with referred pain to the shoulder via irritation of phrenic nerve.

Malabsorption syndromes	Can cause diarrhea, steatorrhea, weight loss, weakness, vitamin and mineral deficiencies. Screen for fecal fat (eg, Sudan stain).	
Celiac disease A	Gluten-sensitive enteropathy, celiac sprue. Autoimmune-mediated intolerance of gliadin (gluten protein found in wheat) \rightarrow malabsorption and steatorrhea. Associated with HLA-DQ2, HLA-DQ8, northern European descent, dermatitis herpetiformis, \downarrow bone density. Findings: IgA anti-tissue transglutaminase (IgA tTG), anti-endomysial, anti-deamidated gliadin peptide antibodies; villous atrophy (arrow in \boldsymbol{A} shows blunting), crypt hyperplasia (double arrows in \boldsymbol{A}), and intraepithelial lymphocytosis. Moderately \uparrow risk of malignancy (eg, T-cell lymphoma).	\downarrow mucosal absorption primarily affects distal duodenum and/or proximal jejunum. D-xylose test: passively absorbed in proximal small intestine; blood and urine levels \downarrow with mucosa defects or bacterial overgrowth, normal in pancreatic insufficiency. Treatment: gluten-free diet.
Lactose intolerance	Lactase deficiency. Normal-appearing villi, except when 2° to injury at tips of villi (eg, viral enteritis). Osmotic diarrhea with \downarrow stool pH (colonic bacteria ferment lactose).	Lactose hydrogen breath test: \oplus for lactose malabsorption if post-lactose breath hydrogen value rises $>20 \mathrm{ppm}$ compared with baseline.
Pancreatic insufficiency	Due to chronic pancreatitis, cystic fibrosis, obstructing cancer. Causes malabsorption of fat and fat-soluble vitamins ($\mathrm{A}, \mathrm{D}, \mathrm{E}, \mathrm{K}$) as well as vitamin B_{12}.	\downarrow duodenal pH (bicarbonate) and fecal elastase.
Tropical sprue	Similar findings as celiac sprue (affects small bowel), but responds to antibiotics. Cause is unknown, but seen in residents of or recent visitors to tropics.	\downarrow mucosal absorption affecting duodenum and jejunum but can involve ileum with time. Associated with megaloblastic anemia due to folate deficiency and, later, B_{12} deficiency.
Whipple disease	Infection with Tropheryma whipplei (intracellular gram \oplus); PAS \oplus foamy macrophages in intestinal lamina propria B, mesenteric nodes. Cardiac symptoms, Arthralgias, and Neurologic symptoms are common. Diarrhea/steatorrhea occur later in disease course. Most common in older men.	Foamy Whipped cream in a CAN.

Inflammatory bowel disease

	Crohn disease	Ulcerative colitis
location	Any portion of the GI tract, usually the terminal ileum and colon. Skip lesions, rectal sparing.	Colitis = colon inflammation. Continuous colonic lesions, always with rectal involvement.
Gross morphology	Transmural inflammation \rightarrow fistulas. Cobblestone mucosa, creeping fat, bowel wall thickening ("string sign" on barium swallow x-ray (A), linear ulcers, fissures.	Mucosal and submucosal inflammation only. Friable mucosa with superficial and/or deep ulcerations (compare normal ${ }^{B}$ with diseased (C). Loss of haustra \rightarrow "lead pipe" appearance on imaging.
MICROSCOPIC MORPHoLOGY	Noncaseating granulomas and lymphoid aggregates. Thl mediated.	Crypt abscesses and ulcers, bleeding, no granulomas. Th2 mediated.
complications	Malabsorption/malnutrition, colorectal cancer (\uparrow risk with pancolitis).	
	Fistulas (eg, enterovesical fistulae, which can cause recurrent UTI and pneumaturia), phlegmon/abscess, strictures (causing obstruction), perianal disease.	Fulminant colitis, toxic megacolon, perforation.
intestinal manifestation	Diarrhea that may or may not be bloody.	Bloody diarrhea.
Extrantiestinal manifestations	Rash (pyoderma gangrenosum, erythema nodosum), eye inflammation (episcleritis, uveitis), oral ulcerations (aphthous stomatitis), arthritis (peripheral, spondylitis).	
	Kidney stones (usually calcium oxalate), gallstones. May be \oplus for anti-Saccharomyces cerevisiae antibodies (ASCA).	1° sclerosing cholangitis. Associated with p-ANCA.
treatment	Corticosteroids, azathioprine, antibiotics (eg, ciprofloxacin, metronidazole), infliximab, adalimumab.	5-aminosalicylic preparations (eg, mesalamine), 6 -mercaptopurine, infliximab, colectomy.
	For Crohn, think of a fat granny and an old crone skipping down a cobblestone road away from the wreck (rectal sparing).	Ulcerative colitis causes ULCCCERS: Ulcers Large intestine Continuous, Colorectal carcinoma, Crypt abscesses Extends proximally Red diarrhea Sclerosing cholangitis

Irritable bowel syndrome

Recurrent abdominal pain associated with ≥ 2 of the following:

- Related to defecation
- Change in stool frequency
- Change in form (consistency) of stool

No structural abnormalities. Most common in middle-aged women. Chronic symptoms may be diarrhea-predominant, constipation-predominant, or mixed. Pathophysiology is multifaceted. First-line treatment is lifestyle modification and dietary changes.

Appendicitis

Acute inflammation of the appendix (yellow arrows in A), can be due to obstruction by fecalith (red arrow in A) (in adults) or lymphoid hyperplasia (in children).
Initial diffuse periumbilical pain migrates to McBurney point ($1 / 3$ the distance from right anterior superior iliac spine to umbilicus). Nausea, fever; may perforate \rightarrow peritonitis; may elicit psoas, obturator, and Rovsing signs, guarding and rebound tenderness on exam.
Differential: diverticulitis (elderly), ectopic pregnancy (use β-hCG to rule out), pseudoappendicitis.
Treatment: appendectomy.

Diverticula of the GI tract

Diverticulum

Blind pouch A protruding from the alimentary tract that communicates with the lumen of the gut. Most diverticula (esophagus, stomach, duodenum, colon) are acquired and are termed "false diverticula."

Diverticulosis

Diverticulitis

Many false diverticula of the colon B, commonly sigmoid. Common (in $\sim 50 \%$ of people >60 years). Caused by \uparrow intraluminal pressure and focal weakness in colonic wall. Associated with obesity and diets low in fiber, high in total fat/red meat.
Inflammation of diverticula with wall thickening Classically causing LLQ pain, fever, leukocytosis. Treat with antibiotics.
"True" diverticulum - all gut wall layers outpouch (eg, Meckel).
"False" diverticulum or pseudodiverticulumonly mucosa and submucosa outpouch. Occur especially where vasa recta perforate muscularis externa.

Often asymptomatic or associated with vague discomfort.
Complications include diverticular bleeding (painless hematochezia), diverticulitis.

Complications: abscess, fistula (colovesical fistula \rightarrow pneumaturia), obstruction (inflammatory stenosis), perforation (\rightarrow peritonitis).

Zenker diverticulum

Pharyngoesophageal false diverticulum A. Esophageal dysmotility causes herniation of mucosal tissue at Killian triangle between the thyropharyngeal and cricopharyngeal parts of the inferior pharyngeal constrictor. Presenting symptoms: dysphagia, obstruction, gurgling, aspiration, foul breath, neck mass. Most common in elderly males.

Elder MIKE has bad breath.
Elderly
Males
Inferior pharyngeal constrictor
Killian triangle
Esophageal dysmotility
Halitosis

Meckel diverticulum

True diverticulum. Persistence of the vitelline (omphalomesenteric) duct. May contain ectopic acid-secreting gastric mucosa and/or pancreatic tissue. Most common congenital anomaly of GI tract. Can cause hematochezia/ melena (less commonly), RLQ pain, intussusception, volvulus, or obstruction near terminal ileum.
Contrast with omphalomesenteric cyst = cystic dilation of vitelline duct.
Diagnosis: pertechnetate study for uptake by heterotopic gastric mucosa.

The rule of 2's:
2 times as likely in males.
2 inches long.
2 feet from the ileocecal valve.
2% of population.
Commonly presents in first 2 years of life.
May have 2 types of epithelia (gastric/ pancreatic).

Hirschsprung disease

Congenital megacolon characterized by lack of ganglion cells/enteric nervous plexuses (Auerbach and Meissner plexuses) in distal segment of colon. Due to failure of neural crest cell migration. Associated with mutations in RET.
Presents with bilious emesis, abdominal distention, and failure to pass meconium within 48 hours \rightarrow chronic constipation. Normal portion of the colon proximal to the aganglionic segment is dilated, resulting in a "transition zone."

Risk \uparrow with Down syndrome.
Explosive expulsion of feces (squirt sign)
\rightarrow empty rectum on digital exam.
Diagnosed by absence of ganglionic cells on rectal suction biopsy.
Treatment: resection.
RET mutation in the REcTum.

Malrotation

Anomaly of midgut rotation during fetal development \rightarrow improper positioning of bowel (small bowel clumped on the right side) \boldsymbol{A}, formation of fibrous bands (Ladd bands). Can lead to volvulus, duodenal obstruction.

Volvulus

Twisting of portion of bowel around its mesentery; can lead to obstruction and infarction. Can occur throughout the GI tract. Midgut volvulus more common in infants and children. Sigmoid volvulus (coffee bean sign on x-ray A) more common in elderly.

Intussusception

Telescoping \boldsymbol{A} of proximal bowel segment into a distal segment, commonly at ileocecal junction. Compromised blood supply \rightarrow intermittent abdominal pain often with "currant jelly" stools. Patient may draw legs to chest to ease pain. Exam may reveal sausageshaped mass. Ultrasound shows "target sign." Often due to a lead point, but can be idiopathic. Most common pathologic lead point is a Meckel diverticulum (children) or intraluminal mass/tumor (adults). Majority of cases occur in children; unusual in adults.
May be associated with rotavirus vaccine, Henoch-Schönlein purpura, and recent viral infection (eg, adenovirus; Peyer patch hypertrophy creates lead point).

Other intestinal disorders

Acute mesenteric ischemia	Critical blockage of intestinal blood flow (often embolic occlusion of SMA) \rightarrow small bowel necrosis $\boldsymbol{A} \rightarrow$ abdominal pain out of proportion to physical findings. May see red "currant jelly" stools.
Chronic mesenteric ischemia	"Intestinal angina": atherosclerosis of celiac artery, SMA, or IMA \rightarrow intestinal hypoperfusion \rightarrow postprandial epigastric pain \rightarrow food aversion and weight loss.
Colonic ischemia	Reduction in intestinal blood flow causes ischemia. Crampy abdominal pain followed by hematochezia. Commonly occurs at watershed areas (splenic flexure, distal colon). Typically affects elderly. Thumbprint sign on imaging due to mucosal edema/hemorrhage.
Angiodysplasia	Tortuous dilation of vessels $\boldsymbol{B} \rightarrow$ hematochezia. Most often found in the right-sided colon. More common in older patients. Confirmed by angiography. Associated with aortic stenosis and von Willebrand disease.
Adhesion	Fibrous band of scar tissue; commonly forms after surgery. Most common cause of small bowel obstruction, demonstrated by multiple dilated small bowel loops on x-ray (arrows in [C).
Ileus	Intestinal hypomotility without obstruction \rightarrow constipation and \downarrow flatus; distended/tympanic abdomen with \downarrow bowel sounds. Associated with abdominal surgeries, opiates, hypokalemia, sepsis. Treatment: bowel rest, electrolyte correction, cholinergic drugs (stimulate intestinal motility).
Meconium ileus	In cystic fibrosis, meconium plug obstructs intestine, preventing stool passage at birth.
Necrotizing enterocolitis	Seen in premature, formula-fed infants with immature immune system. Necrosis of intestinal mucosa (primarily colonic) with possible perforation, which can lead to pneumatosis intestinalis [free air in abdomen, portal venous gas.

Colonic polyps	Growths of tissue within the colon \boldsymbol{A}. May be neoplastic or non-neoplastic. Grossly characterized as flat, sessile, or pedunculated (on a stalk) on the basis of protrusion into colonic lumen. Generally classified by histologic type.
HISTOLOGIC TYPE	CHARACTERISTICS
Generally non-neoplastic	
Hamartomatous polyps	Solitary lesions do not have significant risk of transformation. Growths of normal colonic tissue with distorted architecture. Associated with Peutz-Jeghers syndrome and juvenile polyposis.
Mucosal polyps	Small, usually $<5 \mathrm{~mm}$. Look similar to normal mucosa. Clinically insignificant.
Inflammatory pseudopolyps	Due to mucosal erosion in inflammatory bowel disease.
Submucosal polyps	May include lipomas, leiomyomas, fibromas, and other lesions.
Hyperplastic polyps	Most common; generally smaller and predominantly located in rectosigmoid region. Occasionally evolves into serrated polyps and more advanced lesions.
Malignant potential	
Adenomatous polyps	Neoplastic, via chromosomal instability pathway with mutations in APC and KRAS. Tubular B histology has less malignant potential than villous C ("villous histology is villainous"); tubulovillous has intermediate malignant potential. Usually asymptomatic; may present with occult bleeding.
Serrated polyps	Premalignant. Characterized by CpG island methylator phenotype (CIMP; cytosine base followed by guanine, linked by a phosphodiester bond). Defect may silence MMR gene (DNA mismatch repair) expression. Mutations lead to microsatellite instability and mutations in BRAF. "Sawtooth" pattern of crypts on biopsy. Up to 20% of cases of sporadic CRC.

Polyposis syndromes

Familial adenomatous polyposis

Gardner syndrome

Turcot syndrome
Peutz-Jeghers syndrome

Autosomal dominant mutation of APC tumor suppressor gene on chromosome 5q21. 2-hit hypothesis. Thousands of polyps arise starting after puberty; pancolonic; always involves rectum. Prophylactic colectomy or else 100% progress to CRC.

FAP + osseous and soft tissue tumors, congenital hypertrophy of retinal pigment epithelium, impacted/supernumerary teeth.
FAP/Lynch syndrome + malignant CNS tumor (eg, medulloblastoma, glioma). Turcot = Turban.
Autosomal dominant syndrome featuring numerous hamartomas throughout GI tract, along with hyperpigmented mouth, lips, hands, genitalia. Associated with \uparrow risk of breast and GI cancers (eg, colorectal, stomach, small bowel, pancreatic).

Autosomal dominant syndrome in children (typically <5 years old) featuring numerous hamartomatous polyps in the colon, stomach, small bowel. Associated with \uparrow risk of CRC.

Lynch syndrome

Previously known as hereditary nonpolyposis colorectal cancer (HNPCC). Autosomal dominant mutation of DNA mismatch repair genes with subsequent microsatellite instability. $\sim 80 \%$ progress to CRC. Proximal colon is always involved. Associated with endometrial, ovarian, and skin cancers.

Colorectal cancer

EPIDEMIOLOGY	Most patients are >50 years old. $\sim 25 \%$ have a family history.	
RISK FACTORS	Adenomatous and serrated polyps, familial cancer syndromes, IBD, tobacco use, diet of processed meat with low fiber.	
Presentation	Rectosigmoid $>$ ascending $>$ descending. Ascending—exophytic mass, iron deficiency anemia, weight loss. Descending-infiltrating mass, partial obstruction, colicky pain, hematochezia. Rarely, presents with S bovis (gallolyticus) bacteremia.	Right side bleeds; left side obstructs (narrower lumen).
diagnosis	Iron deficiency anemia in males (especially >50 years old) and postmenopausal females raises suspicion. Screen low-risk patients starting at age 50 with colonoscopy A; alternatives include flexible sigmoidoscopy, fecal occult blood testing (FOBT), fecal immunochemical testing (FIT), and CT colonography. Patients with a first-degree relative who has colon cancer should be screened via colonoscopy at age 40 , or starting 10 years prior to their relative's presentation. Patients with IBD have a distinct screening protocol. "Apple core" lesion seen on barium enema x-ray B. CEA tumor marker: good for monitoring recurrence, should not be used for screening.	

Chromosomal instability pathway: mutations in APC cause FAP and most sporadic CRC (via adenoma-carcinoma sequence; (firing order of events is AK-53).
Microsatellite instability pathway: mutations or methylation of mismatch repair genes (eg, MLHl) cause Lynch syndrome and some sporadic CRC (via serrated polyp pathway).
Overexpression of COX-2 has been linked to colorectal cancer, NSAIDs may be chemopreventive.
Chromosomal instability pathway

Cirrhosis and portal hypertension

Cirrhosis—diffuse bridging fibrosis (via stellate cells) and regenerative nodules (red arrows in \boldsymbol{A}; white arrows show splenomegaly) disrupt normal architecture of liver; \uparrow risk for hepatocellular carcinoma (HCC). Etiologies include alcohol, nonalcoholic steatohepatitis, chronic viral hepatitis, autoimmune hepatitis, biliary disease, genetic/metabolic disorders.
Portal hypertension $-\uparrow$ pressure in portal venous system. Etiologies include cirrhosis (most common cause in Western countries), vascular obstruction (eg, portal vein thrombosis, BuddChiari syndrome), schistosomiasis.

Spontaneous bacterial peritonitis

Also known as 1° bacterial peritonitis. Common and potentially fatal bacterial infection in patients with cirrhosis and ascites. Often asymptomatic, but can cause fevers, chills, abdominal pain, ileus, or worsening encephalopathy. Commonly caused by aerobic gram Θ organisms (eg, E coli, Klebsiella) or less commonly gram \oplus Streptococcus.
Diagnosis: paracentesis with ascitic fluid absolute neutrophil count (ANC) >250 cells $/ \mathrm{mm}^{3}$.
Empiric first-line treatment is 3rd generation cephalosporin (eg, cefotaxime).

Serum markers of liver pathology

ENZYMES RELEASED IN LIVER dAMAGE	
Aspartate aminotransferase and alanine aminotransferase	\uparrow in most liver disease: ALT > AST \uparrow in alcoholic liver disease: AST > ALT AST $>$ ALT in nonalcoholic liver disease suggests progression to advanced fibrosis or cirrhosis
Alkaline phosphatase	\uparrow in cholestasis (eg, biliary obstruction), infiltrative disorders, bone disease
$\boldsymbol{\gamma}$-glutamyl transpeptidase	\uparrow in various liver and biliary diseases (just as ALP can), but not in bone disease; associated with alcohol use
FUNCTIONAL LIVER MARKERS	
Bilirubin	\uparrow in various liver diseases (eg, biliary obstruction, alcoholic or viral hepatitis, cirrhosis), hemolysis
Albumin	\downarrow in advanced liver disease (marker of liver's biosynthetic function)
Prothrombin time	\uparrow in advanced liver disease (\downarrow production of clotting factors, thereby measuring the liver's biosynthetic function)
Platelets	\downarrow in advanced liver disease (\downarrow thrombopoietin, liver sequestration) and portal hypertension (splenomegaly/splenic sequestration)

Reye syndrome

Rare, often fatal childhood hepatic encephalopathy. Findings: mitochondrial abnormalities, fatty liver (microvesicular fatty change), hypoglycemia, vomiting, hepatomegaly, coma. Associated with viral infection (especially VZV and influenza) that has been treated with aspirin. Mechanism: aspirin metabolites $\downarrow \beta$-oxidation by reversible inhibition of mitochondrial enzymes. Avoid aspirin in children, except in those with Kawasaki disease.

Reye of sunSHINE:

Steatosis of liver/hepatocytes
Hypoglycemia/Hepatomegaly
Infection (VZV, influenza)
Not awake (coma)
Encephalopathy

Alcoholic liver disease

Nonalcoholic fatty liver disease

Metabolic syndrome (insulin resistance); obesity \rightarrow fatty infiltration of hepatocytes \boldsymbol{A} \rightarrow cellular "ballooning" and eventual necrosis. May cause cirrhosis and HCC. Independent of alcohol use.

Hepatic encephalopathy

Cirrhosis \rightarrow portosystemic shunts $\rightarrow \downarrow \mathrm{NH}_{3}$ metabolism \rightarrow neuropsychiatric dysfunction. Reversible neuropsychiatric dysfunction ranging from disorientation/asterixis (mild) to difficult arousal or coma (severe). Triggers:

- $\uparrow \mathrm{NH}_{3}$ production and absorption (due to dietary protein, GI bleed, constipation, infection).
- $\downarrow \mathrm{NH}_{3}$ removal (due to renal failure, diuretics, bypassed hepatic blood flow post-TIPS).

Treatment: lactulose ($\uparrow \mathrm{NH}_{4}{ }^{+}$generation $)$and rifaximin or neomycin $\left(\downarrow \mathrm{NH}_{3}\right.$ producing gut bacteria).

Hepatocellular carcinoma/hepatoma

Most common 1° malignant tumor of liver in adults A. Associated with HBV (+/cirrhosis) and all other causes of cirrhosis (including HCV, alcoholic and nonalcoholic fatty liver disease, autoimmune disease, hemochromatosis, α_{1}-antitrypsin deficiency) and specific carcinogens (eg, aflatoxin from Aspergillus). May lead to Budd-Chiari syndrome.
Findings: jaundice, tender hepatomegaly, ascites, polycythemia, anorexia. Spreads hematogenously.
Diagnosis: $\uparrow \alpha$-fetoprotein; ultrasound or contrast CT/MRI B, biopsy.

Other liver tumors

Hepatic adenoma

Angiosarcoma
Metastases

Most common benign liver tumor A; typically occurs at age 30-50 years. Biopsy contraindicated because of risk of hemorrhage.

Budd-Chiari syndrome Thrombosis or compression of hepatic veins with centrilobular congestion and necrosis \rightarrow congestive liver disease (hepatomegaly, ascites, varices, abdominal pain, liver failure). Absence of JVD. Associated with hypercoagulable states, polycythemia vera, postpartum state, HCC. May cause nutmeg liver (mottled appearance).

α_{1}-antitrypsin deficiency

Misfolded gene product protein aggregates in hepatocellular ER \rightarrow cirrhosis with PAS \oplus globules \AA in liver. Codominant trait. Often presents in young patients with liver damage and dyspnea without a history of smoking.

In lungs, $\downarrow \alpha_{1}$-antitrypsin \rightarrow uninhibited elastase in alveoli $\rightarrow \downarrow$ elastic tissue \rightarrow panacinar emphysema.

Unconjugated
Abnormal yellowing of the skin
and/or sclera \boldsymbol{A} due to bilirubin deposition. Hyperbilirubinemia 2° to \uparrow production or \downarrow disposition (impaired hepatic uptake, conjugation, excretion).
(indirect)
hyperbilirubinemia
Hemolytic, physiologic (newborns), Crigler-Najjar, Gilbert syndrome.

HOT Liver-common causes of \uparrow bilirubin level:
Hemolysis
Obstruction
Tumor
Liver disease

Conjugated (direct) hyperbilirubinemia

Biliary tract obstruction: gallstones, cholangiocarcinoma, pancreatic or liver cancer, liver fluke.
Biliary tract disease:

- 1° sclerosing cholangitis
- 1° biliary cholangitis

Excretion defect: Dubin-Johnson syndrome, Rotor syndrome.
Mixed (direct
and indirect)
hyperbilirubinemia

Hepatitis, cirrhosis.

Physiologic neonatal jaundice

At birth, immature UDP-glucuronosyltransferase \rightarrow unconjugated hyperbilirubinemia \rightarrow jaundice/ kernicterus (deposition of unconjugated, lipid-soluble bilirubin in the brain, particularly basal ganglia).
Occurs after first 24 hours of life and usually resolves without treatment in $1-2$ weeks.
Treatment: phototherapy (non-UV) isomerizes unconjugated bilirubin to water-soluble form.

Wilson disease (hepatolenticular degeneration)

Autosomal recessive mutations in hepatocyte copper-transporting ATPase (ATP7B gene; chromosome 13) $\rightarrow \downarrow$ copper incorporation into apoceruloplasmin and excretion into bile $\rightarrow \downarrow$ serum ceruloplasmin. Copper accumulates, especially in liver, brain, cornea, kidneys; \uparrow urine copper.
Presents before age 40 with liver disease (eg, hepatitis, acute liver failure, cirrhosis), neurologic disease (eg, dysarthria, dystonia, tremor, parkinsonism), psychiatric disease, Kayser-Fleischer rings (deposits in Descemet membrane of cornea) A, hemolytic anemia, renal disease (eg, Fanconi syndrome).
Treatment: chelation with penicillamine or trientine, oral zinc.

Hemochromatosis

Autosomal recessive. C282Y mutation > H63D mutation on HFE gene, located on chromosome 6; associated with HLA-A3. Leads to abnormal iron sensing and \uparrow intestinal absorption (\uparrow ferritin, \uparrow iron, \downarrow TIBC $\rightarrow \uparrow$ transferrin saturation). Iron overload can also be 2° to chronic transfusion therapy (eg, β-thalassemia major). Iron accumulates, especially in liver, pancreas, skin, heart, pituitary, joints. Hemosiderin (iron) can be identified on liver MRI or biopsy with Prussian blue stain \boldsymbol{A}.
Presents after age 40 when total body iron $>20 \mathrm{~g}$; iron loss through menstruation slows progression in women. Classic triad of cirrhosis, diabetes mellitus, skin pigmentation ("bronze diabetes"). Also causes restrictive cardiomyopathy (classic) or dilated cardiomyopathy (reversible), hypogonadism, arthropathy (calcium pyrophosphate deposition; especially metacarpophalangeal joints). HCC is common cause of death.
Treatment: repeated phlebotomy, chelation with deferasirox, deferoxamine, oral deferiprone.

Biliary tract disease	May present with pruritus, jaundice, dark urine, light-colored stool, hepatosplenomegaly. Typically with cholestatic pattern of LFTs (\uparrow conjugated bilirubin, \uparrow cholesterol, \uparrow ALP).		
	Pathology	EPIDEMIOLOGY	AdoITIONAL EEATURES
Primary sclerosing cholangitis	Unknown cause of concentric "onion skin" bile duct fibrosis \rightarrow alternating strictures and dilation with "beading" of intra- and extrahepatic bile ducts on ERCP, magnetic resonance cholangiopancreatography (MRCP).	Classically in middle-aged men with IBD.	Associated with ulcerative colitis. p-ANCA $\oplus . \uparrow \mathrm{IgM}$. Can lead to 2° biliary cholangitis. \uparrow risk of cholangiocarcinoma and gallbladder cancer.
Primary biliary cholangitis	Autoimmune reaction \rightarrow lymphocytic infiltrate + granulomas \rightarrow destruction of lobular bile ducts.	Classically in middle-aged women.	Anti-mitochondrial antibody \oplus, $\uparrow \mathrm{IgM}$. Associated with other autoimmune conditions (eg, Sjögren syndrome, Hashimoto thyroiditis, CREST, rheumatoid arthritis, celiac disease).
Secondary biliary cholangitis	Extrahepatic biliary obstruction $\rightarrow \uparrow$ pressure in intrahepatic ducts \rightarrow injury/ fibrosis and bile stasis.	Patients with known obstructive lesions (gallstones, biliary strictures, pancreatic carcinoma).	May be complicated by ascending cholangitis.

Gallstones (cholelithiasis)

\uparrow cholesterol and/or bilirubin, \downarrow bile salts, and gallbladder stasis all cause stones.
2 types of stones:

- Cholesterol stones (radiolucent with 10-20\% opaque due to calcifications) - 80% of stones. Associated with obesity, Crohn disease, advanced age, estrogen therapy, multiparity, rapid weight loss, Native American origin.
- Pigment stones \boldsymbol{A} (black = radiopaque, Ca^{2+} bilirubinate, hemolysis; brown = radiolucent, infection). Associated with Crohn disease, chronic hemolysis, alcoholic cirrhosis, advanced age, biliary infections, total parenteral nutrition (TPN).
CHARACTERISTICS
Associated with nausea/vomiting and dull RUQ pain. Neurohormonal activation (eg, by CCK after a fatty meal) triggers contraction of gallbladder, forcing stone into cystic duct. Labs are normal, ultrasound shows cholelithiasis.
Choledocholithiasis Presence of gallstone(s) in common bile duct, often leading to elevated ALP, GGT, direct bilirubin, and/or AST/ALT.

Cholecystitis

Acute or chronic inflammation of gallbladder.
Calculous cholecystitis - most common type; due to gallstone impaction in the cystic duct resulting in inflammation and gallbladder wall thickening (arrows in B); can produce 2° infection.
Acalculous cholecystitis - due to gallbladder stasis, hypoperfusion, or infection (CMV); seen in critically ill patients.
Murphy sign: inspiratory arrest on RUQ palpation due to pain. Pain may radiate to right shoulder (due to irritation of phrenic nerve). \uparrow ALP if bile duct becomes involved (eg, ascending cholangitis).
Diagnose with ultrasound or cholescintigraphy (HIDA scan). Failure to visualize gallbladder on HIDA scan suggests obstruction.
Gallstone ileus-fistula between gallbladder and GI tract \rightarrow stone enters GI lumen \rightarrow obstructs at ileocecal valve (narrowest point); can see air in biliary tree (pneumobilia).

Calcified gallbladder due to chronic cholecystitis; usually found incidentally on imaging \mathbf{C}. Treatment: prophylactic cholecystectomy due to high rates of gallbladder cancer (mostly adenocarcinoma).

Ascending cholangitis

Infection of biliary tree usually due to obstruction that leads to stasis/bacterial overgrowth.
Charcot triad of cholangitis includes jaundice, fever, RUQ pain.
Reynolds pentad is Charcot triad plus altered mental status and shock (hypotension).

Acute pancreatitis

Autodigestion of pancreas by pancreatic enzymes (A shows pancreas [yellow arrows] surrounded by edema [red arrows]).
Causes: Idiopathic, Gallstones, Ethanol, Trauma, Steroids, Mumps, Autoimmune disease, Scorpion sting, Hypercalcemia/Hypertriglyceridemia (> $1000 \mathrm{mg} / \mathrm{dL}$), ERCP, Drugs (eg, sulfa drugs, NRTIs, protease inhibitors). I GET SMASHED.
Diagnosis by 2 of 3 criteria: acute epigastric pain often radiating to the back, \uparrow serum amylase or lipase (more specific) to $3 \times$ upper limit of normal, or characteristic imaging findings.
Complications: pseudocyst B (lined by granulation tissue, not epithelium), abscess, necrosis, hemorrhage, infection, organ failure (ARDS, shock, renal failure), hypocalcemia (precipitation of Ca^{2+} soaps).

Chronic pancreatitis

Chronic inflammation, atrophy, calcification of the pancreas A. Major causes include alcohol abuse and genetic predisposition (ie, cystic fibrosis); can be idiopathic. Complications include pancreatic insufficiency and pseudocysts.
Pancreatic insufficiency (typically when $<10 \%$ pancreatic function) may manifest with steatorrhea, fat-soluble vitamin deficiency, diabetes mellitus.
Amylase and lipase may or may not be elevated (almost always elevated in acute pancreatitis).

Pancreatic adenocarcinoma

Very aggressive tumor arising from pancreatic ducts (disorganized glandular structure with cellular infiltration A); often metastatic at presentation, with average survival ~ 1 year after diagnosis. Tumors more common in pancreatic head \boldsymbol{B} (\rightarrow obstructive jaundice). Associated with CA 19-9 tumor marker (also CEA, less specific).
Risk factors:

- Tobacco use
- Chronic pancreatitis (especially > 20 years)
- Diabetes
- Age >50 years
- Jewish and African-American males

Often presents with:

- Abdominal pain radiating to back
- Weight loss (due to malabsorption and anorexia)
- Migratory thrombophlebitis-redness and tenderness on palpation of extremities (Trousseau syndrome)
- Obstructive jaundice with palpable, nontender gallbladder (Courvoisier sign)

Treatment: Whipple procedure, chemotherapy, radiation therapy.

GASTROINTESTINAL—PHARMACOLOGY

Acid suppression therapy

Histamine-2 blockers Cimetidine, ranitidine, famotidine, nizatidine. Take H_{2} blockers before you dine. Think "table for 2" to remember H_{2}.
MECHANISM Reversible block of histamine H_{2}-receptors $\rightarrow \downarrow \mathrm{H}^{+}$secretion by parietal cells.

CLINICALUSE Peptic ulcer, gastritis, mild esophageal reflux.
ADVERSE EFFECTS Cimetidine is a potent inhibitor of cytochrome P-450 (multiple drug interactions); it also has antiandrogenic effects (prolactin release, gynecomastia, impotence, \downarrow libido in males); can cross blood-brain barrier (confusion, dizziness, headaches) and placenta. Both cimetidine and ranitidine \downarrow renal excretion of creatinine. Other H_{2} blockers are relatively free of these effects.

Proton pump inhibitors Omeprazole, lansoprazole, esomeprazole, pantoprazole, dexlansoprazole.
MECHANISM Irreversibly inhibit $\mathrm{H}^{+} / \mathrm{K}^{+}$ATPase in stomach parietal cells.
CLINICALUSE Peptic ulcer, gastritis, esophageal reflux, Zollinger-Ellison syndrome, component of therapy for H pylori, stress ulcer prophylaxis.
ADVERSE EFFECTS
\uparrow risk of C difficile infection, pneumonia, acute interstitial nephritis. \downarrow serum Mg^{2+} with long-term use; \downarrow serum Mg^{2+} and $\downarrow \mathrm{Ca}^{2+}$ absorption (potentially leading to increased fracture risk in elderly).

Antacids	Can affect absorption, bioavailability, or urinary excretion of other drugs by altering gastric and urinary pH or by delaying gastric emptying. All can cause hypokalemia. Overuse can also cause the following problems.	
Aluminum hydroxide	Constipation and hypophosphatemia; proximal muscle weakness, osteodystrophy, seizures	Aluminimum amount of feces.
Calcium carbonate	Hypercalcemia (milk-alkali syndrome), rebound acid \uparrow	Can chelate and \downarrow effectiveness of other drugs (eg, tetracycline).
Magnesium hydroxide	Diarrhea, hyporeflexia, hypotension, cardiac arrest	$\mathrm{Mg}^{2+}=$ Must go to the bathroom.

Bismuth, sucralfate

MECHANSM	Bind to ulcer base, providing physical protection and allowing $\mathrm{HCO}_{3}-$ secretion to reestablish pH gradient in the mucous layer. Require acidic environment; usually not given with PPIs $/ \mathrm{H}_{2}$ blockers.
CLINCAL USE	\uparrow ulcer healing, travelers' diarrhea (bismuth).

Misoprostol

mechanism
clincaluse Prevention of NSAID-induced peptic ulcers (NSAIDs block PGE $_{1}$ production). Also used off-label for induction of labor (ripens cervix).
ADVERSE EFFECTS Diarrhea. Contraindicated in women of childbearing potential (abortifacient).

Octreotide

MECHANSM Long-acting somatostatin analog; inhibits secretion of various splanchnic vasodilatory hormones.
clincal use Acute variceal bleeds, acromegaly, VIPoma, carcinoid tumors.
adverse effects Nausea, cramps, steatorrhea. \uparrow risk of cholelithiasis due to CCK inhibition.

Sulfasalazine

MEEHANSM	A combination of sulfapyridine (antibacterial) and 5-aminosalicylic acid (anti-inflammatory). Activated by colonic bacteria.
CLINCAL USE	Ulcerative colitis, Crohn disease (colitis component).
ADVERSE EFFECTS	Malaise, nausea, sulfonamide toxicity, reversible oligospermia.
Loperamide	
MECHANISM	Agonist at μ-opioid receptors; slows gut motility. Poor CNS penetration (low addictive potential).
CINICAL USE	Diarrhea.
ADVERSE EFFECTS	Constipation, nausea.

Ondansetron

mechanism	5-HT ${ }_{3}$ antagonist; \downarrow vagal stimulation. Powerful central-acting antiemetic.
cluncal use	Control vomiting postoperatively and in patients undergoing cancer chemotherapy.
adverse effects	Headache, constipation, QT interval prolongation, serotonin syndrome.
Metoclopramide	
mechanism	D_{2} receptor antagonist. \uparrow resting tone, contractility, LES tone, motility, promotes gastric emptying. Does not influence colon transport time.
cluncal use	Diabetic and postsurgery gastroparesis, antiemetic, persistent GERD.
adverse effects	${ }^{\uparrow}$ parkinsonian effects, tardive dyskinesia. Restlessness, drowsiness, fatigue, depression, diarrhea. Drug interaction with digoxin and diabetic agents. Contraindicated in patients with small bowel obstruction or Parkinson disease (due to D_{2}-receptor blockade).

Orlistat

MECHANSM	Inhibits gastric and pancreatic lipase $\rightarrow \downarrow$ breakdown and absorption of dietary fats.
CLIICAL USE	Weight loss.
ADVERSE EFFECTS	Abdominal pain, flatulence, bowel urgency/frequent bowel movements; \downarrow absorption of fat-soluble vitamins.

Laxatives

Indicated for constipation or patients on opiates requiring a bowel regimen.

	EXAMPLES	MECHANISM	ADVERSE EFFECTS
Bulk-forming laxatives	Psyllium, methylcellulose	Soluble fibers draw water into gut lumen, forming a viscous liquid that promotes peristalsis	Bloating
Osmotic laxatives	Magnesium hydroxide, magnesium citrate, polyethylene glycol, lactulose	Provides osmotic load to draw water into GI lumen Lactulose also treats hepatic encephalopathy: gut flora degrade lactulose into metabolites (lactic acid, acetic acid) that promote nitrogen excretion as NH ${ }_{4}+$	Diarrhea, dehydration; may be abused by bulimics
Stimulants	Senna	Enteric nerve stimulation a colonic contraction	Diarrhea, melanosis coli
Emollients	Docusate	Promotes incorporation of water and fat into stool	Diarrhea

Aprepitant

mechanism
Substance P antagonist. Blocks NK_{1} (neurokinin-l) receptors in brain.
CLINICAL USE
Antiemetic for chemotherapy-induced nausea and vomiting.

HIGH-YIELD SYSTEMS

Hematology and Oncology

"Of all that is written, I love only what a person has written with his own blood."
-Friedrich Nietzsche
"All the soarings of my mind begin in my blood."
-Rainer Maria Rilke
"The best blood will at some time get into a fool or a mosquito."
-Austin O'Malley

When studying hematology, pay close attention to the many cross connections to immunology. Make sure you master the different types of anemias. Be comfortable interpreting blood smears. Please note that solid tumors are covered in the other organ systems. When reviewing oncologic drugs, focus on mechanisms and adverse effects rather than details of clinical uses, which may be lower yield.

Anatomy	396
Physiology	399
Pathology	404
Pharmacology	423

- HEMATOLOGY AND ONCOLOGY-ANATOMY

Erythrocytes

Carry O_{2} to tissues and CO_{2} to lungs. Anucleate and lack organelles; biconcave \boldsymbol{A}, with large surface area-to-volume ratio for rapid gas exchange. Life span of 120 days. Source of energy is glucose (90% used in glycolysis, 10% used in HMP shunt). Membranes contain $\mathrm{Cl}^{-} / \mathrm{HCO}_{3}{ }^{-}$antiporter, which allow RBCs to export $\mathrm{HCO}_{3}{ }^{-}$and transport CO_{2} from the periphery to the lungs for elimination.

Eryth $=$ red; cyte $=$ cell.
Erythrocytosis $=$ polycythemia $=\uparrow$ Hct.
Anisocytosis = varying sizes.
Poikilocytosis $=$ varying shapes .
Reticulocyte $=$ immature RBC; reflects erythroid proliferation.
Bluish color (polychromasia) on Wright-Giemsa stain of reticulocytes represents residual ribosomal RNA.

Thrombocytes

 (platelets)

Involved in 1° hemostasis. Small cytoplasmic fragments \boldsymbol{A} derived from megakaryocytes. Life span of $8-10$ days. When activated by endothelial injury, aggregate with other platelets and interact with fibrinogen to form platelet plug. Contain dense granules (ADP, Ca^{2+}) and α granules (vWF, fibrinogen, fibronectin). Approximately $1 / 3$ of platelet pool is stored in the spleen.

Thrombocytopenia or \downarrow platelet function results in petechiae.
vWF receptor: GpIb.
Fibrinogen receptor: GpIIb/IIIa.
Thrombopoietin stimulates megakaryocyte proliferation.
Alfa granules contain vwF, fibrinogen, fibronectin.

Leukocytes

Divided into granulocytes (neutrophils, eosinophils, basophils, mast cells) and mononuclear cells (monocytes, lymphocytes).
WBC differential count from highest to lowest (normal ranges per USMLE):
Neutrophils ($\sim 60 \%$)
Lymphocytes (~30\%)
Monocytes ($\sim 6 \%$)
Eosinophils (~3\%)
Basophils ($\sim 1 \%$)

Leuk $=$ white $;$ cyte $=$ cell.

Neutrophils Like Making Everything Better.

Neutrophils

Acute inflammatory response cells. Numbers \uparrow in bacterial infections. Phagocytic. Multilobed nucleus A. Specific granules contain leukocyte alkaline phosphatase (LAP), collagenase, lysozyme, and lactoferrin. Azurophilic granules (lysosomes) contain proteinases, acid phosphatase, myeloperoxidase, and β-glucuronidase.

Hypersegmented neutrophils (nucleus has 6+ lobes) are seen in vitamin B_{12} / folate deficiency. \uparrow band cells (immature neutrophils) reflect states of \uparrow myeloid proliferation (bacterial infections, CML).

Important neutrophil chemotactic agents: C5a, IL-8, LTB_{4}, kallikrein, platelet-activating factor.

Found in blood, differentiate into macrophages Mono $=$ one (nucleus); cyte $=$ cell. in tissues.
Large, kidney-shaped nucleus A. Extensive
"frosted glass" cytoplasm.

Macrophages

Phagocytose bacteria, cellular debris, and senescent RBCs. Long life in tissues. Differentiate from circulating blood monocytes \boldsymbol{A}. Activated by γ-interferon. Can function as antigen-presenting cell via MHC II.

Macro $=$ large; phage $=$ eater.
Name differs in each tissue type (eg, Kupffer cells in liver, histiocytes in connective tissue, Langerhans cells in skin, osteoclasts in bone, microglial cells in brain).
Important component of granuloma formation (eg, TB, sarcoidosis).
Lipid A from bacterial LPS binds CD14 on macrophages to initiate septic shock.

Eosinophils

Defend against helminthic infections (major basic protein). Bilobate nucleus. Packed with large eosinophilic granules of uniform size A. Highly phagocytic for antigenantibody complexes.
Produce histaminase, major basic protein (MBP, a helminthotoxin), eosinophil peroxidase, eosinophil cationic protein, and eosinophilderived neurotoxin.

Eosin $=$ pink dye; philic $=$ loving.
Causes of eosinophilia $=$ PACCMAN:
Parasites
Asthma
Churg-Strauss syndrome
Chronic adrenal insufficiency
Myeloproliferative disorders
Allergic processes
Neoplasia (eg, Hodgkin lymphoma)

Basophils

Mediate allergic reaction. Densely basophilic granules \boldsymbol{A} contain heparin (anticoagulant) and histamine (vasodilator). Leukotrienes synthesized and released on demand.

Basophilic—stains readily with basic stains. Basophilia is uncommon, but can be a sign of myeloproliferative disease, particularly CML.

Mediate allergic reaction in local tissues. Contain basophilic granules \boldsymbol{A} and originate from the same precursor as basophils but are not the same cell type. Can bind the Fc portion of IgE to membrane. Activated by tissue trauma, C3a and C5a, surface IgE crosslinking by antigen (IgE receptor aggregation) \rightarrow degranulation \rightarrow release of histamine, heparin, tryptase, and eosinophil chemotactic factors.

Involved in type I hypersensitivity reactions. Cromolyn sodium prevents mast cell degranulation (used for asthma prophylaxis).

Dendritic cells

Highly phagocytic antigen-presenting cells (APCs) A. Function as link between innate and adaptive immune systems. Express MHC class II and Fc receptors on surface. Called Langerhans cell in the skin.

Lymphocytes

Refer to B cells, T cells, and NK cells. B cells and T cells mediate adaptive immunity. NK cells are part of the innate immune response. Round, densely staining nucleus with small amount of pale cytoplasm A.

B cells

Part of humoral immune response. Originate from stem cells in bone marrow and matures in marrow. Migrate to peripheral lymphoid tissue (follicles of lymph nodes, white pulp of spleen, unencapsulated lymphoid tissue). When antigen is encountered, B cells differentiate into plasma cells (which produce antibodies) and memory cells. Can function as an APC.
$\mathrm{B}=\mathrm{B}$ one marrow.

T is for Thymus.
CD4+ helper T cells are the primary target of HIV.
Rule of 8: MHC II $\times \mathrm{CD} 4=8$; $\mathrm{MHC} \mathrm{I} \times \mathrm{CD} 8=8$.

Plasma cells

Produce large amounts of antibody specific to a particular antigen. "Clock-face" chromatin distribution and eccentric nucleus, abundant RER, and well-developed Golgi apparatus (arrows in \boldsymbol{A}). Found in bone marrow and normally do not circulate in peripheral blood.

Multiple myeloma is a plasma cell cancer.

\checkmark HEMATOLOGY AND ONCOLOGY-PHYSIOLOGY

Fetal erythropoiesis

Hemoglobin development

Fetal erythropoiesis occurs in:

- Yolk sac (3-8 weeks)
- Liver (6 weeks-birth)
- Spleen (10-28 weeks)
- Bone marrow (18 weeks to adult)

Embryonic globins: ζ and ε.
Fetal hemoglobin $(\mathrm{HbF})=\alpha_{2} \gamma_{2}$.
Adult hemoglobin $\left(\mathrm{HbA}_{1}\right)=\alpha_{2} \beta_{2}$.
HbF has higher affinity for O_{2} due to less avid binding of $2,3-\mathrm{BPG}$, allowing HbF to extract O_{2} from maternal hemoglobin $\left(\mathrm{HbA}_{1}\right.$ and $\left.\mathrm{HbA}_{2}\right)$ across the placenta. $\mathrm{HbA}_{2}\left(\alpha_{2} \delta_{2}\right)$ is a form of adult hemoglobin present in small amounts.

Alpha Always; Gamma Goes, Becomes Beta.

Blood groups

Antibodies in plasma

Hemolytic disease of the newborn

	Rh hemolytic disease of the newborn	ABO hemolytic disease of the newborn
interaction	Rh \ominus mothers; $\mathrm{Rh} \oplus$ fetus.	Type O mothers; type A or B fetus.
mechanism	First pregnancy: mother exposed to fetal blood (often during delivery) \rightarrow formation of maternal anti-D IgG. Subsequent pregnancies: anti-D IgG crosses the placenta $\rightarrow \mathrm{HDN}$ in the fetus.	Pre-existing maternal anti-A and/or anti-B IgG antibodies cross placenta \rightarrow HDN in the fetus.
presentation	Jaundice shortly after birth, kernicterus, hydrops fetalis.	Mild jaundice in the neonate within 24 hours of birth. Usually less severe than Rh HDN.
treatuent/Prevention	Prevent by administration of anti-D IgG to Rh Θ pregnant women during third trimester and early postpartum period (if fetus tests \oplus for Rh). Prevents maternal anti-D IgG production.	Treat newborn with phototherapy or exchange transfusion.

Hemoglobin electrophoresis

On a gel, hemoglobin migrates from the negatively charged cathode to the positively charged anode. HbA migrates the farthest, followed by $\mathrm{HbF}, \mathrm{HbS}$, and HbC . This is because the missense mutations in HbS and HbC replace glutamic acid Θ with valine (neutral) and lysine \oplus, respectively, impacting the net protein charge.

Coagulation and kinin pathways

Coagulation cascade components

Procoagulation	Vitamin K deficiency: \downarrow synthesis of factors II, VII, IX, X, protein C, protein S. Warfarin inhibits vitamin K epoxide reductase. Vitamin K administration can potentially reverse inhibitory effect of warfarin on clotting factor synthesis. FFP or PCC administration reverses action of warfarin immediately and can be given with vitamin K in cases of severe bleeding. Neonates lack enteric bacteria, which produce vitamin K. Early administration of vitamin K overcomes neonatal deficiency/coagulopathy. Factor VII—Shortest half life. Factor II—Longest half life. vWF carries/protects factor VIII; volksWagen Factories make gr8 cars.
Anticoagulation thrombin-thrombomodulin complex (endothelial cells) protein S	Antithrombin inhibits activated forms of factors II, VII, IX, X, XI, XII. Heparin enhances the activity of antithrombin.
	Principal targets of antithrombin: thrombin and factor Xa. Factor V Leiden mutation produces a factor V resistant to inhibition by activated protein C . tPA is used clinically as a thrombolytic.

Platelet plug formation (primary hemostasis)

Thrombogenesis

Formation of insoluble fibrin mesh.
Aspirin irreversibly inhibits cyclooxygenase, thereby inhibiting TXA2 synthesis.
Clopidogrel, prasugrel, and ticlopidine inhibit ADP-induced expression of GpIIb/IIIa by irreversibly blocking $\mathrm{P} 2 \mathrm{Y}_{12}$ receptor.
Abciximab, eptifibatide, and tirofiban inhibit GpIIb/IIIa directly.
Ristocetin activates vWF to bind GpIb. Failure of aggregation with ristocetin assay occurs in von Willebrand disease and Bernard-Soulier syndrome.

- HEMATOLOGY AND ONCOLOGY—PATHOLOGY

Pathologic RBC forms

TYPE	EXAMPLE	ASSOCIATED Pathology	Notes
Acanthocytes ("spur cells") A		Liver disease, abetalipoproteinemia (states of cholesterol dysregulation).	Acantho $=$ spiny.
Basophilic stippling [Sideroblastic anemias (eg, lead poisoning, myelodysplastic syndromes), thalassemias.	Seen primarily in peripheral smear, vs ringed sideroblasts seen in bone marrow. Aggregation of residual ribosomes.
Dacrocytes ("teardrop cells") C		Bone marrow infiltration (eg, myelofibrosis), thalassemias.	RBC "sheds a tear" because it's mechanically squeezed out of its home in the bone marrow.
Degmacytes ("bite cells") D		G6PD deficiency.	
Echinocytes ("burr cells") E		End-stage renal disease, liver disease, pyruvate kinase deficiency.	Different from acanthocyte; its projections are more uniform and smaller.
Elliptocytes [Hereditary elliptocytosis, usually asymptomatic; caused by mutation in genes encoding RBC membrane proteins (eg, spectrin).	
Macro-ovalocytes ${ }_{\text {G }}$		Megaloblastic anemia (also hypersegmented PMNs).	

Pathologic RBC forms (continued)

TYPE	EXAMPLE	ASSOCIATED PATHOLOGY	NOTES
Ringed sideroblasts H $^{\text {d }}$		Sideroblastic anemia. Excess iron in mitochondria.	Seen in bone marrow with special staining (Prussian blue), vs basophilic stippling in peripheral smear.
Schistocytes		Microangiopathic hemolytic anemias, including DIC, TTP/ HUS, HELLP syndrome, mechanical hemolysis (eg, heart valve prosthesis).	Fragmented RBCs (eg, helmet cells).
Sickle cells J		Sickle cell anemia.	Sickling occurs with dehydration, deoxygenation, and at high altitude.
Spherocytes K	回	Hereditary spherocytosis, drug- and infection-induced hemolytic anemia.	Small, spherical cells without central pallor.
Target cells L		HbC disease, Asplenia, Liver disease, Thalassemia.	"HALT," said the hunter to his target.

Other RBC abnormalities

TYPE	EXAMPLE	ASSOCIATED PATHOLOGY	NOTES
Heinz bodies A	Seen in G6PD deficiency.	Oxidation of Hb -SH groups to $-\mathrm{S}-\mathrm{S}-\rightarrow$ Hb precipitation (Heinz bodies), with subsequent phagocytic damage to RBC membrane \rightarrow bite cells.	
Howell-Jolly bodies B		Seen in patients with functional hyposplenia or asplenia.	Basophilic nuclear remnants found in RBCs. Howell-Jolly bodies are normally removed from RBCs by splenic macrophages.

Anemias

Microcytic, hypochromic anemia

Iron deficiency	\downarrow iron due to chronic bleeding (eg, GI loss, menorrhagia), malnutrition, absorption disorders, GI surgery (eg, gastrectomy), or \uparrow demand (eg, pregnancy) $\rightarrow \downarrow$ final step in heme synthesis. Labs: \downarrow iron, \uparrow TIBC, \downarrow ferritin, \uparrow free erythrocyte protoporphyrin, \uparrow RDW. Microcytosis and hypochromasia (\uparrow central pallor) A. Symptoms: fatigue, conjunctival pallor B , pica (consumption of nonfood substances), spoon nails (koilonychia). May manifest as glossitis, cheilosis, Plummer-Vinson syndrome (triad of iron deficiency anemia, esophageal webs, and dysphagia).		
α-thalassemia	α-globin gene deletions $\rightarrow \downarrow \alpha$-globin synthesis. cis deletion (deletions occur on same chromosome) prevalent in Asian populations; trans deletion (deletions occur on separate chromosomes) prevalent in African populations. Normal is $\alpha \alpha / \alpha \alpha$.		
	NUMBER OF α-GLOBIN GENES DELETED	DISEASE	CLINICAL OUTCOME
	$1(\alpha \alpha / \alpha-)$	α-thalassemia minima	No anemia (silent carrier)
	$\begin{aligned} & 2 \text { (} \alpha-/ \alpha-\text {; trans }) \text { or } \\ & (\alpha \alpha /--; \text { cis }) \end{aligned}$	α-thalassemia minor	Mild microcytic, hypochromic anemia; cis deletion may worsen outcome for the carrier's offspring
	$3(--/-\alpha)$	Hemoglobin H disease (HbH); excess β-globin forms β_{4}	Moderate to severe microcytic hypochromic anemia
	4 (--/- -)	Hemoglobin Barts disease (Hb Barts); no α-globin, excess γ-globin forms γ_{4}	Hydrops fetalis; incompatible with life

Microcytic, hypochromic anemia (continued)

β-thalassemia

Lead poisoning

Sideroblastic anemia Causes: genetic (eg, X-linked defect in ALA synthase gene), acquired (myelodysplastic syndromes), and reversible (alcohol is most common; also lead, vitamin B_{6} deficiency, copper deficiency, isoniazid, chloramphenicol).
Lab findings: \uparrow iron, normal/ \downarrow TIBC, \uparrow ferritin. Ringed sideroblasts (with iron-laden, Prussian blue-stained mitochondria) seen in bone marrow [E. Peripheral blood smear: basophilic stippling of RBCs.
Treatment: pyridoxine (B_{6}, cofactor for ALA synthase).

Macrocytic anemia	MCV > 100 fL .	
	DESCRIPTION	Finoling
Megaloblastic anemia A	Impaired DNA synthesis \rightarrow maturation of nucleus of precursor cells in bone marrow delayed relative to maturation of cytoplasm.	RBC macrocytosis, hypersegmented neutrophils \boldsymbol{A}, glossitis.
Folate deficiency	Causes: malnutrition (eg, alcoholics), malabsorption, drugs (eg, methotrexate, trimethoprim, phenytoin), \uparrow requirement (eg, hemolytic anemia, pregnancy).	\uparrow homocysteine, normal methylmalonic acid. No neurologic symptoms (vs B_{12} deficiency).
Vitamin B_{12} (cobalamin) deficiency	Causes: pernicious anemia, malabsorption (eg, Crohn disease), gastrectomy, insufficient intake (eg, veganism), Diphyllobothrium latum (fish tapeworm).	\uparrow homocysteine, \uparrow methylmalonic acid. Neurologic symptoms: reversible dementia, subacute combined degeneration (due to involvement of B_{12} in fatty acid pathways and myelin synthesis): spinocerebellar tract, lateral corticospinal tract, dorsal column dysfunction. Historically diagnosed with the Schilling test, a 4 -stage test that determines if the cause is dietary insufficiency vs malabsorption. Anemia 2° to insufficient intake may take several years to develop due to liver's ability to store B_{12} (as opposed to folate deficiency).
Orotic aciduria	Inability to convert orotic acid to UMP (de novo pyrimidine synthesis pathway) because of defect in UMP synthase. Autosomal recessive. Presents in children as failure to thrive, developmental delay, and megaloblastic anemia refractory to folate and B_{12}. No hyperammonemia (vs ornithine transcarbamylase deficiency- \uparrow orotic acid with hyperammonemia).	Orotic acid in urine. Treatment: uridine monophosphate or uridine triacetate to bypass mutated enzyme.
Nonmegaloblastic anemia	Macrocytic anemia in which DNA synthesis is unimpaired. Causes: alcoholism, liver disease.	RBC macrocytosis without hypersegmented neutrophils.
Diamond-Blackfan anemia	Rapid-onset anemia within 1st year of life due to intrinsic defect in erythroid progenitor cells.	$\uparrow \% \mathrm{HbF}$ (but \downarrow total Hb). Short stature, craniofacial abnormalities, and upper extremity malformations (triphalangeal thumbs) in up to 50% of cases.

Normocytic, normochromic anemia

Normocytic, normochromic anemias are classified as nonhemolytic or hemolytic. The hemolytic anemias are further classified according to the cause of the hemolysis (intrinsic vs extrinsic to the RBC) and by the location of the hemolysis (intravascular vs extravascular). Hemolysis can lead to increases in LDH, reticulocytes, unconjugated bilirubin, urobilinogen in urine.

Findings: \downarrow haptoglobin, \uparrow schistocytes on blood smear. Characteristic hemoglobinuria, hemosiderinuria, and urobilinogen in urine. May also see \uparrow unconjugated bilirubin. Notable causes are mechanical hemolysis (eg, prosthetic valve), paroxysmal nocturnal hemoglobinuria, microangiopathic hemolytic anemias.

Extravascular hemolysis

Findings: macrophages in spleen clear RBCs. Spherocytes in peripheral smear (most commonly hereditary spherocytosis and autoimmune hemolytic anemia), no hemoglobinuria/ hemosiderinuria. Can present with urobilinogen in urine.

Nonhemolytic, normocytic anemia

	description	FINIINGS
Anemia of chronic disease	Inflammation $\rightarrow \uparrow$ hepcidin (released by liver, binds ferroportin on intestinal mucosal cells and macrophages, thus inhibiting iron transport) $\rightarrow \downarrow$ release of iron from macrophages and \downarrow iron absorption from gut. Associated with conditions such as rheumatoid arthritis, SLE, neoplastic disorders, and chronic kidney disease.	\downarrow iron, \downarrow TIBC, \uparrow ferritin. Normocytic, but can become microcytic. Treatment: address underlying cause of inflammation, judicious use of blood transfusion, consider erythropoiesisstimulating agents such as EPO (eg, in chronic kidney disease).
Aplastic anemia	Caused by failure or destruction of myeloid stem cells due to: - Radiation and drugs (eg, benzene, chloramphenicol, alkylating agents, antimetabolites) - Viral agents (EBV, HIV, hepatitis viruses) - Fanconi anemia (DNA repair defect causing bone marrow failure; macrocytosis may be seen on CBC); also short stature, \uparrow incidence of tumors/leukemia, café-au-lait spots, thumb/radial defects - Idiopathic (immune mediated, 1° stem cell defect); may follow acute hepatitis	\downarrow reticulocyte count, \uparrow EPO. Pancytopenia characterized by anemia, leukopenia, and thrombocytopenia. Normal cell morphology, but hypocellular bone marrow with fatty infiltration \boldsymbol{A} (dry bone marrow tap). Symptoms: fatigue, malaise, pallor, purpura, mucosal bleeding, petechiae, infection. Treatment: withdrawal of offending agent, immunosuppressive regimens (eg, antithymocyte globulin, cyclosporine), bone marrow allograft, RBC/platelet transfusion, bone marrow stimulation (eg, GM-CSF).

Intrinsic hemolytic anemia

	description	FINoINGS
Hereditary spherocytosis	Extravascular hemolysis due to defect in proteins interacting with RBC membrane skeleton and plasma membrane (eg, ankyrin, band 3, protein 4.2, spectrin). Mostly autosomal dominant inheritance. Results in small, round RBCs with less surface area and no central pallor ($\uparrow \mathrm{MCHC}$) \rightarrow premature removal by spleen.	Splenomegaly, aplastic crisis (parvovirus B19 infection). Labs: \uparrow fragility in osmotic fragility test. Normal to $\downarrow \mathrm{MCV}$ with abundance of cells. Treatment: splenectomy.
G6PD deficiency	Most common enzymatic disorder of RBCs. Causes extravascular and intravascular hemolysis. X-linked recessive. Defect in G6PD $\rightarrow \downarrow$ reduced glutathione $\rightarrow \uparrow$ RBC susceptibility to oxidant stress. Hemolytic anemia following oxidant stress (eg, sulfa drugs, antimalarials, infections, fava beans).	Back pain, hemoglobinuria a few days after oxidant stress. Labs: blood smear shows RBCs with Heinz bodies and bite cells. "Stress makes me eat bites of fava beans with Heinz ketchup."
Pyruvate kinase deficiency	Autosomal recessive pyruvate kinase defect $\rightarrow \downarrow$ ATP \rightarrow rigid RBCs \rightarrow extravascular hemolysis. Increases levels of 2,3-BPG $\rightarrow \downarrow$ hemoglobin affinity for O_{2}.	Hemolytic anemia in a newborn.
Paroxysmal nocturnal hemoglobinuria	\uparrow complement-mediated intravascular RBC lysis (acquired mutation in PIGA gene \rightarrow impaired synthesis of GPI anchor for decay-accelerating factor [DAF/CD55] and membrane inhibitor of reactive lysis [MIRL/CD59] that protects RBC membrane from complement). Acquired mutation in a hematopoietic stem cell. \uparrow incidence of acute leukemias.	Associated with aplastic anemia. Triad: Coombs Θ hemolytic anemia, pancytopenia, venous thrombosis. Patients may report red or pink urine (from hemoglobinuria). Labs: CD55/59 \ominus RBCs on flow cytometry. Treatment: eculizumab (inhibits terminal complement formation).
Sickle cell anemia A) © 10 c)	HbS point mutation causes a single amino acid replacement in β chain (substitution of glutamic acid with valine). Causes extravascular and intravascular hemolysis. Pathogenesis: low O_{2}, high altitude, or acidosis precipitates sickling (deoxygenated HbS polymerizes) \rightarrow anemia, vaso-occlusive disease. Newborns are initially asymptomatic because of $\uparrow \mathrm{HbF}$ and $\downarrow \mathrm{HbS}$. Heterozygotes (sickle cell trait) also have resistance to malaria. 8% of African Americans carry an HbS allele. Sickle cells are crescent-shaped RBCs \boldsymbol{A}. "Crew cut" on skull x-ray due to marrow expansion from \uparrow erythropoiesis (also seen in thalassemias).	Complications in sickle cell disease: - Aplastic crisis (due to parvovirus B19). - Autosplenectomy (Howell-Jolly bodies) $\rightarrow \uparrow$ risk of infection by encapsulated organisms (eg, S pneumoniae). - Splenic infarct/sequestration crisis. - Salmonella osteomyelitis. - Painful crises (vaso-occlusive): dactylitis [B (painful swelling of hands/feet), priapism, acute chest syndrome, avascular necrosis, stroke. - Sickling in renal medulla $\left(\downarrow \mathrm{PO}_{2}\right) \rightarrow$ renal papillary necrosis \rightarrow microhematuria. Diagnosis: hemoglobin electrophoresis. Treatment: hydroxyurea ($\uparrow \mathrm{HbF})$, hydration.
HbC disease	Glutamic acid-to-lyCine (lysine) mutation in β-globin. Causes extravascular hemolysis.	Patients with HbSC (1 of each mutant gene) have milder disease than HbSS patients. Blood smear in homozygotes: hemoglobin Crystals inside RBCs, target cells.

Extrinsic hemolytic anemia

	DESCRIPTION	Findings
Autoimmune	Warm (IgG)-chronic anemia seen in SLE	Autoimmune hemolytic anemias are usually
and CLL and with certain drugs (eg,	Coombs \oplus.	

Patient component

Microangiopathic anemia

Macroangiopathic anemia

Pathogenesis: RBCs are damaged when passing through obstructed or narrowed vessel lumina. Seen in DIC, TTP/HUS, SLE, HELLP syndrome, hypertensive emergency.
Prosthetic heart valves and aortic stenosis may also cause hemolytic anemia 2° to mechanical destruction of RBCs.

Schistocytes (eg, "helmet cells") are seen on peripheral blood smear due to mechanical destruction (schisto $=$ to split) of RBCs.
\uparrow destruction of RBCs (eg, malaria, Babesia).

Interpretation of iron studies

	Iron deficiency	Chronic disease	Hemochromatosis	Pregnancy/ OCP use
Serum iron	\downarrow	\downarrow	\uparrow	-
Transferrin or TIBC	\uparrow	\downarrow a	\downarrow	\uparrow
Ferritin	\downarrow	\uparrow	\uparrow	-
\% transferrin saturation (serum iron/TIBC)	$\downarrow \downarrow$	-	$\uparrow \uparrow$	\downarrow

$\uparrow \downarrow=1^{\circ}$ disturbance.
Transferrin-transports iron in blood.
TIBC-indirectly measures transferrin.
Ferritin -1° iron storage protein of body.
${ }^{\text {a }}$ Evolutionary reasoning-pathogens use circulating iron to thrive. The body has adapted a system in which iron is stored within the cells of the body and prevents pathogens from acquiring circulating iron.

Leukopenias

CELL TYPE	CELL COUNT	CAUSES
Neutropenia	Absolute neutrophil count <1500 cells $/ \mathrm{mm}^{3}$ Severe infections typical when $<500 \mathrm{cells} / \mathrm{mm}^{3}$	Sepsis/postinfection, drugs (including chemotherapy), aplastic anemia, SLE, radiation
Lymphopenia	Absolute lymphocyte count <1500 cells $/ \mathrm{mm}^{3}$ $\left(<3000\right.$ cells $/ \mathrm{mm}^{3}$ in children $)$	HIV, DiGeorge syndrome, SCID, SLE, corticosteroids ${ }^{\text {a }}$, radiation, sepsis, postoperative
Eosinopenia	Absolute eosinophil count <30 cells $/ \mathrm{mm}^{3}$	Cushing syndrome, corticosteroids ${ }^{\text {a }}$

${ }^{\text {a }}$ Corticosteroids cause neutrophilia, despite causing eosinopenia and lymphopenia. Corticosteroids \downarrow activation of neutrophil adhesion molecules, impairing migration out of the vasculature to sites of inflammation. In contrast, corticosteroids sequester eosinophils in lymph nodes and cause apoptosis of lymphocytes.

Left shift

\uparrow neutrophil precursors, such as band cells and metamyelocytes, in peripheral blood. Usually seen with neutrophilia in the acute response to infection or inflammation. Called leukoerythroblastic reaction when left shift is seen with immature RBCs. Occurs with severe anemia (physiologic response) or marrow response (eg, fibrosis, tumor taking up space in marrow).

A left shift is a shift to a more immature cell in the maturation process.

Heme synthesis, porphyrias, and lead poisoning

The porphyrias are hereditary or acquired conditions of defective heme synthesis that lead to the accumulation of heme precursors. Lead inhibits specific enzymes needed in heme synthesis, leading to a similar condition.

CONDITION	AFFECTED ENZYME	ACCUMULATED SUBSTRATE	PRESENTING SYMPTOMS

Iron poisoning	High mortality rate with accidental ingestion by children (adult iron tablets may look like candy).
MECHANISM	Cell death due to peroxidation of membrane lipids.
SYMpToMs/IIGNS	Nausea, vomiting, gastric bleeding, lethargy, scarring leading to GI obstruction.
TREATMENT	Chelation (eg, IV deferoxamine, oral deferasirox) and dialysis.

Coagulation disorders PT-tests function of common and extrinsic pathway (factors I, II, V, VII, and X). Defect $\rightarrow \uparrow$ PT (Play Tennis outside [extrinsic pathway]).
INR (international normalized ratio) -calculated from PT. l = normal, > l = prolonged. Most common test used to follow patients on warfarin.
PTT-tests function of common and intrinsic pathway (all factors except VII and XIII). Defect $\rightarrow \uparrow$ PTT (Play Table Tennis inside).
Coagulation disorders can be due to clotting factor deficiencies or acquired inhibitors. Diagnosed with a mixing study, in which normal plasma is added to patient's plasma. Clotting factor deficiencies should correct (the PT or PTT returns to within the appropriate normal range), whereas factor inhibitors will not correct.

| DISORDER | PT | PTT | MECHANSM AND CoMMENTS |
| :--- | :--- | :--- | :--- | :--- |
| Hemophilia A, B, or C | - | \uparrow | Intrinsic pathway coagulation defect (\uparrow PTT).
 " A: deficiency of factor VIII; X-linked recessive. |

Platelet disorders \quad Defects in platelet plug formation $\rightarrow \uparrow$ bleeding time (BT).
Platelet abnormalities \rightarrow microhemorrhage: mucous membrane bleeding, epistaxis, petechiae, purpura, \uparrow bleeding time, possibly decreased platelet count (PC).

DISORDER	PC	BT	MECHANISM And Comments
Bernard-Soulier syndrome	-/ل	\uparrow	Defect in platelet plug formation. Large platelets. \downarrow GpIb \rightarrow defect in platelet-to-vWF adhesion. Abnormal ristocetin test that does not correct with mixing studies.
Glanzmann thrombasthenia	-	\uparrow	Defect in platelet integrin $\alpha_{\text {IIb }} \beta_{3}(\mathrm{GpIIb} / \mathrm{III}) \rightarrow$ defect in platelet-to-platelet aggregation, and therefore platelet plug formation. Labs: blood smear shows no platelet clumping.
Hemolytic-uremic syndrome	\downarrow	\uparrow	Characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. Typical HUS is seen in children, accompanied by diarrhea and commonly caused by Shiga-like toxin of enterohemorrhagic E coll (EHEC) (eg, O157:H7). HUS in adults does not present with diarrhea; EHEC infection not required. Same spectrum as TTP, with a similar clinical presentation and same initial treatment of plasmapheresis.
Immune thrombocytopenia	\downarrow	\uparrow	Anti-GpIIb/IIIa antibodies \rightarrow splenic macrophage consumption of platelet-antibody complex. May be 1° (idiopathic) or 2° to autoimmune disorder, viral illness, malignancy, or drug reaction. Labs: \uparrow megakaryocytes on bone marrow biopsy. Treatment: steroids, IVIG; rituximab or splenectomy for refractory ITP.
Thrombotic thrombocytopenic purpura	\downarrow	\uparrow	Inhibition or deficiency of ADAMTS 13 (vWF metalloprotease) $\rightarrow \downarrow$ degradation of vWF multimers. Pathogenesis: \uparrow large vWF multimers $\rightarrow \uparrow$ platelet adhesion $\rightarrow \uparrow$ platelet aggregation and thrombosis. Labs: schistocytes, \uparrow LDH, normal coagulation parameters. Symptoms (FAT RN): pentad of Fever, microangiopathic hemolytic Anemia, Thrombocytopenia, Renal failure, Neurologic symptoms. Treatment: plasmapheresis, steroids.

Mixed platelet and coagulation disorders

DISORDER	PC	BT	PT	PTT	MECHANISM AND COMMENTS
von Willebrand disease	-	\uparrow	-	-/ \uparrow	Intrinsic pathway coagulation defect: \downarrow vWF $\rightarrow \uparrow$ PTT (vWF acts to carry/protect factor VIII). Defect in platelet plug formation: $\downarrow \mathrm{vWF}$ \rightarrow defect in platelet-to-vWF adhesion. Autosomal dominant. Mild but most common inherited bleeding disorder. No platelet aggregation with ristocetin cofactor assay. Treatment: desmopressin, which releases vWF stored in endothelium.
Disseminated intravascular coagulation	\downarrow	\uparrow	\uparrow	\uparrow	Widespread activation of clotting \rightarrow deficiency in clotting factors \rightarrow bleeding state. Causes: Sepsis (gram Θ), Trauma, Obstetric complications, acute Pancreatitis, Malignancy, Nephrotic syndrome, Transfusion (STOP Making New Thrombi). Labs: schistocytes, \uparrow fibrin degradation products (D-dimers), \downarrow fibrinogen, \downarrow factors V and VIII.

Hereditary thrombosis syndromes leading to hypercoagulability
$\left.\begin{array}{ll}\hline \text { DISEASE } & \text { DESCRIPTION } \\ \hline \begin{array}{l}\text { Antithrombin } \\ \text { deficiency }\end{array} & \begin{array}{c}\text { Inherited deficiency of antithrombin: has no direct effect on the PT, PTT, or thrombin time but } \\ \\ \text { diminishes the increase in PTT following heparin administration. }\end{array} \\ \text { Can also be acquired: renal failure/nephrotic syndrome } \rightarrow \text { antithrombin loss in urine } \\ \rightarrow \downarrow \text { inhibition of factors IIa and Xa. }\end{array}\right]$

Blood transfusion therapy

COMPONENT	DOSAGE EFFECT	CLINICAL USE
Packed RBCs	\uparrow Hb and O_{2} carrying capacity	Acute blood loss, severe anemia
Platelets	\uparrow platelet count $\left(\uparrow \sim 5000 / \mathrm{mm}^{3} / \mathrm{unit}\right)$	Stop significant bleeding (thrombocytopenia, qualitative platelet defects)
Fresh frozen plasma/prothrombin complex concentrate	\uparrow coagulation factor levels; FFP contains all coagulation factors and plasma proteins; PCC generally contains factors II, VII, IX, and X, as well as protein C and S	DIC, cirrhosis, immediate anticoagulation reversal
Cryoprecipitate	Contains fibrinogen, factor VIII, factor XIII, vWF, and fibronectin	Coagulation factor deficiencies involving fibrinogen and factor VIII

Blood transfusion risks include infection transmission (low), transfusion reactions, iron overload (may lead to 2°
hemochromatosis), hypocalcemia (citrate is a Ca^{2+} chelator), and hyperkalemia (RBCs may lyse in old blood units).

Leukemia vs lymphoma

Leukemia

Lymphoma

Lymphoid or myeloid neoplasm with widespread involvement of bone marrow. Tumor cells are usually found in peripheral blood.
Discrete tumor mass arising from lymph nodes. Presentations often blur definitions.

Hodgkin vs non-Hodgkin lymphoma

Hodgkin
Non-Hodgkin
Both may present with constitutional ("B") signs/symptoms: low-grade fever, night sweats, weight loss (patients are Bothered by \mathbf{B} symptoms).
Localized, single group of nodes; contiguous spread (stage is strongest predictor of prognosis). Overall prognosis better than that of non-Hodgkin lymphoma.
Characterized by Reed-Sternberg cells.

Bimodal distribution-young adulthood and >55 years; more common in men except for nodular sclerosing type.
Associated with EBV.

Multiple lymph nodes involved; extranodal involvement common; noncontiguous spread.

Majority involve B cells; a few are of T-cell lineage.
Can occur in children and adults.

May be associated with HIV and autoimmune diseases.

Hodgkin lymphoma

Contains Reed-Sternberg cells: distinctive tumor giant cells; binucleate or bilobed with the 2 halves as mirror images ("owl eyes" A). 2 owl eyes $\times 15=30$. RS cells are CD15+ and CD30+B-cell origin.

SUBTYPE	NOTES
Nodular sclerosis	Most common
Lymphocyte rich	Best prognosis
Mixed cellularity	Eosinophilia, seen in immunocompromised patients

Lymphocyte depleted Seen in immunocompromised patients

Non-Hodgkin lymphoma

TYPE	OCCURS IN	GENETICS	COMMENTS
Neoplasms of mature B cells			
Burkitt lymphoma	Adolescents or young adults	$\begin{aligned} & \mathrm{t}(8 ; 14) \text {-translocation } \\ & \text { of c-myc }(8) \text { and } \\ & \text { heavy-chain } \operatorname{Ig}(14) \end{aligned}$	"Starry sky" appearance, sheets of lymphocytes with interspersed "tingible body" macrophages (arrows in A). Associated with EBV. Jaw lesion B in endemic form in Africa; pelvis or abdomen in sporadic form.
Diffuse large B-cell lymphoma	Usually older adults, but 20% in children	Alterations in Bcl-2, Bcl-6	Most common type of non-Hodgkin lymphoma in adults.
Follicular lymphoma	Adults	$\begin{aligned} & \mathrm{t}(14 ; 18) \text {-translocation } \\ & \text { of heavy-chain } \operatorname{Ig}(14) \\ & \text { and BCL-2 }(18) \end{aligned}$	Indolent course; $\mathrm{Bcl}-2$ inhibits apoptosis. Presents with painless "waxing and waning" lymphadenopathy.
Mantle cell lymphoma	Adult males	$\mathrm{t}(11 ; 14)$-translocation of cyclin Dl (11) and heavy-chain $\operatorname{Ig}(14)$, CD 5+	Very aggressive, patients typically present with late-stage disease.
Marginal zone lymphoma	Adults	t(11;18)	Associated with chronic inflammation (eg, Sjögren syndrome, chronic gastritis [MALT lymphoma]).
Primary central nervous system lymphoma	Adults	Most commonly associated with HIV/ AIDS; pathogenesis involves EBV infection	Considered an AIDS-defining illness. Variable presentation: confusion, memory loss, seizures. Mass lesion(s) (may be ring-enhancing in immunocompromised patient) on MRI ©, needs to be distinguished from toxoplasmosis via CSF analysis or other lab tests.

Neoplasms of mature T cells	Caused by HTLV (associated with IV drug abuse)	Adults present with cutaneous lesions; common in Japan, West Africa, and the Caribbean. Lytic bone lesions, hypercalcemia.	
Adult T-cell lymphoma	Adults	Mycosis fungoides: skin patches D/plaques (cutaneous T-cell lymphoma), characterized by atypical CD4+ cells with "cerebriform" nuclei and intraepidermal neoplastic cell aggregates (Pautrier microabscess). May progress to Sézary Sézary syndrome	Adults
Myndrome (T-cell leukemia).			

Multiple myeloma

Monoclonal plasma cell ("fried egg" appearance) cancer that arises in the marrow and produces large amounts of $\operatorname{IgG}(55 \%)$ or IgA (25%). Bone marrow $>10 \%$ monoclonal plasma cells. Most common 1° tumor arising within bone in people $>40-50$ years old.
Associated with:

- \uparrow susceptibility to infection
- Primary amyloidosis (AL)
- Punched-out lytic bone lesions on x-ray ©
- M spike on serum protein electrophoresis
- Ig light chains in urine (Bence Jones protein)
- Rouleaux formation (RBCs stacked like poker chips in blood smear)
Numerous plasma cells \mathbf{C} with "clock-face" chromatin and intracytoplasmic inclusions containing immunoglobulin.

Monoclonal gammopathy of undetermined

significance (MGUS) - monoclonal expansion of plasma cells (bone marrow < 10\% monoclonal plasma cells), asymptomatic, may lead to multiple myeloma. No CRAB findings. Patients with MGUS develop multiple myeloma at a rate of $1-2 \%$ per year.

Think CRAB:
HyperCalcemia
Renal involvement
Anemia
Bone lytic lesions/Back pain
Multiple Myeloma: Monoclonal M protein spike
Distinguish from Waldenström macroglobulinemia $\rightarrow \mathrm{M}$ spike $=\mathrm{IgM}$
\rightarrow hyperviscosity syndrome (eg, blurred vision, Raynaud phenomenon); no CRAB findings.

Myelodysplastic syndromes

Stem-cell disorders involving ineffective hematopoiesis \rightarrow defects in cell maturation of nonlymphoid lineages. Caused by de novo mutations or environmental exposure (eg, radiation, benzene, chemotherapy). Risk of transformation to AML.

Leukemias	Unregulated growth and differentiation of WBCs in bone marrow \rightarrow marrow failure \rightarrow anemia $(\downarrow$ RBCs), infections (\downarrow mature WBCs), and hemorrhage (\downarrow platelets). Usually presents with \uparrow circulating WBCs (malignant leukocytes in blood); rare cases present with normal/ \downarrow WBCs. Leukemic cell infiltration of liver, spleen, lymph nodes, and skin (leukemia cutis) possible.
TYPE	Notes
Lymphoid neoplasms	
Acute lymphoblastic leukemia/lymphoma	Most frequently occurs in children; less common in adults (worse prognosis). T-cell ALL can present as mediastinal mass (presenting as SVC-like syndrome). Associated with Down syndrome. Peripheral blood and bone marrow have $\uparrow \uparrow \uparrow$ lymphoblasts A. TdT+ (marker of pre-T and pre-B cells), CDl0+ (marker of pre-B cells). Most responsive to therapy. May spread to CNS and testes. $\mathrm{t}(12 ; 21) \rightarrow$ better prognosis.
Chronic lymphocytic leukemia/small lymphocytic lymphoma	Age >60 years. Most common adult leukemia. CD20+, CD23+, CD5+ B-cell neoplasm. Often asymptomatic, progresses slowly; smudge cells B in peripheral blood smear; autoimmune hemolytic anemia. CLL = Crushed Little Lymphocytes (smudge cells). Richter transformation-CLL/SLL transformation into an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL).
Hairy cell leukemia	Adult males. Mature B-cell tumor. Cells have filamentous, hair-like projections (fuzzy appearing on LM \mathbb{C}). Peripheral lymphadenopathy is uncommon. Causes marrow fibrosis \rightarrow dry tap on aspiration. Patients usually present with massive splenomegaly and pancytopenia. Stains TRAP (tartrate-resistant acid phosphatase) \oplus. TRAP stain largely replaced with flow cytometry. Treatment: cladribine, pentostatin.

Myeloid neoplasms

Acute myelogenous leukemia

Median onset 65 years. Auer rods \boldsymbol{D}; myeloperoxidase \oplus cytoplasmic inclusions seen mostly in APL (formerly M3 AML); $\uparrow \uparrow \uparrow$ circulating myeloblasts on peripheral smear; adults.
Risk factors: prior exposure to alkylating chemotherapy, radiation, myeloproliferative disorders, Down syndrome. APL: $\mathrm{t}(15 ; 17)$, responds to all-trans retinoic acid (vitamin A), inducing differentiation of promyelocytes; DIC is a common presentation.

Chronic myelogenous Occurs across the age spectrum with peak incidence 45-85 years, median age at diagnosis 64 years.

 leukemiaPresents with dysregulated production of mature and maturing granulocytes (eg, neutrophils, metamyelocytes, myelocytes, basophils \boldsymbol{E}) and splenomegaly. May accelerate and transform to AML or ALL ("blast crisis").
Very low LAP as a result of low activity in malignant neutrophils (vs benign neutrophilia [leukemoid reaction], in which LAP is \uparrow).
Responds to $b c r-a b l$ tyrosine kinase inhibitors (eg, imatinib, dasatinib).

Chronic myeloproliferative disorders	The myeloproliferative disorders (polycythemia vera, essential thrombocythemia, myelofibrosis, and CML) are malignant hematopoietic neoplasms with varying impacts on WBCs and myeloid cell lines. Associated with V617F JAK2 mutation.
Polycythemia vera	Primary polycythemia. Disorder of \uparrow RBCs. May present as intense itching after hot shower. Rare but classic symptom is erythromelalgia (severe, burning pain and red-blue coloration) due to episodic blood clots in vessels of the extremities \boldsymbol{A}. \downarrow EPO (vs 2° polycythemia, which presents with endogenous or artificially \uparrow EPO). Treatment: phlebotomy, hydroxyurea, ruxolitinib (JAKl/2 inhibitor).
Essential thrombocythemia	Characterized by massive proliferation of megakaryocytes and platelets. Symptoms include bleeding and thrombosis. Blood smear shows markedly increased number of platelets, which may be large or otherwise abnormally formed B. Erythromelalgia may occur.
Myelofibrosis	Obliteration of bone marrow with fibrosis \mathbb{C} due to \uparrow fibroblast activity. Often associated with massive splenomegaly and "teardrop" RBCs \mathbf{D}. "Bone marrow is crying because it's fibrosed and is a dry tap."
	RBCs WBCs PLATELETS PHILADELPHIA CHROMOSOME JAK2 MUTATIONS
Polycythemia vera	$\uparrow{ }^{\text {¢ }}$
Essential thrombocythemia	$-\quad-\quad \uparrow \quad \oplus(30-50 \%)$
Myelofibrosis	\downarrow Variable Variable Θ ¢ \quad (30-50\%)
CML	\downarrow ¢ \dagger ¢ \dagger

Polycythemia

	PLASMA VOLUME	RBC MASS	0_{2} SATURATION	EPO LEVELS	ASSOCIATIONS
Relative	\downarrow	-	-	-	Dehydration, burns.

$\uparrow \downarrow=1^{\circ}$ disturbance

Chromosomal translocations

TRANSLOCATION	ASSOCIATED DISORDER	
t (8 ; 14)	Burkitt (Burk-8) lymphoma (c-myc activation)	
$\mathrm{t}(9 ; 22)$ (Philadelphia chromosome)	CML (BCR-ABL hybrid), ALL (less common, poor prognostic factor)	Philadelphia CreaML cheese. The Ig heavy chain genes on chromosome 14 are constitutively expressed. When other genes (eg, c-myc and BCL-2) are translocated next to this heavy chain gene region, they are overexpressed.
t(11;14)	Mantle cell lymphoma (cyclin Dl activation)	
t(14;18)	Follicular lymphoma (BCL-2 activation)	
t(15;17)	APL (M3 type of AML)	Responds to all-trans retinoic acid.

Langerhans cell histiocytosis

Collective group of proliferative disorders of dendritic (Langerhans) cells. Presents in a child as lytic bone lesions \boldsymbol{A} and skin rash or as recurrent otitis media with a mass involving the mastoid bone. Cells are functionally immature and do not effectively stimulate primary T cells via antigen presentation. Cells express S-100 (mesodermal origin) and CDla. Birbeck granules ("tennis rackets" or rod shaped on EM) are characteristic B.

Tumor lysis syndrome

Oncologic emergency triggered by massive tumor cell lysis, most often in lymphomas/leukemias. Release of $\mathrm{K}^{+} \rightarrow$ hyperkalemia, release of $\mathrm{PO}_{4}{ }^{3-} \rightarrow$ hyperphosphatemia, hypocalcemia due to Ca^{2+} sequestration by $\mathrm{PO}_{4}{ }^{3-} . \uparrow$ nucleic acid breakdown \rightarrow hyperuricemia \rightarrow acute kidney injury. Prevention and treatment include aggressive hydration, allopurinol, rasburicase.

- HEMATOLOGY AND ONCOLOGY-PHARMACOLOGY

Heparin

MECHANISM
CLINICAL USE

ADVERSE EFFECTS

NOTES

Activates antithrombin, which \downarrow action of IIa (thrombin) and factor Xa. Short half-life.
Immediate anticoagulation for pulmonary embolism (PE), acute coronary syndrome, MI, deep venous thrombosis (DVT). Used during pregnancy (does not cross placenta). Follow PTT.

Bleeding, thrombocytopenia (HIT), osteoporosis, drug-drug interactions. For rapid reversal (antidote), use protamine sulfate (positively charged molecule that binds negatively charged heparin).

Low-molecular-weight heparins (eg, enoxaparin, dalteparin) act predominantly on factor Xa. Fondaparinux acts only on factor Xa. Have better bioavailability and $2-4 \times$ longer half life than unfractionated heparin; can be administered subcutaneously and without laboratory monitoring. Not easily reversible.

Heparin-induced thrombocytopenia (HIT) - development of IgG antibodies against heparinbound platelet factor 4 (PF4). Antibody-heparin-PF4 complex activates platelets \rightarrow thrombosis and thrombocytopenia.

Direct thrombin inhibitors

Bivalirudin (related to hirudin, the anticoagulant used by leeches), Argatroban, Dabigatran (only oral agent in class).
Directly inhibits activity of free and clot-associated thrombin.
Venous thromboembolism, atrial fibrillation. Can be used in HIT, when heparin is BAD for the patient. Does not require lab monitoring.

ADVERSE EFFECTS

Bleeding; can reverse dabigatran with idarucizumab. Consider PCC and/or antifibrinolytics (eg, tranexamic acid) if no reversal agent available.

Warfarin		
MECHANISM	Interferes with γ-carboxylation of vitamin K- dependent clotting factors II, VII, IX, and X, and proteins C and S. Metabolism affected by polymorphisms in the gene for vitamin K epoxide reductase complex (VKORCl). In laboratory assay, has effect on EXtrinsic pathway and \uparrow PT. Long half-life.	The EX-PresidenT went to war(farin).

Heparin vs warfarin

	Heparin	Warfarin
ROUTE OF ADMINISTRATION	Parenteral (IV, SC)	Oral
SITEOF ACTION	Blood	Liver
ONSET OF ACTION	Rapid (seconds)	Slow, limited by half-lives of normal clotting factors
MECHANISM OF ACTION	Activates antithrombin, which \downarrow the action of IIa (thrombin) and factor Xa	Impairs synthesis of vitamin K-dependent clotting factors II, VII, IX, and X, and anti- clotting proteins C and S
DURATION OF ACTION	Hours	Days
AGENTS FOR REVERSAL	Protamine sulfate	Vitamin K, FFP, PCC
MONITORING	PTT (intrinsic pathway)	PT/INR (extrinsic pathway)
CROSSES PLACENTA	No	Yes (teratogenic)

Direct factor Xa inhibitors	ApiXaban, rivaroXaban.
mechanism	Bind to and directly inhibit factor Xa .
clincal use	Treatment and prophylaxis for DVT and PE; stroke prophylaxis in patients with atrial fibrillation. Oral agents do not usually require coagulation monitoring.
adverse effects	Bleeding. Not easily reversible.
Thrombolytics	Alteplase (tPA), reteplase (rPA), streptokinase, tenecteplase (TNK-tPA).
mechanism	Directly or indirectly aid conversion of plasminogen to plasmin, which cleaves thrombin and fibrin clots. \uparrow PT, \uparrow PTT, no change in platelet count.
Cunical use	Early MI, early ischemic stroke, direct thrombolysis of severe PE.
adverse effects	Bleeding. Contraindicated in patients with active bleeding, history of intracranial bleeding, recent surgery, known bleeding diatheses, or severe hypertension. Nonspecific reversal with antifibrinolytics (eg, aminocaproic acid, tranexamic acid), platelet transfusions, and factor corrections (eg, cryoprecipitate, FFP, PCC).

ADP receptor inhibitors	Clopidogrel, prasugrel, ticagrelor (reversible), ticlopidine.
MECHANSM	Inhibit platelet aggregation by irreversibly blocking ADP $\left(\mathrm{P}_{2} \mathrm{Y}_{12}\right)$ receptor. Prevent expression of glycoproteins IIb/IIIa on platelet surface.
CLINCAL USE	Acute coronary syndrome; coronary stenting. \downarrow incidence or recurrence of thrombotic stroke.
ADVERSE EFFECTS	Neutropenia (ticlopidine). TTP may be seen.

Cilostazol, dipyridamole

MECHANSM	Phosphodiesterase inhibitors; \uparrow cAMP in platelets, resulting in inhibition of platelet aggregation; vasodilators.
ILINCAL USE	Intermittent claudication, coronary vasodilation, prevention of stroke or TIAs (combined with aspirin).

ADVERSE EfFECTS Nausea, headache, facial flushing, hypotension, abdominal pain.

Glycoprotein IIb/IIIa inhibitors	Abciximab, eptifibatide, tirofiban.
MECHANSM	Bind to the glycoprotein receptor IIb/IIIa on activated platelets, preventing aggregation. Abciximab is made from monoclonal antibody Fab fragments.
Cuncal use	Unstable angina, percutaneous coronary intervention.
ADVERSE Effects	Bleeding, thrombocytopenia.

Cancer drugs-cell cycle

Cancer drugs-targets

Antimetabolites

DRUG	MECHANISM ${ }^{\text {a }}$	CLIIICAL USE	ADVERSE EFFECTS
Azathioprine, 6-mercaptopurine	Purine (thiol) analogs $\rightarrow \downarrow$ de novo purine synthesis. Activated by HGPRT. Azathioprine is metabolized into 6-MP.	Preventing organ rejection, rheumatoid arthritis, IBD, SLE; used to wean patients off steroids in chronic disease and to treat steroid-refractory chronic disease.	Myelosuppression; GI, liver toxicity. Azathioprine and 6-MP are metabolized by xanthine oxidase; thus both have \uparrow toxicity with allopurinol or febuxostat.
Cladribine	Purine analog \rightarrow multiple mechanisms (eg, inhibition of DNA polymerase, DNA strand breaks).	Hairy cell leukemia.	Myelosuppression, nephrotoxicity, and neurotoxicity.
```Cytarabine (arabinofuranosyl cytidine)```	Pyrimidine analog $\rightarrow$ DNA chain termination. At higher concentrations, inhibits DNA polymerase.	Leukemias (AML), lymphomas.	Myelosuppression with megaloblastic anemia. CYTarabine causes panCYTopenia.
5-fluorouracil	Pyrimidine analog bioactivated to 5-FdUMP, which covalently complexes with thymidylate synthase and folic acid. Capecitabine is a prodrug with similar activity. This complex inhibits thymidylate synthase $\rightarrow \downarrow$ dTMP $\rightarrow \downarrow$ DNA synthesis.	Colon cancer, pancreatic cancer, actinic keratosis, basal cell carcinoma (topical). Effects enhanced with the addition of leucovorin.	Myelosuppression, palmarplantar erythrodysesthesia (hand-foot syndrome).
Methotrexate	Folic acid analog that competitively inhibits dihydrofolate reductase $\rightarrow \downarrow$ dTMP $\rightarrow \downarrow$ DNA synthesis.	Cancers: leukemias   (ALL), lymphomas, choriocarcinoma, sarcomas. Non-neoplastic: ectopic pregnancy, medical abortion (with misoprostol), rheumatoid arthritis, psoriasis, IBD, vasculitis.	Myelosuppression, which is reversible with leucovorin "rescue."   Hepatotoxicity.   Mucositis (eg, mouth ulcers).   Pulmonary fibrosis.   Folate deficiency, which may be teratogenic (neural tube defects) without supplementation.   Nephrotoxicity (rare).

${ }^{\text {a }}$ All are S-phase specific.

Antitumor antibiotics

DRUG	MECHANISM	CLINICALUSE	ADVERSE EFFECTS
Bleomycin	Induces free radical formation   $\rightarrow$ breaks in DNA strands.	Testicular cancer, Hodgkin   lymphoma.	Pulmonary fibrosis, skin   hyperpigmentation. Minimal   myelosuppression.
Dactinomycin   (actinomycin D)	Intercalates into DNA,   preventing RNA synthesis.	Wilms tumor, Ewing sarcoma,   rhabdomyosarcoma. Used for   childhood tumors.	Myelosuppression.

Alkylating agents

DRUG	MECHANISM	CLIIICALUSE	ADVERSE EFFECTS
Busulfan	Cross-links DNA.	Used to ablate patient's bone marrow before bone marrow transplantation.	Severe myelosuppression (in almost all cases), pulmonary fibrosis, hyperpigmentation.
Cyclophosphamide, ifosfamide	Cross-link DNA at guanine.   Require bioactivation by liver. A nitrogen mustard.	Solid tumors, leukemia, lymphomas.	Myelosuppression; SIADH; hemorrhagic cystitis, prevented with mesna (thiol group of mesna binds toxic metabolites) or adequate hydration.
Nitrosoureas	Require bioactivation. Cross blood-brain barrier   $\rightarrow$ CNS. Cross-link DNA.	Brain tumors (including glioblastoma multiforme).	CNS toxicity (convulsions, dizziness, ataxia).
Procarbazine	Cell cycle phase-nonspecific alkylating agent, mechanism not yet defined.	Hodgkin lymphoma, brain tumors.	Bone marrow suppression, pulmonary toxicity, leukemia.

Microtubule inhibitors

DRUG	MECHANISM	CLINICAL USE	ADVERSE EFFECTS
Paclitaxel, other taxanes	Hyperstabilize polymerized microtubules in M phase so that mitotic spindle cannot break down (anaphase cannot occur).	Ovarian and breast carcinomas.	Myelosuppression, neuropathy, hypersensitivity. Taxes stabilize society.
Vincristine, vinblastine	Vinca alkaloids that bind $\beta$-tubulin and inhibit its polymerization into microtubules $\rightarrow$ prevent mitotic spindle formation (M-phase arrest).	Solid tumors, leukemias, Hodgkin (vinblastine) and non-Hodgkin (vincristine) lymphomas.	Vincristine: neurotoxicity (areflexia, peripheral neuritis), constipation (including paralytic ileus). Crisps the nerves.   Vinblastine: bone marrow suppression. Blasts the bone marrow.

## Cisplatin, carboplatin

MECHANISM	Cross-link DNA.
CLINICAL USE	Testicular, bladder, ovary, and lung carcinomas.
ADVERSE EFFECTS	Nephrotoxicity, peripheral neuropathy, ototoxicity. Prevent nephrotoxicity with amifostine (free   radical scavenger) and chloride (saline) diuresis.

## Etoposide, teniposide

MECHANISM	Inhibit topoisomerase II $\rightarrow \uparrow$ DNA degradation.
CLINICAL USE	Solid tumors (particularly testicular and small cell lung cancer), leukemias, lymphomas.
ADVERSE EFFECTS	Myelosuppression, alopecia.

## Irinotecan, topotecan

MECHANISM	Inhibit topoisomerase I and prevent DNA unwinding and replication.
CLINICALUSE	Colon cancer (irinotecan); ovarian and small cell lung cancers (topotecan).
ADVERSE EFFECTS	Severe myelosuppression, diarrhea.

Hydroxyurea

MECHANISM	Inhibits ribonucleotide reductase $\rightarrow \downarrow$ DNA Synthesis (S-phase specific).
CLINICALUSE	Myeloproliferative disorders (eg, CML, polycythemia vera), sickle cell $(\uparrow$ HbF).
ADVERSEEFECTS	Severe myelosuppression.

## Bevacizumab

MECHANISM	Monoclonal antibody against VEGF. Inhibits angiogenesis (BeVacizumab inhibits Blood Vessel   formation).
CLINICAL USE	Solid tumors (colorectal cancer, renal cell carcinoma), wet age-related macular degeneration.
AdVERSE EFFECTS	Hemorrhage, blood clots, and impaired wound healing.

## Erlotinib

Mechanism	EGFR tyrosine kinase inhibitor.
cunical use	Non-small cell lung carcinoma.
adverse effects	Rash.

## Cetuximab

MECHANISM	Monoclonal antibody against EGFR.
CIIIICAL USE	Stage IV colorectal cancer (wild-type KRAS), head and neck cancer.
ADVERSE EFFECTS	Rash, elevated LFTs, diarrhea.

## Imatinib

MECHANISM	Tyrosine kinase inhibitor of BCR-ABL (Philadelphia chromosome fusion gene in CML) and c-kit   (common in GI stromal tumors).
CLINICALUSE	CML, GI stromal tumors (GIST).
ADVERSEEFFECTS	Fluid retention.

## Rituximab

MECHANISM	Monoclonal antibody against CD20, which is found on most B-cell neoplasms.
CLINICALUSE	Non-Hodgkin lymphoma, CLL, ITP, rheumatoid arthritis.
ADVERSE EFFECTS	$\uparrow$ risk of progressive multifocal leukoencephalopathy.

## Bortezomib, carfilzomib

MECHANISM
CLINICAL USE
ADVERSE EFFECTS

Proteasome inhibitors, induce arrest at G2-M phase and apoptosis.
Multiple myeloma, mantle cell lymphoma.
Peripheral neuropathy, herpes zoster reactivation.

## Tamoxifen, raloxifene

MECHANSM	Selective estrogen receptor modulators (SERMs) -receptor antagonists in breast and agonists in   bone. Block the binding of estrogen to ER $\oplus$ cells.
CLIICAL USE	Breast cancer treatment (tamoxifen only) and prevention. Raloxifene also useful to prevent   osteoporosis.
ADVERSE EFFECTS	Tamoxifen - partial agonist in endometrium, which $\uparrow$ the risk of endometrial cancer; "hot flashes."   Raloxifene -no in endometrial carcinoma (so you can relax!), because it is an estrogen receptor   antagonist in endometrial tissue.   Both $\uparrow$ risk of thromboembolic events (eg, DVT, PE).

Trastuzumab (Herceptin)

MECHANSM	Monoclonal antibody against HER-2 ( $c$-erbB2), a tyrosine kinase receptor. Helps kill cancer cells   that overexpress HER-2 through inhibition of HER-2 initiated cellular signaling and antibody-   dependent cytotoxicity.
CLINCAL USE	HER-2 $\oplus$ breast cancer and gastric cancer (tras2zumab).
ADVERSE EFEECTS	Cardiotoxicity. "Heartceptin" damages the heart.

## Vemurafenib

MECHANISM	Small molecule inhibitor of BRAF oncogene $\oplus$ melanoma. VEmuRAF-enib is for V600E-   mutated BRAF inhibition.
CLINICAL USE	Metastatic melanoma.

## Rasburicase

MECHANSM	Recombinant uricase that catalyzes metabolism of uric acid to allantoin.
CLINCAL USE	Prevention and treatment of tumor lysis syndrome.

## Common chemotoxicities



Cisplatin/Carboplatin $\rightarrow$ ototoxicity
Vincristine $\rightarrow$ peripheral neuropathy Bleomycin, Busulfan $\rightarrow$ pulmonary fibrosis Doxorubicin $\rightarrow$ cardiotoxicity Trastuzumab (Herceptin) $\rightarrow$ cardiotoxicity Cisplatin/Carboplatin $\rightarrow$ nephrotoxicity

CYclophosphamide $\rightarrow$ hemorrhagic cystitis

## HIGH-YIELD SYSTEMS

## Musculoskeletal, Skin, and Connective Tissue

"Rigid, the skeleton of habit alone upholds the human frame."
-Virginia Woolf
"Beauty may be skin deep, but ugly goes clear to the bone."
-Redd Foxx
"The function of muscle is to pull and not to push, except in the case of the genitals and the tongue."
-Leonardo da Vinci
"To thrive in life you need three bones. A wishbone. A backbone. And a funny bone."
-Reba McEntire

This chapter provides information you will need to understand certain anatomical dysfunctions, rheumatic diseases, and dermatologic conditions. Be able to interpret 3D anatomy in the context of radiologic imaging. For the rheumatic diseases, create instructional cases or personas that includes the most likely presentation and symptoms: risk factors, gender, important markers (eg, autoantibodies), and other epidemiologic factors. Doing so will allow you to answer the higher order questions that are likely to be asked on the exam.

Anatomy and   Physiology	434
Pathology	448
Dermatology	461
Pharmacology	470

## MUSCULOSKELETAL, SKIN, AND CONNECTIVE TISSUE—ANATOMY AND PHYSIOLOGY

## Arm abduction

DEGREE	MUSCLE	NERVE
$0^{\circ}-15^{\circ}$	Supraspinatus	Suprascapular
$15^{\circ}-100^{\circ}$	Deltoid	Axillary
$>90^{\circ}$	Trapezius	Accessory
$>100^{\circ}$	Serratus Anterior	Long Thoracic (SALT)

Rotator cuff muscles


Shoulder muscles that form the rotator cuff:

- Supraspinatus (suprascapular nerve) abducts arm initially (before the action of the deltoid); most common rotator cuff injury (trauma or degeneration and impingement $\rightarrow$ tendinopathy or tear [arrow in A]), assessed by "empty/full can" test.
- Infraspinatus (suprascapular nerve) externally rotates arm; pitching injury.
- teres minor (axillary nerve)-adducts and externally rotates arm.
- Subscapularis (upper and lower subscapular nerves) -internally rotates and adducts arm.
Innervated primarily by C5-C6.

SItS (small t is for teres minor).


## Overuse injuries of the elbow

Medial epicondylitis Repetitive flexion (forehand shots) or idiopathic $\rightarrow$ pain near medial epicondyle. (golfer's elbow)

Lateral epicondylitis
(tennis elbow)

## Wrist region



Metacarpal neck fracture

Carpal tunnel syndrome


## Guyon canal syndrome

Scaphoid, Lunate, Triquetrum, Pisiform, Hamate, Capitate, Trapezoid, Trapezium A. (So Long To Pinky, Here Comes The Thumb).
Scaphoid (palpable in anatomic snuff box B) is the most commonly fractured carpal bone, typically due to a fall on an outstretched hand. Complications of proximal scaphoid fractures include avascular necrosis and nonunion due to retrograde blood supply. Fracture not always
 seen on initial x-ray.
Dislocation of lunate may cause acute carpal tunnel syndrome.
Also called boxer's fracture. Common fracture caused by direct blow with a closed fist (eg, from punching a wall or individual). Most commonly seen in 4th and 5th metacarpals.

Entrapment of median nerve in carpal tunnel (between transverse carpal ligament and carpal bones); nerve compression $\rightarrow$ paresthesia, pain, and numbness in distribution of median nerve. Thenar eminence atrophies but sensation spared, because palmar cutaneous branch enters hand external to carpal tunnel.

Suggested by $\oplus$ Tinel sign (percussion of wrist causes tingling) and Phalen maneuver ( $90^{\circ}$ flexion of wrist causes tingling). Associated with pregnancy (due to edema), rheumatoid arthritis, hypothyroidism, diabetes, acromegaly, dialysis-related amyloidosis; may be associated with repetitive use.

Compression of ulnar nerve at wrist. Classically seen in cyclists due to pressure from handlebars.


## Common pediatric fractures



## Hand muscles



Thenar (median)—Opponens pollicis, Abductor pollicis brevis, Flexor pollicis brevis, superficial head (deep head by ulnar nerve).
Hypothenar (ulnar)-Opponens digiti minimi, Abductor digiti minimi, Flexor digiti minimi brevis.

* Dorsal interossei (ulnar) - abduct the fingers. Palmar interossei (ulnar)—adduct the fingers. Lumbricals (1st/2nd, median; 3rd/4th, ulnar)flex at the MCP joint, extend PIP and DIP joints.

Both groups perform the same functions:
Oppose, Abduct, and Flex (OAF).
$\mathrm{DAB}=$ Dorsals ABduct.
PAD = Palmars ADduct.

## Upper extremity nerves

NERVE	CAUSES OF INJURY	PRESENTATION
Axillary (C5-C6)	Fractured surgical neck of humerus Anterior dislocation of humerus	Flattened deltoid   Loss of arm abduction at shoulder $\left(>15^{\circ}\right)$   Loss of sensation over deltoid muscle and lateral arm
Musculocutaneous (C5-C7)	Upper trunk compression	Loss of forearm flexion and supination Loss of sensation over lateral forearm
Radial (C5-T1)	Compression of axilla, eg, due to crutches or sleeping with arm over chair ("Saturday night palsy")   Midshaft fracture of humerus   Repetitive pronation/supination of forearm, eg, due to screwdriver use ("finger drop")	Wrist drop: loss of elbow, wrist, and finger extension   $\downarrow$ grip strength (wrist extension necessary for maximal action of flexors)   Loss of sensation over posterior arm/forearm and dorsal hand
Median (C5-T1)	Supracondylar fracture of humerus (proximal lesion)   Carpal tunnel syndrome and wrist laceration (distal lesion)	"Ape hand" and "Pope's blessing"   Loss of wrist flexion, flexion of lateral fingers, thumb opposition, lumbricals of 2nd and 3rd digits   Loss of sensation over thenar eminence and dorsal and palmar aspects of lateral $31 / 2$ fingers with proximal lesion
Ulnar (C8-T1)	Fracture of medial epicondyle of humerus "funny bone" (proximal lesion)   Fractured hook of hamate (distal lesion) from fall on outstretched hand	"Ulnar claw" on digit extension   Radial deviation of wrist upon flexion (proximal lesion)   Loss of wrist flexion, flexion of medial fingers, abduction and adduction of fingers (interossei), actions of medial 2 lumbrical muscles   Loss of sensation over medial $1^{1 / 2} / 2$ fingers including hypothenar eminence
Recurrent branch of median nerve (C5-T1)	Superficial laceration of palm	"Ape hand"   Loss of thenar muscle group: opposition, abduction, and flexion of thumb   No loss of sensation

Humerus fractures, proximally to distally, follow the ARM (Axillary $\rightarrow$ Radial $\rightarrow$ Median)


## Brachial plexus lesions



CONDITION	INJURY	CAUSES	MUSCLE DEFICIT	FUNCTIONAL DEFIIIT	Presentation
Erb palsy ("waiter's tip")	Traction or tear of upper ("Erb-er") trunk: C5-C6 roots	Infants-lateral traction on neck during delivery Adults-trauma	Deltoid, supraspinatus Infraspinatus   Biceps brachii	Abduction (arm hangs by side)   Lateral rotation (arm medially rotated)   Flexion, supination (arm extended and pronated)	
Klumpke palsy	Traction or tear of lower trunk: C8-Tl root	Infants-upward force on arm during delivery Adults-trauma (eg, grabbing a tree branch to break a fall)	Intrinsic hand muscles: lumbricals, interossei, thenar, hypothenar	Total claw hand: lumbricals normally flex MCP joints and extend DIP and PIP joints	
Thoracic outlet syndrome	Compression of lower trunk and subclavian vessels	Cervical rib (arrows in $\boldsymbol{A}$ ), Pancoast tumor	Same as Klumpke palsy	Atrophy of intrinsic hand muscles; ischemia, pain, and edema due to vascular compression	
Winged scapula	Lesion of long thoracic nerve, roots C5-C7 ("wings of heaven")	Axillary node dissection after mastectomy, stab wounds	Serratus anterior	Inability to anchor scapula to thoracic cage $\rightarrow$ cannot abduct arm above horizontal position B	

Distortions of the hand At rest, a balance exists between the extrinsic flexors and extensors of the hand, as well as the intrinsic muscles of the hand—particularly the lumbrical muscles (flexion of MCP, extension of DIP and PIP joints).
"Clawing"-seen best with distal lesions of median or ulnar nerves. Remaining extrinsic flexors of the digits exaggerate the loss of the lumbricals $\rightarrow$ fingers extend at MCP, flex at DIP and PIP joints.
Deficits less pronounced in proximal lesions; deficits present during voluntary flexion of the digits.

Presentation				
CONTEXT	Extending fingers/at rest	Making a fist	Extending fingers/at rest	Making a fist
LOCATION OF LESION	Distal ulnar nerve	Proximal median nerve	Distal median nerve	Proximal ulnar nerve
SIGN	"Ulnar claw"	"Pope's blessing"	"Median claw"	"OK gesture"

Note: Atrophy of the thenar eminence (unopposable thumb $\rightarrow$ "ape hand") can be seen in median nerve lesions, while atrophy of the hypothenar eminence can be seen in ulnar nerve lesions.


## Common hip and knee conditions



Prepatellar bursitis

Inflammation of the gluteal tendon and bursa lateral to greater trochanter of femur. Treat pain with NSAIDs, heat, stretching.

Common injury in contact sports due to lateral force applied to a planted leg. Classically, consists of damage to the ACL $\boldsymbol{A}$, MCL, and medial meniscus (attached to MCL); however, lateral meniscus injury is more common. Presents with acute knee pain and signs of joint injury/ instability.

Inflammation of the prepatellar bursa in front of the kneecap (red arrow in [B). Can be caused by repeated trauma or pressure from excessive kneeling (also called "housemaid's knee").
Popliteal fluid collection (red arrow in C) in gastrocnemius-semimembranosus bursa commonly communicating with synovial space and related to chronic joint disease (eg, osteoarthritis, rheumatoid arthritis).


## Ankle sprains

Anterior TaloFibular ligament-most common ankle sprain overall, classified as a low ankle sprain. Due to overinversion/supination of foot. Always Tears First.
Anterior inferior tibiofibular ligament-most common high ankle sprain.


## Lower extremity nerves

Nerve	InNervation	Cause of Injury	Presentation/Comments
Iliohypogastric (T12-L1)	Sensory-suprapubic region Motor-transversus abdominis and internal oblique	Abdominal surgery	Burning or tingling pain in surgical incision site radiating to inguinal and suprapubic region
Genitofemoral nerve (L1-L2)	Sensory-scrotum/labia majora, medial thigh Motor-cremaster	Laparoscopic surgery	$\downarrow$ anterior thigh sensation beneath inguinal ligament; absent cremasteric reflex
Lateral femoral cutaneous (L2-L3)	Sensory-anterior and lateral thigh	Tight clothing, obesity, pregnancy, pelvic procedures	$\downarrow$ thigh sensation (anterior and lateral)
Obturator (L2-L4)	Sensory-medial thigh Motor-obturator externus, adductor longus, adductor brevis, gracilis, pectineus, adductor magnus	Pelvic surgery	$\downarrow$ thigh sensation (medial) and adduction
Femoral (L2-L4)	Sensory-anterior thigh, medial leg   Motor-quadriceps, iliacus, pectineus, sartorius	Pelvic fracture	$\downarrow$ thigh flexion and leg extension
Sciatic (L4-S3)	Motor-semitendinosus, semimembranosus, biceps femoris, adductor magnus	Herniated disc, posterior hip dislocation	Splits into common peroneal and tibial nerves
Common peroneal (L4-S2)	Superficial peroneal nerve:   - Sensory-dorsum of foot (except webspace between hallux and 2nd digit)   - Motor-peroneus longus and brevis   Deep peroneal nerve:   - Sensory-webspace between hallux and 2nd digit   - Motor-tibialis anterior	Trauma or compression of lateral aspect of leg, fibular neck fracture	PED = Peroneal Everts and Dorsiflexes; if injured, foot dropPED   Loss of sensation on dorsum of foot   Foot drop-inverted and plantarflexed at rest, loss of eversion and dorsiflexion; "steppage gait"
Tibial (L4-S3)	Sensory-sole of foot   Motor-biceps femoris (long head), triceps surae, plantaris, popliteus, flexor muscles of foot	Knee trauma, Baker cyst (proximal lesion); tarsal tunnel syndrome (distal lesion)	TIP = Tibial Inverts and Plantarflexes; if injured, can't stand on TIPtoes   Inability to curl toes and loss of sensation on sole; in proximal lesions, foot everted at rest with loss of inversion and plantarflexion

Lower extremity nerves (continued)

NERVE	InNERVATION	CAUSE OFINJURY	PRESENTATION/COMMENTS
Superior gluteal (L4-S1)	Motor-gluteus medius, gluteus minimus, tensor fascia latae	Iatrogenic injury during intramuscular injection to superomedial gluteal region (prevent by choosing superolateral quadrant, preferably anterolateral region)	Trendelenburg sign/gaitpelvis tilts because weightbearing leg cannot maintain alignment of pelvis through hip abduction   Lesion is contralateral to the side of the hip that drops, ipsilateral to extremity on which the patient stands
Inferior gluteal (L5-S2)	Motor-gluteus maximus	Posterior hip dislocation	Difficulty climbing stairs, rising from seated position; loss of hip extension
Pudendal (S2-S4)	Sensory-perineum   Motor-external urethral and anal sphincters	Stretch injury during childbirth	$\downarrow$ sensation in perineum and genital area; can cause fecal or urinary incontinence Can be blocked with local anesthetic during childbirth using ischial spine as a landmark for injection

## Actions of hip muscles

ACTION	MUSCLEs
Abductors	Gluteus medius, gluteus minimus
Adductors	Adductor magnus, adductor longus, adductor brevis
Extensors	Gluteus maximus, semitendinosus, semimembranosus
Flexors	Iliopsoas, rectus femoris, tensor fascia lata, pectineus, sartorius
Internal rotation	Gluteus medius, gluteus minimus, tensor fascia latae
External rotation	Iliopsoas, gluteus maximus, piriformis, obturator

## Common musculoskeletal conditions

Iliotibial band   syndrome	Overuse injury of lateral knee that occurs primarily in runners. Pain develops $2^{\circ}$ to friction of   iliotibial band against lateral femoral epicondyle.
Medial tibial stress   syndrome	Also called shin splints. Common cause of shin pain and diffuse tenderness in runners and military   recruits. Caused by bone resorption that outpaces bone formation in tibial cortex.
Limb compartment   syndrome	pressure within a fascial compartment of a limb (defined by compartment pressure to diastolic   blood pressure gradient of $<30 \mathrm{~mm} \mathrm{Hg}) \rightarrow$ venous outflow obstruction and arteriolar collapse   $\rightarrow$ anoxia and necrosis. Causes include significant long bone fractures, reperfusion injury, animal   venoms. Presents with severe pain and tense, swollen compartments with limb flexion. Motor   deficits are late sign of irreversible muscle and nerve damage.
Plantar fasciitis	Inflammation of plantar aponeurosis characterized by heel pain (worse with first steps in the   morning or after period of inactivity) and tenderness.
De Quervain   tenosynovitisNoninflammatory thickening of abductor pollicis longus and extensor pollicis brevis tendons   characterized by pain or tenderness at radial styloid. $\oplus$ Finkelstein test (pain at radial styloid with   active or passive stretch of thumb tendons).	
Ganglion cyst	Fluid-filled swelling overlying joint or tendon sheath, most commonly at dorsal side of wrist. Arises   from herniation of dense connective tissue.

Childhood musculoskeletal conditions

Developmental dysplasia of the hip

Legg-Calvé-Perthes disease

Slipped capital femoral epiphysis

Osgood-Schlatter disease (traction apophysitis)
Radial head subluxation (nursemaid's elbow)

Abnormal acetabulum development in newborns. Results in hip instability/dislocation. Commonly tested with Ortolani and Barlow maneuvers (manipulation of newborn hip reveals a "clunk"). Confirmed via ultrasound (x-ray not used until $\sim 4-6$ months because cartilage is not ossified). Treatment: splint/harness.
Idiopathic avascular necrosis of femoral head. Commonly presents between $5-7$ years with insidious onset of hip pain that may cause child to limp. More common in males (4:1 ratio). Initial x-ray often normal.
Classically presents in an obese $\sim 12$-year-old child with hip/knee pain and altered gait. Increased axial force on femoral head $\rightarrow$ epiphysis displaces relative to femoral neck (like a scoop of ice cream slipping off a cone). Diagnosed via x-ray. Treatment: surgery.
Overuse injury caused by repetitive strain and chronic avulsion of the secondary ossification center of proximal tibial tubercle. Occurs in adolescents after growth spurt. Common in running and jumping athletes. Presents with progressive anterior knee pain.
Common elbow injury in children $<5$ years. Caused by a sudden pull on the arm $\rightarrow$ immature annular ligament slips over head of radius. Injured arm held in flexed and pronated position.

Signs of lumbosacral radiculopathy

Paresthesia and weakness related to specific lumbosacral spinal nerves. Usually, the intervertebral disc herniates into central canal, affecting the inferior nerves (eg, herniation of L3/4 disc affects L4 spinal nerve, but not L3).

SPINALLEVEL	FINDINGS
L3-L4	Weakness of knee extension, $\downarrow$ patellar reflex
L4-L5	Weakness of dorsiflexion, difficulty in heel-   walking
L5-S1	Weakness of plantar flexion, difficulty in toe-   walking, $\downarrow$ Achilles reflex

Neurovascular pairing Nerves and arteries are frequently named together by the bones/regions with which they are

associated. The following are exceptions to this naming convention.		
LOCATION	NERVE	ARTERY
Axilla/lateral thorax	Long thoracic	Lateral thoracic
Surgical neck of humerus	Axillary	Posterior circumflex
Midshaft of humerus	Radial	Deep brachial
Distal humerus/ cubital fossa	Median	Brachial
Popliteal fossa	Tibial	Popliteal
Posterior to medial malleolus	Tibial	Posterior tibial

## Motoneuron action potential to muscle contraction

T-tubules are extensions of plasma membrane in contact with the sarcoplasmic reticulum, allowing for coordinated contraction of striated muscles.

(1) Action potential opens presynaptic voltagegated $\mathrm{Ca}^{2+}$ channels, inducing acetylcholine (ACh) release.
(2) Postsynaptic ACh binding leads to muscle cell depolarization at the motor end plate.
(3) Depolarization travels over the entire muscle cell and deep into the muscle via the T-tubules.
(4) Membrane depolarization induces conformational changes in the voltagesensitive dihydropyridine receptor (DHPR) and its mechanically coupled ryanodine receptor $(\mathrm{RR}) \rightarrow \mathrm{Ca}^{2+}$ release from the sarcoplasmic reticulum into the cytoplasm.
(5) Tropomyosin is blocking myosin-binding sites on the actin filament. Released $\mathrm{Ca}^{2+}$ binds to troponin $\mathrm{C}(\mathrm{TnC})$, shifting tropomyosin to expose the myosin-binding sites.
(6) The myosin head binds strongly to actin, forming a crossbridge. $\mathrm{P}_{\mathrm{i}}$ is then released, initiating the power stroke.
(7) During the power stroke, force is produced as myosin pulls on the thin filament. Muscle shortening occurs, with shortening of H and I bands and between Z lines (HIZ shrinkage). The A band remains the same length (A band is Always the same length). ADP is released at the end of the power stroke.
图 8 Binding of new ATP molecule causes detachment of myosin head from actin filament. $\mathrm{Ca}^{2+}$ is resequestered.
9 ATP hydrolysis into ADP and $\mathrm{P}_{\mathrm{i}}$ results in myosin head returning to high-energy position (cocked). The myosin head can bind to a new site on actin to form a crossbridge if $\mathrm{Ca}^{2+}$ remains available.

Types of muscle fibers

Type 1 muscle	Slow twitch; red fibers resulting from $\uparrow$ mitochondria and myoglobin concentration ( $\uparrow$ oxidative phosphorylation) $\rightarrow$ sustained contraction. Proportion $\uparrow$ after endurance training.	Think "1 slow red ox."
Type 2 muscle	Fast twitch; white fibers resulting from   $\downarrow$ mitochondria and myoglobin concentration ( $\uparrow$ anaerobic glycolysis). Proportion $\uparrow$ after weight/resistance training, sprinting.	

## Smooth muscle contraction and relaxation



## Bone formation

## Endochondral ossification

Membranous ossification

Bones of axial skeleton, appendicular skeleton, and base of skull. Cartilaginous model of bone is first made by chondrocytes. Osteoclasts and osteoblasts later replace with woven bone and then remodel to lamellar bone. In adults, woven bone occurs after fractures and in Paget disease. Defective in achondroplasia.
Bones of calvarium, facial bones, and clavicle. Woven bone formed directly without cartilage. Later remodeled to lamellar bone.

## Cell biology of bone

Osteoblast	Builds bone by secreting collagen and catalyzing mineralization in alkaline environment via ALP. Differentiates from mesenchymal stem cells in periosteum. Osteoblastic activity measured by bone ALP, osteocalcin, propeptides of type I procollagen.
Osteoclast	Dissolves ("crushes") bone by secreting $\mathrm{H}^{+}$and collagenases. Differentiates from a fusion of monocyte/macrophage lineage precursors. RANK receptors on osteoclasts are stimulated by RANKL (RANK ligand, secreted by osteoblasts). RANK receptors blocked by OPG (osteoprotegerin, a RANKL decoy receptor) $\rightarrow \downarrow$ osteoclast activity.
Parathyroid hormone	At low, intermittent levels, exerts anabolic effects (building bone) on osteoblasts and osteoclasts (indirect). Chronically $\uparrow$ PTH levels ( $1^{\circ}$ hyperparathyroidism) cause catabolic effects (osteitis fibrosa cystica).
Estrogen	Inhibits apoptosis in bone-forming osteoblasts and induces apoptosis in bone-resorbing osteoclasts. Causes closure of epiphyseal plate during puberty. Estrogen deficiency (surgical or postmenopausal) $\rightarrow \uparrow$ cycles of remodeling and bone resorption $\rightarrow \uparrow$ risk of osteoporosis.

## - MUSCULOSKELETAL, SKIN, AND CONNECTIVE TISSUE—PATHOLOGY

## Achondroplasia

Failure of longitudinal bone growth (endochondral ossification) $\rightarrow$ short limbs. Membranous ossification is affected $\rightarrow$ large head relative to limbs. Constitutive activation of fibroblast growth factor receptor (FGFR3) actually inhibits chondrocyte proliferation. $>85 \%$ of mutations occur sporadically; autosomal dominant with full penetrance (homozygosity is lethal). Associated with $\uparrow$ paternal age. Most common cause of dwarfism.

## Osteoporosis



Mild compression fracture

Trabecular (spongy) and cortical bone lose mass and interconnections despite normal bone mineralization and lab values (serum $\mathrm{Ca}^{2+}$ and $\mathrm{PO}_{4}{ }^{3-}$ ).
Most commonly due to $\uparrow$ bone resorption related to $\downarrow$ estrogen levels and old age. Can be $2^{\circ}$ to drugs (eg, steroids, alcohol, anticonvulsants, anticoagulants, thyroid replacement therapy) or other medical conditions (eg, hyperparathyroidism, hyperthyroidism, multiple myeloma, malabsorption syndromes). Diagnosed by bone mineral density measurement by DEXA (dual-energy X-ray absorptiometry) at the lumbar spine, total hip, and femoral neck, with a T-score of $\leq-2.5$ or by a fragility fracture (eg, fall from standing height, minimal trauma) at hip or vertebra.

Can lead to vertebral compression fractures A-acute back pain, loss of height, kyphosis. Also can present with fractures of femoral neck, distal radius (Colles fracture).
 One time screening recommended in women $\geq 65$ years old.
Prophylaxis: regular weight-bearing exercise and adequate $\mathrm{Ca}^{2+}$ and vitamin D intake throughout adulthood.
Treatment: bisphosphonates, teriparatide, SERMs, rarely calcitonin; denosumab (monoclonal antibody against RANKL).

Osteopetrosis


Failure of normal bone resorption due to defective osteoclasts $\rightarrow$ thickened, dense bones that are prone to fracture. Mutations (eg, carbonic anhydrase II) impair ability of osteoclast to generate acidic environment necessary for bone resorption. Overgrowth of cortical bone fills marrow space $\rightarrow$ pancytopenia, extramedulla ry hematopoiesis. Can result in cranial nerve impingement and palsies due to narrowed foramina.
X-rays show diffuse symmetric sclerosis (bone-in-bone, "stone bone" A). Bone marrow transplant is potentially curative as osteoclasts are derived from monocytes.

Osteomalacia/rickets


Defective mineralization of osteoid (osteomalacia) or cartilaginous growth plates (rickets, only in children). Most commonly due to vitamin D deficiency.
X-rays show osteopenia and "Looser zones" (pseudofractures) in osteomalacia, epiphyseal widening and metaphyseal cupping/fraying in rickets. Children with rickets have pathologic bow legs (genu varum A), bead-like costochondral junctions (rachitic rosary B), craniotabes (soft skull).
$\downarrow$ vitamin $\mathrm{D} \rightarrow \downarrow$ serum $\mathrm{Ca}^{2+} \rightarrow \uparrow$ PTH secretion $\rightarrow \downarrow$ serum $\mathrm{PO}_{4}{ }^{3-}$.
Hyperactivity of osteoblasts $\rightarrow \uparrow$ ALP.


Paget disease of bone (osteitis deformans)


Common, localized disorder of bone remodeling caused by $\uparrow$ osteoclastic activity followed by $\uparrow$ osteoblastic activity that forms poor-quality bone. Serum $\mathrm{Ca}^{2+}$, phosphorus, and PTH levels are normal. $\uparrow$ ALP. Mosaic pattern of woven and lamellar bone (osteocytes within lacunae in chaotic juxtapositions); long bone chalk-stick fractures. $\uparrow$ blood flow from $\uparrow$ arteriovenous shunts may cause high-output heart failure. $\uparrow$ risk of osteogenic sarcoma.

Hat size can be increased due to skull thickening $\mathbf{A}$; hearing loss is common due to auditory foramen narrowing.
Stages of Paget disease:

- Lytic-osteoclasts
- Mixed-osteoclasts + osteoblasts
- Sclerotic-osteoblasts
- Quiescent-minimal osteoclast/osteoblast activity
Treatment: bisphosphonates.

Osteonecrosis (avascular necrosis)


Infarction of bone and marrow, usually very painful. Most common site is femoral head (watershed zone) $\boldsymbol{A}$ (due to insufficiency of medial circumflex femoral artery). Causes include Corticosteroids, Alcoholism, Sickle cell disease, Trauma, "the Bends" (caisson/ decompression disease), LEgg-Calvé-Perthes disease (idiopathic), Gaucher disease, Slipped capital femoral epiphysis-CAST Bent LEGS.


Lab values in bone disorders

DISORDER	SERUM Cad ${ }^{2+}$	$\mathrm{PO}_{4}{ }^{3-}$	ALP	PTH	COMments
Osteoporosis	-	-	-	-	$\downarrow$ bone mass
Osteopetrosis	-/।	-	-	-	Dense, brittle bones. $\mathrm{Ca}^{2+} \downarrow$ in severe, malignant disease
Paget disease of bone	-	-	$\uparrow$	-	Abnormal "mosaic" bone architecture
Osteitis fibrosa cystica					"Brown tumors" due to fibrous replacement of bone, subperiosteal thinning
Primary hyperparathyroidism	$\uparrow$	$\downarrow$	$\uparrow$	$\uparrow$	Idiopathic or parathyroid hyperplasia, adenoma, carcinoma
Secondary hyperparathyroidism	$\downarrow$	$\uparrow$	$\uparrow$	$\uparrow$	Often as compensation for CKD $\left(\downarrow \mathrm{PO}_{4}{ }^{3-}\right.$ excretion and production of activated vitamin D)
Osteomalacia/rickets	$\downarrow$	$\downarrow$	$\uparrow$	$\uparrow$	Soft bones; vitamin D deficiency also causes $2^{\circ}$ hyperparathyroidism
Hypervitaminosis D	$\uparrow$	$\uparrow$	-	$\downarrow$	Caused by oversupplementation or granulomatous disease (eg, sarcoidosis)
$\downarrow=1^{\circ}$ change.					

Primary bone tumors

TUMORTYPE	EPIDEMIOLOGY	LOCATION	CHARACTERISTICS
Benign tumors			
Osteochondroma	Most common benign bone tumor.   Males $<25$ years old.	Metaphysis of long bones.	Lateral bony projection of growth plate (continuous with marrow space) covered by cartilaginous cap A.   Rarely transforms to chondrosarcoma.
Osteoma	Middle age.	Surface of facial bones.	Associated with Gardner syndrome.
Osteoid osteoma	Adults $<25$ years old.   Males $>$ females.	Cortex of long bones.	Presents as bone pain (worse at night) that is relieved by NSAIDs.   Bony mass ( $<2 \mathrm{~cm}$ ) with radiolucent osteoid core.
Osteoblastoma		Vertebrae.	Similar histology to osteoid osteoma. Larger size ( $>2 \mathrm{~cm}$ ), pain unresponsive to NSAIDs.
Chondroma		Medulla of small bones of hand and feet.	Benign tumor of cartilage.
Giant cell tumor	20-40 years old.	Epiphysis of long bones (often in knee region).	Locally aggressive benign tumor.   Neoplastic mononuclear cells that express RANKL and reactive multinucleated giant (osteoclast-like) cells. "Osteoclastoma."   "Soap bubble" appearance on x-ray B.
Malignant tumors			
Osteosarcoma (osteogenic sarcoma)	Accounts for $20 \%$ of $1^{\circ}$ bone cancers.   Peak incidence of $1^{\circ}$ tumor in males $<20$ years.   Less common in elderly; usually $2^{\circ}$ to predisposing factors, such as Paget disease of bone, bone infarcts, radiation, familial retinoblastoma, Li-Fraumeni syndrome.	Metaphysis of long bones (often in knee region) $\mathbf{C}$.	Pleomorphic osteoid-producing cells (malignant osteoblasts).   Presents as painful enlarging mass or pathologic fractures.   Codman triangle (from elevation of periosteum) or sunburst pattern on x-ray. Think of an osteocod (bone fish) swimming in the sun.   Aggressive. $1^{\circ}$ usually responsive to treatment (surgery, chemotherapy), poor prognosis for $2^{\circ}$.
Chondrosarcoma		Medulla of pelvis and centra skeleton.	Tumor of malignant chondrocytes.

Primary bone tumors (continued)


## Osteoarthritis and rheumatoid arthritis

	Osteoarthritis	Rheumatoid arthritis
Pathogenesis	Mechanical—wear and tear destroys articular cartilage (degenerative joint disorder) $\rightarrow$ inflammation with inadequate repair. Chondrocytes mediate degradation and inadequate repair.	Autoimmune-inflammation induces formation of pannus (proliferative granulation tissue A), which erodes articular cartilage and bone.
PREDISPOSING FACTORS	Age, female, obesity, joint trauma.	Female, HLA-DR4 (4-walled "rheum"), smoking. $\oplus$ rheumatoid factor ( IgM antibody that targets IgG Fc region; in $80 \%$ ), anti-cyclic citrullinated peptide antibody (more specific).
Presentation	Pain in weight-bearing joints after use (eg, at the end of the day), improving with rest. Asymmetric joint involvement. Knee cartilage loss begins medially ("bowlegged"). No systemic symptoms.	Pain, swelling, and morning stiffness lasting $>1$ hour, improving with use. Symmetric joint involvement. Systemic symptoms (fever, fatigue, weight loss). Extraarticular manifestations common.*
Jolnt finding	Osteophytes (bone spurs), joint space narrowing, subchondral sclerosis and cysts. Synovial fluid noninflammatory ( $\mathrm{WBC}<2000 / \mathrm{mm}^{3}$ ). Involves DIP (Heberden nodes B) and PIP (Bouchard nodes C), and lst CMC; not MCP.	Erosions, juxta-articular osteopenia, soft tissue swelling, subchondral cysts, joint space narrowing. Deformities: cervical subluxation, ulnar finger deviation, swan neck $\boldsymbol{D}$, boutonniere E. Involves MCP, PIP, wrist; not DIP or lst CMC. Synovial fluid inflammatory.
TREATMENT	Acetaminophen, NSAIDs, intra-articular glucocorticoids.	NSAIDs, glucocorticoids, disease-modifying agents (methotrexate, sulfasalazine, hydroxychloroquine, leflunomide), biologic agents (eg, TNF- $\alpha$ inhibitors).

*Extraarticular manifestations include rheumatoid nodules (fibrinoid necrosis with palisading histiocytes) in subcutaneous tissue and lung (+ pneumoconiosis $\rightarrow$ Caplan syndrome), interstitial lung disease, pleuritis, pericarditis, anemia of chronic disease, neutropenia + splenomegaly (Felty syndrome), AA amyloidosis, Sjögren syndrome, scleritis, carpal tunnel syndrome.




## Gout

TREATMENT

Acute inflammatory monoarthritis caused by precipitation of monosodium urate crystals in joints A. Risk factors: male sex, hypertension, obesity, diabetes, dyslipidemia. Strongest risk factor is hyperuricemia, which can be caused by:

- Underexcretion of uric acid ( $90 \%$ of patients) - largely idiopathic, potentiated by renal failure; can be exacerbated by certain medications (eg, thiazide diuretics).
- Overproduction of uric acid ( $10 \%$ of patients)-Lesch-Nyhan syndrome, PRPP excess, $\uparrow$ cell turnover (eg, tumor lysis syndrome), von Gierke disease.
Crystals are needle shaped and $\Theta$ birefringent under polarized light (yellow under parallel light, blue under perpendicular light B).
Asymmetric joint distribution. Joint is swollen, red, and painful. Classic manifestation is painful MTP joint of big toe (podagra). Tophus formation C (often on external ear, olecranon bursa, or Achilles tendon). Acute attack tends to occur after a large meal with foods rich in purines (eg, red meat, seafood), trauma, surgery, dehydration, diuresis, or alcohol consumption (alcohol metabolites compete for same excretion sites in kidney as uric acid $\rightarrow \downarrow$ uric acid secretion and subsequent buildup in blood).
Acute: NSAIDs (eg, indomethacin), glucocorticoids, colchicine.
Chronic (preventive): xanthine oxidase inhibitors (eg, allopurinol, febuxostat).


Previously called pseudogout. Deposition of calcium pyrophosphate crystals within the joint space. Occurs in patients $>50$ years old; both sexes affected equally. Usually idiopathic, sometimes associated with hemochromatosis, hyperparathyroidism, joint trauma.
Pain and swelling with acute inflammation (pseudogout) and/or chronic degeneration (pseudo-osteoarthritis). Knee most commonly affected joint.
Chondrocalcinosis (cartilage calcification) on x -ray.
Crystals are rhomboid and weakly $\oplus$ birefringent under polarized light (blue when parallel to light) A.
Acute treatment: NSAIDs, colchicine, glucocorticoids.
Prophylaxis: colchicine.

The blue P's-blue (when Parallel), Positive birefringent, calcium Pyrophosphate, Pseudogout

Calcium pyrophosphate deposition disease



Systemic juvenile idiopathic arthritis

Childhood arthritis seen in $<12$ year olds. Usually presents with daily spiking fevers, salmon-pink macular rash, uveitis, and arthritis (commonly $2+$ joints). Frequently presents with leukocytosis, thrombocytosis, anemia, $\uparrow$ ESR, $\uparrow$ CRP. Treatment: NSAIDs, steroids, methotrexate, TNF inhibitors.

## Sjögren syndrome



Autoimmune disorder characterized by destruction of exocrine glands (especially lacrimal and salivary) by lymphocytic infiltrates A. Predominantly affects women 40-60 years old.
Findings:

- Inflammatory joint pain
- Keratoconjunctivitis sicca ( $\downarrow$ tear production and subsequent corneal damage)
- Xerostomia ( $\downarrow$ saliva production B)
- Presence of antinuclear antibodies, rheumatoid factor (can be in the absence of rheumatoid arthritis), antiribonucleoprotein antibodies: SS-A (anti-Ro) and/or SS-B (antiLa)
- Bilateral parotid enlargement

Anti-SSA and anti-SSB may also be seen in
SLE. $\oplus$ Anti-SSA in pregnant women with
SLE $\rightarrow \uparrow$ risk of congenital heart block in the newborn.

A common $1^{\circ}$ disorder or a $2^{\circ}$ syndrome associated with other autoimmune disorders (eg, rheumatoid arthritis, SLE, systemic sclerosis).
Complications: dental caries; mucosa-associated lymphoid tissue (MALT) lymphoma (may present as parotid enlargement).
Focal lymphocytic sialadenitis on labial salivary gland biopsy can confirm diagnosis.

## Septic arthritis



S aureus, Streptococcus, and Neisseria gonorrhoeae are common causes. Affected joint is swollen A, red, and painful. Synovial fluid purulent (WBC $>50,000 / \mathrm{mm}^{3}$ ).
Gonococcal arthritis-STI that presents as either purulent arthritis (eg, knee) or triad of polyarthralgia, tenosynovitis (eg, hand), dermatitis (eg, pustules).

## Seronegative spondyloarthritis

Arthritis without rheumatoid factor (no anti-IgG antibody). Strong association with HLA-B27 (MHC class I serotype). Subtypes (PAIR) share variable occurrence of inflammatory back pain (associated with morning stiffness, improves with exercise), peripheral arthritis, enthesitis (inflamed insertion sites of tendons, eg, Achilles), dactylitis ("sausage fingers"), uveitis.

Psoriatic arthritis	Associated with skin psoriasis and nail lesions. Asymmetric and patchy involvement $\boldsymbol{A}$. Dactylitis and "pencil-in-cup" deformity of DIP on x -ray B .	Seen in fewer than $1 / 3$ of patients with psoriasis.
Ankylosing spondylitis	Symmetric involvement of spine and sacroiliac joints $\rightarrow$ ankylosis (joint fusion), uveitis, aortic regurgitation.	Bamboo spine (vertebral fusion) IC. Can cause restrictive lung disease due to limited chest wall expansion (costovertebral and costosternal ankylosis).   More common in males.
Inflammatory bowel disease	Crohn disease and ulcerative colitis are often associated with spondyloarthritis.	
Reactive arthritis	Formerly known as Reiter syndrome.   Classic triad:   - Conjunctivitis   - Urethritis   - Arthritis	"Can't see, can't pee, can't bend my knee." Shigella, Yersinia, Chlamydia, Campylobacter, Salmonella (ShY ChiCS).



Systemic lupus erythematosus


Antiphospholipid syndrome
$1^{\circ}$ or $2^{\circ}$ autoimmune disorder (most commonly in SLE).
Diagnose based on clinical criteria including history of thrombosis (arterial or venous) or spontaneous abortion along with laboratory findings of lupus anticoagulant, anticardiolipin, anti- $\beta_{2}$ glycoprotein antibodies.
Treat with systemic anticoagulation.

Systemic, remitting, and relapsing autoimmune disease. Organ damage primarily due to a type III hypersensitivity reaction and, to a lesser degree, a type II hypersensitivity reaction. Associated with deficiency of early complement proteins (eg, Clq, C4, C2) $\rightarrow \downarrow$ clearance of of immune complexes. Classic presentation: rash, joint pain, and fever in a female of reproductive age (especially of African-American or Hispanic descent).
Libman-Sacks Endocarditis—nonbacterial, verrucous thrombi usually on mitral or aortic valve and can be present on either surface of the valve (but usually on undersurface). LSE in SLE.
Lupus nephritis (glomerular deposition of DNA-anti-DNA immune complexes) can be nephritic or nephrotic (causing hematuria or proteinuria). Most common and severe type is diffuse proliferative.
Common causes of death in SLE: Renal disease (most common), Infections, Cardiovascular disease (accelerated CAD).

```
RASH OR PAIN:
Rash (malar A or discoid B)
Arthritis (nonerosive)
Serositis (eg, pleuritis, pericarditis)
Hematologic disorders (eg, cytopenias)
Oral/nasopharyngeal ulcers (usually painless)
Renal disease
Photosensitivity
Antinuclear antibodies
Immunologic disorder (anti-dsDNA, anti-Sm, antiphospholipid)
Neurologic disorders (eg, seizures, psychosis)
```

Lupus patients die with Redness In their Cheeks.

## Mixed connective tissue disease

Features of SLE, systemic sclerosis, and/or polymyositis. Associated with anti-Ul RNP antibodies (speckled ANA).

## Polymyalgia rheumatica

SYMPTOMS	Pain and stiffness in proximal muscles (eg, shoulders, hips), often with fever, malaise, weight loss.   Does not cause muscular weakness. More common in women $>50$ years old; associated with   giant cell (temporal) arteritis.
FINDINGS	$\uparrow$ ESR, $\uparrow$ CRP, normal CK.

## Fibromyalgia

Most common in women 20-50 years old. Chronic, widespread musculoskeletal pain associated with "tender points," stiffness, paresthesias, poor sleep, fatigue, cognitive disturbance ("fibro fog"). Treatment: regular exercise, antidepressants (TCAs, SNRIs), neuropathic pain agents (eg, gabapentin).

Polymyositis/
dermatomyositis
$\uparrow \mathrm{CK}, \oplus$ ANA (nonspecific), $\oplus$ anti-Jo-l (histidyl-tRNA synthetase) (specific), $\oplus$ anti-SRP (specific), $\oplus$ anti-Mi-2 (specific) antibodies. Both disorders associated with interstitial lung disease. Treatment: steroids followed by long-term immunosuppressant therapy (eg, methotrexate).

Neuromuscular junction diseases

	Myasthenia gravis	Lambert-Eaton myasthenic syndrome
Frequency	Most common NMJ disorder	Uncommon
PATHOPHYSIOLOGY	Autoantibodies to postsynaptic ACh receptor	Autoantibodies to presynaptic $\mathrm{Ca}^{2+}$ channel $\rightarrow \downarrow$ ACh release
CLINICAL	Ptosis, diplopia, weakness (respiratory muscle involvement can lead to dyspnea)   Worsens with muscle use   Improvement after edrophonium (tensilon) test	Proximal muscle weakness, autonomic symptoms (dry mouth, impotence) Improves with muscle use
ASSOCIATED WITH	Thymoma, thymic hyperplasia	Small cell lung cancer
AChe InHibitor administration	Reverses symptoms (edrophonium to diagnose, pyridostigmine to treat)	Minimal effect

Raynaud phenomenon

$\downarrow$ blood flow to skin due to arteriolar (small vessel) vasospasm in response to cold or stress: color change from white (ischemia) to blue (hypoxia) to red (reperfusion). Most often in the fingers $\boldsymbol{A}$ and toes. Called Raynaud disease when $1^{\circ}$ (idiopathic), Raynaud syndrome when $2^{\circ}$ to a disease process such as mixed connective tissue disease, SLE, or CREST syndrome (limited form of systemic sclerosis). Digital ulceration (critical ischemia) seen in $2^{\circ}$ Raynaud syndrome. Treat with $\mathrm{Ca}^{2+}$ channel blockers.

Scleroderma (systemic sclerosis)

Triad of autoimmunity, noninflammatory vasculopathy, and collagen deposition with fibrosis. Commonly sclerosis of skin, manifesting as puffy, taut skin $\triangle$ without wrinkles, fingertip pitting B. Can involve other systems, eg, renal (scleroderma renal crisis; treat with ACE inhibitors), pulmonary (interstitial fibrosis, pulmonary HTN), GI (esophageal dysmotility and reflux), cardiovascular. $75 \%$ female. 2 major types:

- Diffuse scleroderma-widespread skin involvement, rapid progression, early visceral involvement. Associated with anti-Scl-70 antibody (anti-DNA topoisomerase I antibody).
- Limited scleroderma-limited skin involvement confined to fingers and face. Also with CREST syndrome: Calcinosis cutis [], anti-Centromere antibody, Raynaud phenomenon, Esophageal dysmotility, Sclerodactyly, and Telangiectasia. More benign clinical course.


Skin layers
Skin has 3 layers: epidermis, dermis, subcutaneous fat (hypodermis, subcutis).
Epidermis layers from surface to base A:

- Stratum Corneum (keratin)
- Stratum Lucidum (most prominent in palms and soles)
- Stratum Granulosum
- Stratum Spinosum (desmosomes)
- Stratum Basale (stem cell site)

Californians Like Girls in String Bikinis.


## Epithelial cell junctions



## Dermatologic macroscopic terms



Dermatologic microscopic terms

LESION	CHARACTERISTICS	EXAMPLES
Hyperkeratosis	$\uparrow$ thickness of stratum corneum	Psoriasis, calluses
Parakeratosis	Retention of nuclei in stratum corneum	Psoriasis
Hypergranulosis	$\uparrow$ thickness of stratum granulosum	Lichen planus
Spongiosis	Epidermal accumulation of edematous fluid in   intercellular spaces	Eczematous dermatitis
Acantholysis	Separation of epidermal cells	Pemphigus vulgaris
Acanthosis	Epidermal hyperplasia ( $\uparrow$ spinosum)	Acanthosis nigricans

Pigmented skin disorders
Albinism
Normal melanocyte number with $\downarrow$ melanin production $\boldsymbol{A}$ due to $\downarrow$ tyrosinase activity or defective tyrosine transport. $\uparrow$ risk of skin cancer.

Melasma (chloasma) Hyperpigmentation associated with pregnancy ("mask of pregnancy" B) or OCP use.
Vitiligo Irregular patches of complete depigmentation C. Caused by autoimmune destruction of melanocytes.


Seborrheic dermatitis


Erythematous, well-demarcated plaques with greasy yellow scales in areas rich in sebaceous glands, such as scalp, face, and periocular region. Common in both infants and adults, associated with Parkinson disease. Sebaceous glands are not inflamed, but play a role in disease development. Possibly associated with Malassezia spp. Treat with topical antifungals and corticosteroids.

## Common skin disorders

## Acne

## Atopic dermatitis

(eczema)

## Allergic contact dermatitis

Melanocytic nevus

## Pseudofolliculitis

 barbaePsoriasis

## Rosacea

## Seborrheic keratosis

Verrucae

Urticaria

Multifactorial etiology- $\uparrow$ sebum/androgen production, abnormal keratinocyte desquamation, Cutibacterium (formerly Propionibacterium) acnes colonization of the pilosebaceous unit (comedones), and inflammation (papules/pustules $\boldsymbol{A}$, nodules, cysts). Treatment includes retinoids, benzoyl peroxide, and antibiotics.
Pruritic eruption, commonly on skin flexures. Associated with other atopic diseases (asthma, allergic rhinitis, food allergies); $\uparrow$ serum IgE. Mutations in filaggrin gene predispose (via skin barrier dysfunction). Often appears on face in infancy B and then in antecubital fossa in children and adults.
Type IV hypersensitivity reaction that follows exposure to allergen. Lesions occur at site of contact (eg, nickel $\mathbb{D}$, poison ivy, neomycin $\boldsymbol{E}_{\text {) }}$ ).
Common mole. Benign, but melanoma can arise in congenital or atypical moles. Intradermal nevi are papular [F. Junctional nevi are flat macules ©.
Foreign body inflammatory facial skin disorder characterized by firm, hyperpigmented papules and pustules that are painful and pruritic. Located on cheeks, jawline, and neck. Commonly occurs as a result of shaving ("razor bumps"), primarily affects African-American males.
Papules and plaques with silvery scaling $\boldsymbol{H}$, especially on knees and elbows. Acanthosis with parakeratotic scaling (nuclei still in stratum corneum), Munro microabscesses. $\uparrow$ stratum spinosum, $\downarrow$ stratum granulosum. Auspitz sign (■) - pinpoint bleeding spots from exposure of dermal papillae when scales are scraped off. Associated with nail pitting and psoriatic arthritis.
Inflammatory facial skin disorder characterized by erythematous papules and pustules 』, but no comedones. May be associated with facial flushing in response to external stimuli (eg, alcohol, heat). Phymatous rosacea can cause rhinophyma (bulbous deformation of nose).
Flat, greasy, pigmented squamous epithelial proliferation with keratin-filled cysts (horn cysts) $\mathbb{K}$. Looks "stuck on." Lesions occur on head, trunk, and extremities. Common benign neoplasm of older persons.
Leser-Trélat sign ㄴ-sudden appearance of multiple seborrheic keratoses, indicating an underlying malignancy (eg, GI, lymphoid).
Warts; caused by low-risk HPV strains. Soft, tan-colored, cauliflower-like papules [. Epidermal hyperplasia, hyperkeratosis, koilocytosis. Condyloma acuminatum on anus or genitals ©.
Hives. Pruritic wheals that form after mast cell degranulation © Characterized by superficial dermal edema and lymphatic channel dilation.


## Vascular tumors of skin

Angiosarcoma	Rare blood vessel malignancy typically occurring in the head, neck, and breast areas. Usually in elderly, on sun-exposed areas. Associated with radiation therapy and chronic postmastectomy lymphedema. Hepatic angiosarcoma associated with vinyl chloride and arsenic exposures. Very aggressive and difficult to resect due to delay in diagnosis.
Bacillary angiomatosis	Benign capillary skin papules $\boldsymbol{A}$ found in AIDS patients. Caused by Bartonella infections. Frequently mistaken for Kaposi sarcoma, but has neutrophilic infiltrate.
Cherry hemangioma	Benign capillary hemangioma of the elderly B. Does not regress. Frequency $\uparrow$ with age.
Cystic hygroma	Cavernous lymphangioma of the neck C. Associated with Turner syndrome.
Glomus tumor	Benign, painful, red-blue tumor, commonly under fingernails D. Arises from modified smooth muscle cells of the thermoregulatory glomus body.
Kaposi sarcoma	Endothelial malignancy most commonly of the skin, but also mouth, GI tract, and respiratory tract. Associated with HHV-8 and HIV. Rarely mistaken for bacillary angiomatosis, but has lymphocytic infiltrate.
Pyogenic granuloma	Polypoid lobulated capillary hemangioma that can ulcerate and bleed. Associated with trauma and pregnancy.
Strawberry hemangioma	Benign capillary hemangioma of infancy [F. Appears in first few weeks of life (1/200 births); grows rapidly and regresses spontaneously by 5-8 years old.



## Skin infections

## Bacterial infections

Very superficial skin infection. Usually from $S$ aureus or $S$ pyogenes. Highly contagious. Honeycolored crusting $\mathbf{A}$.
Bullous impetigo $\mathbb{B}$ has bullae and is usually caused by $S$ aureus.
Erysipelas Infection involving upper dermis and superficial lymphatics, usually from $S$ pyogenes. Presents with well-defined, raised demarcation between infected and normal skin [C.
Acute, painful, spreading infection of deeper dermis and subcutaneous tissues. Usually from $S$ pyogenes or $S$ aureus. Often starts with a break in skin from trauma or another infection $\mathbb{D}$.

Collection of pus from a walled-off infection within deeper layers of skin $\boldsymbol{E}$. Offending organism is almost always $S$ aureus.
Deeper tissue injury, usually from anaerobic bacteria or $S$ pyogenes. Pain may be out of proportion to exam findings. Results in crepitus from methane and $\mathrm{CO}_{2}$ production. "Flesh-eating bacteria." Causes bullae and a purple color to the skin [F. Surgical emergency.
Staphylococcal scalded
skin syndrome

Exotoxin destroys keratinocyte attachments in stratum granulosum only (vs toxic epidermal necrolysis, which destroys epidermal-dermal junction). Characterized by fever and generalized erythematous rash with sloughing of the upper layers of the epidermis © that heals completely. $\oplus$ Nikolsky sign (separation of epidermis upon manual stroking of skin). Seen in newborns and children, adults with renal insufficiency.

## Viral infections

## Herpes

## Molluscum contagiosum

Herpes virus infections (HSVl and HSV2) of skin can occur anywhere from mucosal surfaces to normal skin. These include herpes labialis, herpes genitalis, herpetic whitlow (finger).
Umbilicated papules ח caused by a poxvirus. While frequently seen in children, it may be sexually transmitted in adults.
Varicella zoster virus

Hairy leukoplakia
Causes varicella (chickenpox) and zoster (shingles). Varicella presents with multiple crops of lesions in various stages from vesicles to crusts. Zoster is a reactivation of the virus in dermatomal distribution (unless it is disseminated).
Irregular, white, painless plaques on lateral tongue that cannot be scraped off J. EBV mediated. Occurs in HIV-positive patients, organ transplant recipients. Contrast with thrush (scrapable) and leukoplakia (precancerous).


## Blistering skin disorders

Pemphigus vulgaris Potentially fatal autoimmune skin disorder with IgG antibody against desmoglein (component of desmosomes, which connect keratinocytes in the stratum spinosum).
Flaccid intraepidermal bullae A caused by acantholysis (separation of keratinocytes, resembling a "row of tombstones"); oral mucosa is also involved. Type II hypersensitivity reaction.
Immunofluorescence reveals antibodies around epidermal cells in a reticular (net-like) pattern B Nikolsky sign $\oplus$.
Bullous pemphigoid Less severe than pemphigus vulgaris. Type II hypersensitivity reaction: involves IgG antibody against hemidesmosomes (epidermal basement membrane; antibodies are "bullow" the epidermis).
Tense blisters Containing eosinophils affect skin but spare oral mucosa.
Immunofluorescence reveals linear pattern at epidermal-dermal junction $\mathbf{D}$.
Nikolsky sign $\Theta$.

Dermatitis herpetiformis Erythema multiforme

Stevens-Johnson syndrome

Pruritic papules, vesicles, and bullae (often found on elbows) E. Deposits of IgA at tips of dermal papillae. Associated with celiac disease. Treatment: dapsone, gluten-free diet.

Associated with infections (eg, Mycoplasma pneumoniae, HSV), drugs (eg, sulfa drugs, $\beta$-lactams, phenytoin), cancers, autoimmune disease. Presents with multiple types of lesions-macules, papules, vesicles, target lesions (look like targets with multiple rings and dusky center showing epithelial disruption) E
Characterized by fever, bullae formation and necrosis, sloughing of skin at dermal-epidermal junction, high mortality rate. Typically 2 mucous membranes are involved $\mathbf{H}$, and targetoid skin lesions may appear, as seen in erythema multiforme. Usually associated with adverse drug reaction. A more severe form of Stevens-Johnson syndrome (SJS) with $>30 \%$ of the body surface area involved is toxic epidermal necrolysis $\boldsymbol{\square}$ Ј (TEN). 10-30\% involvement denotes SJS-TEN.


## Miscellaneous skin disorders

Acanthosis nigricans Epidermal hyperplasia causing symmetric, hyperpigmented thickening of skin, especially in axilla or on neck A B. Associated with insulin resistance (eg, diabetes, obesity, Cushing syndrome), visceral malignancy (eg, gastric adenocarcinoma).
Actinic keratosis
Erythema nodosum

Premalignant lesions caused by sun exposure. Small, rough, erythematous or brownish papules or plaques $\mathbf{C}$ D. Risk of squamous cell carcinoma is proportional to degree of epithelial dysplasia.
Painful, raised inflammatory lesions of subcutaneous fat (panniculitis), usually on anterior shins. Often idiopathic, but can be associated with sarcoidosis, coccidioidomycosis, histoplasmosis, TB, streptococcal infections E, leprosy $\boldsymbol{F}$, inflammatory bowel disease.
Lichen Planus Pruritic, Purple, Polygonal Planar Papules and Plaques are the 6 P's of lichen Planus G H. Mucosal involvement manifests as Wickham striae (reticular white lines) and hypergranulosis. Sawtooth infiltrate of lymphocytes at dermal-epidermal junction. Associated with hepatitis C.
Pityriasis rosea
"Herald patch" I followed days later by other scaly erythematous plaques, often in a "Christmas tree" distribution on trunk J. Multiple pink plaques with collarette scale. Self-resolving in 6-8 weeks.
Sunburn Acute cutaneous inflammatory reaction due to excessive UV irradiation. Causes DNA mutations, inducing apoptosis of keratinocytes. UVB is dominant in sunBurn, UVA in tAnning and photoAging. Exposure to UVA and UVB $\uparrow$ risk of skin cancer. Can also lead to impetigo.


Burn classifications

First-degree burn

Second-degree burn

Superficial, through epidermis (eg, common sunburn).
Partial-thickness burn through epidermis and dermis.
Skin is blistered and usually heals without scarring.
Full-thickness burn through epidermis, dermis, and hypodermis.
Skin scars with wound healing.

Painful, erythematous, blanching

Painful, erythematous, blanching

Painless, waxy or leathery appearance, nonblanching

Most common skin cancer. Found in sun-exposed areas of body (eg, face). Locally invasive, but rarely metastasizes. Waxy, pink, pearly nodules, commonly with telangiectasias, rolled borders, central crusting or ulceration $\boldsymbol{A}$. BCCs also appear as nonhealing ulcers with infiltrating growth3 or as a scaling plaque (superficial BCC)
 . Basal cell tumors have "palisading" nuclei $\mathbf{D}$.


Squamous cell carcinoma

Second most common skin cancer. Associated with excessive exposure to sunlight, immunosuppression, chronically draining sinuses, and occasionally arsenic exposure. Commonly appears on face (E, lower lip [F], ears, hands. Locally invasive, may spread to lymph nodes, and will rarely metastasize. Ulcerative red lesions with frequent scale. Histopathology: keratin "pearls" ${ }^{\text {G. }}$
Actinic keratosis, a scaly plaque, is a precursor to squamous cell carcinoma.
Keratoacanthoma is a variant that grows rapidly ( $4-6$ weeks) and may regress spontaneously over months [


Melanoma
Common tumor with significant risk of metastasis. S-100 tumor marker. Associated with sunlight exposure and dysplastic nevi; fair-skinned persons are at $\uparrow$ risk. Depth of tumor (Breslow thickness) correlates with risk of metastasis. Look for the ABCDEs: Asymmetry, Border irregularity, Color variation, Diameter $>6 \mathrm{~mm}$, and Evolution over time. At least 4 different types of melanoma, including superficial spreading 【. nodular $\boldsymbol{\|}$, lentigo maligna $\mathbb{K}$, and acral lentiginous (highest prevalence in African-Americans and Asians) $L$. Often driven by activating mutation in BRAF kinase. Primary treatment is excision with appropriately wide margins. Metastatic or unresectable melanoma in patients with BRAF V600E mutation may benefit from vemurafenib, a BRAF kinase inhibitor.


## MUSCULOSKELETAL, SKIN, AND CONNECTIVE TISSUE—PHARMACOLOGY

## Arachidonic acid pathway

MEMBRANE PHOSPHOLIPIDS

$\mathrm{LTB}_{4}$ is a neutrophil chemotactic agent.
$\mathrm{PGI}_{2}$ inhibits platelet aggregation and promotes vasodilation.

Neutrophils arrive "B4" others.
Platelet-Gathering Inhibitor.

## Acetaminophen

mechanism
CLINICAL USE

ADVERSE EFFECTS

Reversibly inhibits cyclooxygenase, mostly in CNS. Inactivated peripherally.
Antipyretic, analgesic, but not anti-inflammatory. Used instead of aspirin to avoid Reye syndrome in children with viral infection.

Overdose produces hepatic necrosis; acetaminophen metabolite (NAPQI) depletes glutathione and forms toxic tissue byproducts in liver. N -acetylcysteine is antidote-regenerates glutathione.

## Aspirin

MECHANSM	NSAID that irreversibly inhibits cyclooxygenase (both COX-l and COX-2) by covalent acetylation   $\rightarrow \downarrow$ synthesis of TXA   and prostaglandins. $\uparrow$ bleeding time. No effect on PT, PTT. Effect lasts
until new platelets are produced.	

## Celecoxib

CLINICAL USE
ADVERSE EFFECTS $\quad \uparrow$ risk of thrombosis. Sulfa allergy. COX-1.

Rheumatoid arthritis, osteoarthritis.

## Nonsteroidal anti-inflammatory drugs

MECHANISM
CLINICALUSE
ADVERSE EFFECTS

Reversibly and selectively inhibits the cyclooxygenase (COX) isoform 2 ("Selecoxib"), which is found in inflammatory cells and vascular endothelium and mediates inflammation and pain; spares COX-1, which helps maintain gastric mucosa. Thus, does not have the corrosive effects of other NSAIDs on the GI lining. Spares platelet function as $\mathrm{TXA}_{2}$ production is dependent on

Ibuprofen, naproxen, indomethacin, ketorolac, diclofenac, meloxicam, piroxicam.

Reversibly inhibit cyclooxygenase (both COX-1 and COX-2). Block prostaglandin synthesis.
Antipyretic, analgesic, anti-inflammatory. Indomethacin is used to close a PDA.
Interstitial nephritis, gastric ulcer (prostaglandins protect gastric mucosa), renal ischemia (prostaglandins vasodilate afferent arteriole), aplastic anemia.

## Leflunomide

MECHANISM	Reversibly inhibits dihydroorotate dehydrogenase, preventing pyrimidine synthesis. Suppresses   T-cell proliferation.
CIINICAL USE	Rheumatoid arthritis, psoriatic arthritis.
ADVERSEEFFECTS	Diarrhea, hypertension, hepatotoxicity, teratogenicity.


Bisphosphonates	Alendronate, ibandronate, risedronate, zoledronate.
MECHANISM	Pyrophosphate analogs; bind hydroxyapatite in bone, inhibiting osteoclast activity.
CLINICAL USE	Osteoporosis, hypercalcemia, Paget disease of bone, metastatic bone disease, osteogenesis   imperfecta.
ADVERSE EFFECTS	Esophagitis (if taken orally, patients are advised to take with water and remain upright for 30   minutes), osteonecrosis of jaw, atypical femoral stress fractures.

Teriparatide

MECHANISM	Recombinant PTH analog. $\uparrow$ osteoblastic activity when administered in pulsatile fashion.
CLINICAL USE	Osteoporosis. Causes $\uparrow$ bone growth compared to antiresorptive therapies (eg, bisphosphonates).
ADVERSE EFFECTS	$\uparrow$ risk of osteosarcoma (avoid use in patients with Paget disease of the bone or unexplained   elevation of alkaline phosphatase). Avoid in patients who have had prior cancers or radiation   therapy. Transient hypercalcemia.

## Gout drugs

## Chronic gout drugs (preventive)



TNF- $\alpha$ inhibitors

DRUG	MECHANISM	CLINICAL USE	ADVERSE EFFECTS
Etanercept	Fusion protein (decoy receptor for TNF- $\alpha+\operatorname{IgG}_{1} \mathrm{Fc}$ ), produced by recombinant DNA.   Etanercept intercepts TNF.	Rheumatoid arthritis, psoriasis, ankylosing spondylitis	Predisposition to infection, including reactivation of latent TB , since TNF is important in granuloma formation and stabilization. Can also lead to drug-induced lupus.
Infliximab, adalimumab, certolizumab, golimumab	Anti-TNF- $\alpha$ monoclonal antibody.	Inflammatory bowel disease, rheumatoid arthritis, ankylosing spondylitis, psoriasis	

## HIGH-YIELD SYSTEMS

## Neurology and Special Senses

"We are all now connected by the Internet, like neurons in a giant brain."
-Stephen Hawking
"Anything's possible if you've got enough nerve."

- J.K. Rowling, Harry Potter and the Order of the Phoenix
"I like nonsense; it wakes up the brain cells."
"I believe in an open mind, but not so open that your brains fall out."
- Arthur Hays Sulzberger
"The chief function of the body is to carry the brain around."
-Thomas Edison
"Exactly how [the brain] operates remains one of the biggest unsolved mysteries, and it seems the more we probe its secrets, the more surprises we find."
-Neil deGrasse Tyson

Know how to clinically interpret common patterns of neurologic symptoms and findings. Questions on the exam often correlate clinical scenarios with gross pathologic specimens or cross-sectional CT/MR imaging. With regard to neuropharmacology, antiparkinsonism, antiepileptic and opioid drugs tend to be highly testable.

Pmbryology	474
Anatomy and   Physiology	477
Neuropathology	495
DOtology	517
DOphthalmology	518
Pharmacology	528

## NEUROLOGY-EMBRYOLOGY

Neural development


Notochord induces overlying ectoderm to differentiate into neuroectoderm and form neural plate.
Neural plate gives rise to neural tube and neural crest cells.
Notochord becomes nucleus pulposus of intervertebral disc in adults.
$\left.\begin{array}{l}\text { Alar plate (dorsal): sensory } \\ \text { Basal plate (ventral): motor }\end{array}\right]$ Same orientation as spinal cord.

Regional specification Telencephalon is the 1st part. Diencephalon is the 2nd part. The rest are arranged alphabetically: of developing brain mesencephalon, metencephalon, myelencephalon.


Central and peripheral Neuroepithelia in neural tube-CNS neurons, ependymal cells (inner lining of ventricles, make
nervous systems origins

CSF), oligodendrocytes, astrocytes.
Neural crest-PNS neurons, Schwann cells.
Mesoderm—Microglia (like Macrophages).


Holoprosencephaly


Failure of left and right hemispheres to separate; usually occurs during weeks 5-6. May be related to mutations in sonic hedgehog signaling pathway. Moderate form has cleft lip/palate, most severe form results in cyclopia. Seen in trisomy 13 and fetal alcohol syndrome.
MRI A reveals monoventricle and fusion of basal ganglia (star in A).

## Posterior fossa malformations

Chiari I malformation	Ectopia of cerebellar tonsils (1 structure) A. Congenital, usually asymptomatic in childhood,   manifests in adulthood with headaches and cerebellar symptoms. Associated with spinal   cavitations (eg, syringomyelia).
Chiari II malformation	Herniation of low-lying cerebellar vermis and tonsils (2 structures) through foramen magnum with   aqueductal stenosis $\rightarrow$ hydrocephalus. Usually associated with lumbosacral meningomyelocele   (may present as paralysis/sensory loss at and below the level of the lesion).
Agendy-Walker   syndrome	Agenesis of cerebellar vermis leads to cystic enlargement of 4th ventricle (arrow in   enlarged posterior fossa. Associated with noncommunicating hydrocephalus, spina bifida.



## Syringomyelia



Cystic cavity (syrinx) within central canal of spinal cord (yellow arrows in A). Fibers crossing in anterior white commissure (spinothalamic tract) are typically damaged first. Results in a "cape-like," bilateral symmetrical loss of pain and temperature sensation in upper extremities (fine touch sensation is preserved). Associated with Chiari malformations (red arrow shows low-lying cerebellar tonsils in A) and other congenital malformations; acquired causes include trauma and tumors.

Tongue development


1st and 2nd branchial arches form anterior $2 / 3$ (thus sensation via $\mathrm{CN} \mathrm{V}_{3}$, taste via CN VII). 3rd and 4th branchial arches form posterior ${ }^{1 / 3}$ (thus sensation and taste mainly via CN IX, extreme posterior via CN X).
Motor innervation is via CN XII to hyoglossus (retracts and depresses tongue), genioglossus (protrudes tongue), and styloglossus (draws sides of tongue upward to create a trough for swallowing).
Motor innervation is via CN X to palatoglossus (elevates posterior tongue during swallowing).

Taste-CN VII, IX, X (solitary nucleus).
Pain-CN V 3 , IX, X.
Motor-CN X, XII.

The Genie sticks out his tongue.

## - NEUROLOGY—ANATOMY AND PHYSIOLOGY

## Neurons

Signal-transmitting cells of the nervous system. Permanent cells-do not divide in adulthood.
Signal-relaying cells with dendrites (receive input), cell bodies, and axons (send output). Cell bodies and dendrites can be seen on Nissl staining (stains RER). RER is not present in the axon.
Injury to axon $\rightarrow$ Wallerian degeneration-degeneration of axon distal to site of injury and axonal retraction proximally; allows for potential regeneration of axon (if in PNS). Macrophages remove debris and myelin.

## Astrocytes



Most common glial cell type in CNS. Physical Derived from neuroectoderm. Astrocyte marker: support, repair, extracellular $\mathrm{K}^{+}$buffer, removal GFAP. of excess neurotransmitter, component of blood-brain barrier, glycogen fuel reserve buffer. Reactive gliosis in response to neural injury.

## Microglia



Phagocytic scavenger cells of CNS (mesodermal, mononuclear origin). Activated in response to tissue damage. Not readily discernible by Nissl stain.

HIV-infected microglia fuse to form multinucleated giant cells in CNS.

## Ependymal cells

Glial cells with a ciliated simple columnar form that line the ventricles and central canal of spinal cord. Apical surfaces are covered in cilia (which circulate CSF) and microvilli (which help in CSF absorption).

## Myelin


$\uparrow$ conduction velocity of signals transmitted down axons $\rightarrow$ saltatory conduction of action potential at the nodes of Ranvier, where there are high concentrations of $\mathrm{Na}^{+}$channels. Synthesis of myelin by oligodendrocytes in CNS (including CN I and II) and Schwann cells in PNS (including CN III-XII).

Wraps and insulates axons (arrow in A): $\uparrow$ space constant and $\uparrow$ conduction velocity.
COPS: CNS = Oligodendrocytes, $\mathrm{PNS}=$ Schwann cells.

## Schwann cells



Each Schwann cell myelinates only 1 PNS axon. Injured in Guillain-Barré syndrome.
Also promote axonal regeneration. Derived from neural crest.

Oligodendrocytes


Myelinates axons of neurons in CNS. Each oligodendrocyte can myelinate many axons ( $\sim 30$ ). Predominant type of glial cell in white matter.

Derived from neuroectoderm.
"Fried egg" appearance histologically. Injured in multiple sclerosis, progressive multifocal leukoencephalopathy (PML), leukodystrophies.

## Sensory receptors

RECEPTOR TYPE	SENSORY NEURON FIBERTYPE	LOCATION
Free nerve endings	C-slow, unmyelinated fibers   A $\delta$-fAst, myelinated fibers	All skin, epidermis, some   viscera
Meissner corpuscles	Large, myelinated fibers; adapt   quickly	Glabrous (hairless) skin

Peripheral nerve


Endoneurium-invests single nerve fiber layers (inflammatory infiltrate in Guillain-Barré syndrome).
Perineurium (blood-nerve Permeability barrier) - surrounds a fascicle of nerve fibers. Must be rejoined in microsurgery for limb reattachment.
Epineurium-dense connective tissue that surrounds entire nerve (fascicles and blood vessels).

Endo $=$ inner.
Peri $=$ around .
Epi $=$ outer.

## Chromatolysis



Reaction of neuronal cell body to axonal injury. Changes reflect $\uparrow$ protein synthesis in effort to repair the damaged axon. Characterized by:

- Round cellular swelling A
- Displacement of the nucleus to the periphery
- Dispersion of Nissl substance throughout cytoplasm

Concurrent with Wallerian degeneration.

## Neurotransmitter changes with disease

	LOCATON OF SYNTHESIS	ANXIETY	DEPRESSION	SCHIZOPHRENIA	ALZHEIMER   DISEASE	HUNTINGTON DISEASE	PARKINSON DISEASE
Acetylcholine	Basal nucleus of Meynert				$\downarrow$	$\downarrow$	$\uparrow$
Dopamine	Ventral tegmentum, SNc		$\downarrow$	$\uparrow$		$\uparrow$	$\downarrow$
GABA	Nucleus accumbens	$\downarrow$				$\downarrow$	
Norepinephrine	Locus ceruleus	$\uparrow$	$\downarrow$				
Serotonin	Raphe nucleus	$\downarrow$	$\downarrow$				$\downarrow$

Meninges


Three membranes that surround and protect the brain and spinal cord:

- Dura mater-thick outer layer closest to skull. Derived from mesoderm.
- Arachnoid mater-middle layer, contains web-like connections. Derived from neural crest.
- Pia mater-thin, fibrous inner layer that firmly adheres to brain and spinal cord. Derived from neural crest.

CSF flows in the subarachnoid space, located between arachnoid and pia mater.
Epidural space-a potential space between the dura mater and skull containing fat and blood vessels.

Blood-brain barrier


Prevents circulating blood substances (eg, bacteria, drugs) from reaching the CSF/ CNS. Formed by 3 structures:

- Tight junctions between nonfenestrated capillary endothelial cells
- Basement membrane
- Astrocyte foot processes

Glucose and amino acids cross slowly by carriermediated transport mechanisms.
Nonpolar/lipid-soluble substances cross rapidly via diffusion.

A few specialized brain regions with fenestrated capillaries and no blood-brain barrier allow molecules in blood to affect brain function (eg, area postrema-vomiting after chemo; OVLT [organum vasculosum lamina terminalis] osmotic sensing) or neurosecretory products to enter circulation (eg, neurohypophysis-ADH release).
Infarction and/or neoplasm destroys endothelial cell tight junctions $\rightarrow$ vasogenic edema.
Other notable barriers include:

- Blood-testis barrier
- Maternal-fetal blood barrier of placenta

Hypothalamus

Vomiting center Coordinated by nucleus tractus solitarius (NTS) in the medulla, which receives information from the chemoreceptor trigger zone (CTZ, located within area postrema in 4th ventricle), GI tract (via vagus nerve), vestibular system, and CNS.
CTZ and adjacent vomiting center nuclei receive input from 5 major receptors: muscarinic $\left(\mathrm{M}_{1}\right)$, dopamine $\left(\mathrm{D}_{2}\right)$, histamine $\left(\mathrm{H}_{1}\right)$, serotonin $\left(5-\mathrm{HT}_{3}\right)$, and neurokinin (NK-l) receptors.

- $5-\mathrm{HT}_{3}, \mathrm{D}_{2}$, and NK-1 antagonists used to treat chemotherapy-induced vomiting.
- $\mathrm{M}_{1}$ and $\mathrm{H}_{1}$ antagonists used to treat motion sickness and hyperemesis gravidarum.

Sleep physiology	Sleep cycle is regulated by the circadian rhythm, which is driven by suprachiasmatic nucleus (SCN) of hypothalamus. Circadian rhythm controls nocturnal release of ACTH, prolactin, melatonin, norepinephrine: SCN $\rightarrow$ norepinephrine release $\rightarrow$ pineal gland $\rightarrow$ melatonin. SCN is regulated by environment (eg, light).   Two stages: rapid-eye movement (REM) and non-REM.   Alcohol, benzodiazepines, and barbiturates are associated with $\downarrow$ REM sleep and delta wave sleep; norepinephrine also $\downarrow$ REM sleep.   Benzodiazepines are useful for night terrors and sleepwalking by $\downarrow$ N3 and REM sleep.	
SLEEP STAGE \% OF TOTAL SLEEP tIME IN Young adulis)	DESCRIPTION	EEG WAVEFORM
Awake (eyes open)	Alert, active mental concentration.	Beta (highest frequency, lowest amplitude)
Awake (eyes closed)		Alpha
Non-REM sleep		
Stage N1 (5\%)	Light sleep.	Theta
Stage N2 (45\%)	Deeper sleep; when bruxism (teeth grinding) occurs.	Sleep spindles and K complexes "Twoth" grinding
Stage N3 (25\%)	Deepest non-REM sleep (slow-wave sleep); when sleepwalking, night terrors, and bedwetting occur.	Delta (lowest frequency, highest amplitude)
REM sleep (25\%)	Loss of motor tone, $\uparrow$ brain $\mathrm{O}_{2}$ use, $\uparrow$ and variable pulse and blood pressure $\uparrow \mathrm{ACh}$; when dreaming, nightmares, and penile/ clitoral tumescence occur; may serve memory processing function. Depression increases total REM sleep but decreases REM latency. Extraocular movements due to activity of PPRF (paramedian pontine reticular formation/ conjugate gaze center).   Occurs every 90 minutes, and duration $\uparrow$ through the night.	Beta   At night, BATS Drink Blood


Thalamus Major relay for all ascending sensory information except olfaction.				
NUCLEI	INPUT	Senses	DESTINation	Mnemonic
Ventral   Postero-   Lateral   nucleus	Spinothalamic and dorsal columns/ medial lemniscus	Vibration, Pain, Pressure, Proprioception, Light touch, temperature	$1^{\circ}$ somatosensory cortex	
Ventral   postero-   Medial   nucleus	Trigeminal and gustatory pathway	Face sensation, taste	$1^{\circ}$ somatosensory cortex	Makeup goes on the face
Lateral geniculate nucleus	CN II, optic chiasm, optic tract	Vision	Calcarine sulcus	Lateral $=$ Light
Medial geniculate nucleus	Superior olive and inferior colliculus of tectum	Hearing	Auditory cortex of temporal lobe	Medial $=$ Music
Ventral lateral nucleus	Basal ganglia, cerebellum	Motor	Motor cortex	

Limbic system Collection of neural structures involved in The famous 5 F's.
 emotion, long-term memory, olfaction, behavior modulation, ANS function.
Consists of hippocampus (red arrows
in (A), amygdalae, mammillary bodies, anterior
thalamic nuclei, cingulate gyrus (yellow arrows
in (A), entorhinal cortex. Responsible for
Feeding, Fleeing, Fighting, Feeling, and Sex.

Dopaminergic pathways

PATHWAY	SYMPTOMS OF ALTERED ACTVVITY	NOTES
Mesocortical	$\downarrow$ activity $\rightarrow$ "negative" symptoms (eg, anergia,   apathy, lack of spontaneity).	Antipsychotic drugs have limited effect.
Mesolimbic	$\uparrow$ activity $\rightarrow$ "positive" symptoms (eg, delusions,   hallucinations).	$1^{\circ}$ therapeutic target of antipsychotic drugs   $\rightarrow \downarrow$ positive symptoms (eg, in schizophrenia).
Nigrostriatal	$\downarrow$ activity $\rightarrow$ extrapyramidal symptoms   (eg, dystonia, akathisia, parkinsonism, tardive   dyskinesia).	Major dopaminergic pathway in brain.   Significantly affected by movement disorders   and antipsychotic drugs.
Tuberoinfundibular	$\downarrow$ activity $\rightarrow \uparrow$ prolactin $\rightarrow \downarrow$ libido, sexual   dysfunction, galactorrhea, gynecomastia (in   men).	

## Cerebellum



Modulates movement; aids in coordination and balance. Arrow in A.
Input:

- Contralateral cortex via middle cerebellar peduncle.
- Ipsilateral proprioceptive information via inferior cerebellar peduncle from spinal cord.
Output:
- The only output of cerebellar cortex = Purkinje cells (always inhibitory) $\rightarrow$ deep nuclei of cerebellum $\rightarrow$ contralateral cortex via superior cerebellar peduncle.
- Deep nuclei (lateral $\rightarrow$ medial)—Dentate, Don’t Eat Greasy Foods Emboliform, Globose, Fastigial.

Lateral lesions-affect voluntary movement of extremities (lateral structures); when injured, propensity to fall toward injured (ipsilateral) side.
Medial lesions (eg, vermis, fastigial nuclei, flocculonodular lobe) -truncal ataxia (widebased cerebellar gait), nystagmus, head tilting. Generally result in bilateral motor deficits affecting axial and proximal limb musculature (medial structures).

Basal ganglia
Important in voluntary movements and making postural adjustments.
Receives cortical input, provides negative feedback to cortex to modulate movement.
Striatum $=$ putamen (motor) + caudate (cognitive).
Lentiform $=$ putamen + globus pallidus.


Direct (excitatory) pathway-SNc input stimulates the striatum, stimulating the release of GABA, which inhibits GABA release from the GPi, disinhibiting the thalamus via the GPi ( $\uparrow$ motion).
Indirect (inhibitory) pathway-SNc input stimulates the striatum, releasing GABA that disinhibits STN via GPe inhibition, and STN stimulates GPi to inhibit the thalamus ( $\downarrow$ motion).
Dopamine binds to $\mathrm{D}_{1}$, stimulating the excitatory pathway, and to $\mathrm{D}_{2}$, inhibiting the inhibitory pathway $\rightarrow \uparrow$ motion.

## Cerebral cortex regions



## Homunculus



Topographic representation of motor (shown) and sensory areas in the cerebral cortex. Distorted appearance is due to certain body regions being more richly innervated and thus having $\uparrow$ cortical representation.

## Cerebral perfusion

Brain perfusion relies on tight autoregulation. Cerebral perfusion is primarily driven by $\mathrm{PcO}_{2}\left(\mathrm{PO}_{2}\right.$ also modulates perfusion in severe hypoxia).
Cerebral perfusion relies on a pressure gradient between mean arterial pressure (MAP) and ICP. $\downarrow$ blood pressure or $\uparrow$ ICP $\rightarrow \downarrow$ cerebral perfusion pressure (CPP).

Therapeutic hyperventilation $\rightarrow \downarrow \mathrm{PCO}_{2}$ $\rightarrow$ vasoconstriction $\rightarrow \downarrow$ cerebral blood flow $\rightarrow \downarrow$ intracranial pressure (ICP). May be used to treat acute cerebral edema (eg, $2^{\circ}$ to stroke) unresponsive to other interventions.
$\mathrm{CPP}=\mathrm{MAP}-\mathrm{ICP}$. If $\mathrm{CPP}=0$, there is no cerebral perfusion $\rightarrow$ brain death.
Hypoxemia increases CPP only if $\mathrm{PO}_{2}$ $<50 \mathrm{~mm} \mathrm{Hg}$.
CPP is directly proportional to $\mathrm{PcO}_{2}$ until $\mathrm{PcO}_{2}$ $>90 \mathrm{~mm} \mathrm{Hg}$.


## Cerebral arteries-cortical distribution



Circle of Willis


Dural venous sinuses


Large venous channels $A$ that run through the periosteal and meningeal layers of the dura mater. Drain blood from cerebral veins (arrow) and receive CSF from arachnoid granulations. Empty into internal jugular vein.

Venous sinus thrombosis - presents with signs/symptoms of $\uparrow$ ICP (eg, headache, seizures, focal neurologic deficits). May lead to venous hemorrhage. Associated with hypercoagulable states (eg, pregnancy, OCP use, factor V Leiden).


## Ventricular system



## Brain stem—ventral view



Brain stem—dorsal view (cerebellum removed)


Lateral ventricles $\rightarrow$ 3rd ventricle via right and left interventricular foramina of Monro.
3rd ventricle $\rightarrow$ 4th ventricle via cerebral aqueduct of Sylvius.
4th ventricle $\rightarrow$ subarachnoid space via:

- Foramina of Luschka = Lateral.
- Foramen of Magendie = Medial.

CSF made by ependymal cells of choroid plexus. Travels to subarachnoid space via foramina of Luschka and Magendie, is reabsorbed by arachnoid granulations, and then drains into dural venous sinuses.

4 CN are above pons (I, II, III, IV).
4 CN exit the pons (V, VI, VII, VIII).
4 CN are in medulla (IX, X, XI, XII).
4 CN nuclei are medial (III, IV, VI, XII).
"Factors of 12 , except 1 and 2 ."

Pineal gland-melatonin secretion, circadian rhythms.
Superior colliculi-direct eye movements to stimuli (noise/movements) or objects of interest.
Inferior colliculi-auditory.
Your eyes are above your ears, and the superior colliculus (visual) is above the inferior colliculus (auditory).

## Cranial nerve nuclei

Located in tegmentum portion of brain stem (between dorsal and ventral portions):

- Midbrain—nuclei of CN III, IV
- Pons—nuclei of CN V, VI, VII, VIII
- Medulla-nuclei of CN IX, X, XII
- Spinal cord—nucleus of CN XI

Lateral nuclei $=$ sensory (aLar plate).
-Sulcus limitans-
Medial nuclei $=$ Motor (basal plate) .

## Cranial nerve and vessel pathways



Divisions of CN V exit owing to Standing Room Only

Cranial nerves

NERVE	CN	FUNCTION	TYPE	MNEMONIC
Olfactory	1	Smell (only CN without thalamic relay to cortex)	Sensory	Some
Optic	II	Sight	Sensory	Say
Oculomotor	III	Eye movement (SR, IR, MR, IO), pupillary constriction (sphincter pupillae: Edinger-Westphal nucleus, muscarinic receptors), accommodation, eyelid opening (levator palpebrae)	Motor	Marry
Trochlear	IV	Eye movement (SO)	Motor	Money
Trigeminal	V	Mastication, facial sensation (ophthalmic, maxillary, mandibular divisions), somatosensation from anterior $2 / 3$ of tongue	Both	But
Abducens	VI	Eye movement (LR)	Motor	My
Facial	VII	Facial movement, taste from anterior $2 / 3$ of tongue (chorda tympani), lacrimation, salivation (submandibular and sublingual glands are innervated by CN seven), eyelid closing (orbicularis oculi), auditory volume modulation (stapedius)	Both	Brother
Vestibulocochlear	VIII	Hearing, balance	Sensory	Says
Glossopharyngeal	IX	Taste and sensation from posterior $1 / 3$ of tongue, swallowing, salivation (parotid gland), monitoring carotid body and sinus chemo- and baroreceptors, and elevation of pharynx/larynx (stylopharyngeus)	Both	Big
Vagus	X	Taste from supraglottic region, swallowing, soft palate elevation, midline uvula, talking, cough reflex, parasympathetics to thoracoabdominal viscera, monitoring aortic arch chemo- and baroreceptors	Both	Brains
Accessory	XI	Head turning, shoulder shrugging (SCM, trapezius)	Motor	Matter
Hypoglossal	XII	Tongue movement	Motor	Most

## Vagal nuclei

NUCLEUS	FUNCTION	CRANIAL NERVES
Nucleus Solitarius	Visceral Sensory information (eg, taste,   baroreceptors, gut distention)	VII, IX, X
Nucleus aMbiguus	Motor innervation of pharynx, larynx, upper   esophagus (eg, swallowing, palate elevation)	IX, X, XI (cranial portion)
Dorsal motor nucleus	Sends autonomic (parasympathetic) fibers to   heart, lungs, upper GI	X

Cranial nerve reflexes

REFLEX	AFFERENT	EFFERENT
Corneal	$\mathrm{V}_{1}$ ophthalmic (nasociliary branch)	Bilateral VII (temporal branch: orbicularis oculi)
Lacrimation	$\mathrm{V}_{1}$ (loss of reflex does not preclude emotional   tears)	VII
Jaw jerk $\mathrm{V}_{3}$ (sensory-muscle spindle from masseter) $\mathrm{V}_{3}$ (motor-masseter)   Pupillary II III   Gag IX X		


Mastication muscles	3 muscles close jaw: Masseter, teMporalis, Medial pterygoid. 1 opens: Lateral pterygoid. All are innervated by trigeminal nerve $\left(\mathrm{V}_{3}\right)$.	M's Munch.   Lateral Lowers (when speaking of pterygoids with respect to jaw motion).   "It takes more muscle to keep your mouth shut."
Spinal nerves	There are 31 pairs of spinal nerves in total: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, 1 coccygeal. Nerves $\mathrm{Cl}-\mathrm{C} 7$ exit above the corresponding vertebra. C 8 spinal nerve exits below C 7 and above Tl . All other nerves exit below (eg, C3 exits above the 3rd cervical vertebra; L2 exits below the 2nd lumbar vertebra).   Vertebral disc herniation-nucleus pulposus (soft central disc) herniates through annulus fibrosus (outer ring); usually occurs posterolaterally at L4-L5 or L5-S1. Nerve usually affected is below the level of herniation (eg, L3-L4 disc spares L3 nerve and involves L4 nerve). Compression of S1 nerve root $\rightarrow$ absent ankle reflex.	
Spinal cord—lower extent	In adults, spinal cord ends at lower border of L1-L2 vertebrae. Subarachnoid space (which contains the CSF) extends to lower border of S 2 vertebra. Lumbar puncture is usually performed between L3-L4 or L4-L5 (level of cauda equina).	Goal of lumbar puncture is to obtain sample of CSF without damaging spinal cord. To keep the cord alive, keep the spinal needle between L3 and L5.

Spinal cord and
associated tracts

Legs (Lumbosacral) are Lateral in Lateral corticospinal, spinothalamic tracts $\boldsymbol{A}$. Dorsal columns are organized as you are, with hands at sides. "Arms outside, legs inside."


Spinal tract anatomy Ascending tracts synapse and then cross. and functions

tract	function	1ST-ORDER NUURON	SYNAPSE 1	2ND-ORDER NUURON	SYNAPSE $2+$ PROJECTIONS
Ascending tracts					
Dorsal column	Pressure, vibration, fine touch, proprioception	Sensory nerve ending $\rightarrow$ bypass pseudounipolar cell body in dorsal root ganglion $\rightarrow$ enter spinal cord $\rightarrow$ ascend ipsilaterally in dorsal columns	Nucleus gracilis, nucleus cuneatus (ipsilateral medulla)	Decussates in medulla $\rightarrow$ ascends contralaterally as the medial lemniscus	VPL (thalamus)   $\rightarrow$ sensory cortex
Spinothalamic tract	Lateral: pain, temperature Anterior: crude touch, pressure	Sensory nerve ending ( $\mathrm{A} \boldsymbol{\delta}$ and C fibers) $\rightarrow$ bypass pseudounipolar cell body in dorsal root ganglion $\rightarrow$ enter spinal cord	Ipsilateral gray matter (spinal cord)	Decussates in spinal cord as the anterior white commissure $\rightarrow$ ascends contralaterally	
Descending tract					
Lateral corticospinal tract	Voluntary movement of contralateral limbs	UMN: cell body in $1^{\circ}$ motor cortex $\rightarrow$ descends ipsilaterally (through posterior limb of internal capsule), most fibers decussate at caudal medulla (pyramidal decussation) $\rightarrow$ descends contralaterally	Cell body of anterior horn (spinal cord)	LMN: leaves spinal cord	NMJ $\rightarrow$ muscle fibers

Clinical reflexes


Reflexes count up in order (main nerve root bolded):
Achilles reflex $=$ S1, S2 ("buckle my shoe")
Patellar reflex = L3, L4 ("kick the door")
Biceps and brachioradialis reflexes $=$ C5, C6 ("pick up sticks")
Triceps reflex = C7, C8 ("lay them straight")

Additional reflexes:
Cremasteric reflex = L1, L2 ("testicles move") Anal wink reflex $=$ S3, S4 ("winks galore")

Primitive reflexes

## Landmark dermatomes



## - NEUROLOGY-NEUROPATHOLOGY

AREA Of LLSION	CONSEQUENCE	EXAMPLES/COMMENTS
Frontal lobe	Disinhibition and deficits in concentration, orientation, judgment; may have reemergence of primitive reflexes.	
Frontal eye fields	Eyes look toward (destructive) side of lesion. In seizures (irritative), eyes look away from side of the lesion.	
Paramedian pontine reticular formation	Eyes look away from side of lesion.	Ipsilateral gaze palsy (inability to look toward side of lesion).
Medial Iongitudinal fasciculus	Internuclear ophthalmoplegia (impaired adduction of ipsilateral eye; nystagmus of contralateral eye with abduction).	Multiple sclerosis.
Dominant parietal cortex	Agraphia, acalculia, finger agnosia, left-right disorientation.	Gerstmann syndrome.
Nondominant parietal cortex	Agnosia of the contralateral side of the world.	Hemispatial neglect syndrome.
Hippocampus (bilateral)	Anterograde amnesia-inability to make new memories.	
Basal ganglia	May result in tremor at rest, chorea, athetosis.	Parkinson disease, Huntington disease.
Subthalamic nucleus	Contralateral hemiballismus.	
Mammillary bodies (bilateral)	Wernicke-Korsakoff syndrome-Confusion, Ataxia, Nystagmus, Ophthalmoplegia, memory loss (anterograde and retrograde amnesia), confabulation, personality changes.	Wernicke problems come in a CAN O' beer.
Amygdala (bilateral)	Klüver-Bucy syndrome-disinhibited behavior (eg, hyperphagia, hypersexuality, hyperorality).	HSV-1 encephalitis.
Dorsal midbrain	Parinaud syndrome-vertical gaze palsy, pupillary light-near dissociation, lid retraction, convergence-retraction nystagmus.	Stroke, hydrocephalus, pinealoma.
Reticular activating system (midbrain)	Reduced levels of arousal and wakefulness (eg, coma).	
Cerebellar hemisphere	Intention tremor, limb ataxia, loss of balance; damage to cerebellum $\rightarrow$ ipsilateral deficits; fall toward side of lesion.	Cerebellar hemispheres are laterally locatedaffect lateral limbs.
Red nucleus	Decorticate (flexor) posturing-lesion above red nucleus, presents with flexion of upper extremities and extension of lower extremities. Decerebrate (extensor) posturing-lesion at or below red nucleus, presents with extension of upper and lower extremities.	Worse prognosis with decerebrate posturing.
Cerebellar vermis	Truncal ataxia (wide-based, "drunken sailor" gait), dysarthria.	Vermis is centrally located-affects central body. Degeneration associated with chronic alcohol use.

## Ischemic brain

 disease/strokeIrreversible damage begins after 5 minutes of hypoxia. Most vulnerable: hippocampus, neocortex, cerebellum (Purkinje cells), watershed areas. Irreversible neuronal injury. Hippocampus is most vulnerable to ischemic hypoxia ("vulnerable hippos").
Stroke imaging: noncontrast CT to exclude hemorrhage (before tPA can be given). CT detects ischemic changes in 6-24 hr. Diffusion-weighted MRI can detect ischemia within 3-30 min.

TIME SINCE ISCHEMIC EVENT	12-24 HOURS	24-72 HOURS	3-5 DAYS	1-2 WEEKS	>2 WEEKS
Histologic features	Eosinophilic cytoplasm + pyknotic nuclei (red	Necrosis + neutrophils	Macrophages (microglia)	Reactive gliosis (astrocytes) + vascular proliferation	Glial scar

neurons)
Acute blockage of vessels $\rightarrow$ disruption of blood flow and subsequent ischemia $\rightarrow$ liquefactive necrosis.
3 types:

- Thrombotic-due to a clot forming directly at site of infarction (commonly the MCA A), usually over an atherosclerotic plaque.
- Embolic-embolus from another part of the body obstructs vessel. Can affect multiple vascular territories. Examples: atrial fibrillation, carotid artery stenosis, DVT with patent foramen ovale.
- Hypoxic—due to hypoperfusion or hypoxemia. Common during cardiovascular surgeries, tends to affect watershed areas.
Treatment: tPA (if within 3-4.5 hr of onset and no hemorrhage/risk of hemorrhage). Reduce risk with medical therapy (eg, aspirin, clopidogrel); optimum control of blood pressure, blood sugars, lipids; and treat conditions that $\uparrow$ risk (eg, atrial fibrillation, carotid artery stenosis).
Transient ischemic
attack

Brief, reversible episode of focal neurologic dysfunction without acute infarction $(\ominus$ MRI $)$, with the majority resolving in $<15$ minutes; deficits due to focal ischemia.

Neonatal intraventricular hemorrhage


Bleeding into ventricles (arrow in A shows blood in right intraventricular blood, extending into periventricular white matter). Increased risk in premature and low-birth-weight infants. Originates in germinal matrix, a highly vascularized layer within the subventricular zone. Due to reduced glial fiber support and impaired autoregulation of BP in premature infants. Can present with altered level of consciousness, bulging fontanelle, hypotension, seizures, coma.

## Intracranial hemorrhage

Subdural hematoma

Subarachnoid hemorrhage

Intraparenchymal hemorrhage

Rupture of middle meningeal artery (branch of maxillary artery), often $2^{\circ}$ to skull fracture (circle in $\boldsymbol{A}$ ) involving the pterion (thinnest area of the lateral skull). Lucid interval. Scalp hematoma (arrows in $\mathbb{A}$ ) and rapid intracranial expansion (arrows in B) under systemic arterial pressure $\rightarrow$ transtentorial herniation, CN III palsy.
CT shows biconvex (lentiform), hyperdense blood collection B not crossing suture lines.
Rupture of bridging veins. Can be acute (traumatic, high-energy impact $\rightarrow$ hyperdense on CT) or chronic (associated with mild trauma, cerebral atrophy, elderly, alcoholism $\rightarrow$ hypodense on CT). Also seen in shaken babies. Predisposing factors: brain atrophy, trauma.
Crescent-shaped hemorrhage (red arrows in [C and $\mathbf{D}$ ) that crosses suture lines. Can cause midline shift (yellow arrow in CC), findings of "acute on chronic" hemorrhage (blue arrows in (D).
Bleeding $\mathbf{E} \mathbf{F}$ due to trauma, or rupture of an aneurysm (such as a saccular aneurysm [-) or arteriovenous malformation. Rapid time course. Patients complain of "worst headache of my life." Bloody or yellow (xanthochromic) spinal tap. Vasospasm can occur due to blood breakdown or rebleed 3-10 days after hemorrhage $\rightarrow$ ischemic infarct; nimodipine used to prevent/reduce vasospasm. $\uparrow$ risk of developing communicating and/or obstructive hydrocephalus.
Most commonly caused by systemic hypertension. Also seen with amyloid angiopathy (recurrent lobar hemorrhagic stroke in elderly), vasculitis, neoplasm. May be $2^{\circ}$ to reperfusion injury in ischemic stroke. Hypertensive hemorrhages (CharcotBouchard microaneurysm) most often occur in putamen of basal ganglia (lenticulostriate vessels (G), followed by thalamus, pons, and cerebellum [H.


Effects of strokes

ARTERY	AREA OF LESION	SYMPTOMS	NOTES
Anterior circulation			
Middle cerebral artery	```Motor and sensory cortices \(\boldsymbol{A}\)-upper limb and face. Temporal lobe (Wernicke area); frontal lobe (Broca area).```	Contralateral paralysis and sensory loss-face and upper limb.   Aphasia if in dominant (usually left) hemisphere. Hemineglect if lesion affects nondominant (usually right) side.	Wernicke aphasia is associated with right superior quadrant visual field defect due to temporal lobe involvement.
Anterior cerebral artery	Motor and sensory cortices-lower limb.	Contralateral paralysis and sensory loss-lower limb, urinary incontinence.	
Lenticulostriate artery	Striatum, internal capsule.	Contralateral paralysis. Absence of cortical signs (eg, neglect, aphasia, visual field loss).	Common location of lacunar infarcts $B$, due to hyaline arteriosclerosis $2^{\circ}$ to unmanaged hypertension.
Posterior circulation			
Anterior spinal artery	Lateral corticospinal tract.   Medial lemniscus.   Caudal medulla-hypoglossal nerve.	Contralateral paralysis-upper and lower limbs.   $\downarrow$ contralateral proprioception.   Ipsilateral hypoglossal dysfunction (tongue deviates ipsilaterally).	Medial medullary syndromecaused by infarct of paramedian branches of ASA and/or vertebral arteries.
Posterior inferior cerebellar artery	Lateral medulla:   Nucleus ambiguus (CN IX, X, XI)   Vestibular nuclei   Lateral spinothalamic tract, spinal trigeminal nucleus   Sympathetic fibers Inferior cerebellar peduncle	Dysphagia, hoarseness, $\downarrow$ gag reflex, hiccups   Vomiting, vertigo, nystagmus   $\downarrow$ pain and temperature sensation from contralateral body, ipsilateral face   Ipsilateral Horner syndrome   Ipsilateral ataxia, dysmetria	Lateral medullary (Wallenberg) syndrome.   Nucleus ambiguus effects are specific to PICA lesions C.   "Don't pick a (PICA) horse (hoarseness) that can't eat (dysphagia)."   Also supplies inferior cerebellar peduncle (part of cerebellum).
Anterior inferior cerebellar artery	Lateral pons:   Facial nucleus   Vestibular nuclei   Spinothalamic tract, spinal trigeminal nucleus   Sympathetic fibers   Middle and inferior cerebellar peduncles   Labyrinthine artery	Paralysis of face (LMN lesion vs UMN lesion in cortical stroke), $\downarrow$ lacrimation, $\downarrow$ salivation, $\downarrow$ taste from anterior $2 / 3$ of tongue   Vomiting, vertigo, nystagmus   $\downarrow$ pain and temperature sensation from contralateral body, ipsilateral face   Ipsilateral Horner syndrome   Ataxia, dysmetria   Ipsilateral sensorineural deafness, vertigo	Lateral pontine syndrome. Facial nucleus effects are specific to AICA lesions.   "Facial droop means AICA's pooped."   Also supplies middle and inferior cerebellar peduncles (part of cerebellum).

Effects of strokes (continued)

ARTERY	AREA OFLESION	SYMPToMs	NOTES
Basilar artery	Pons, medulla, lower midbrain	RAS spared, therefore preserved consciousness	Locked-in syndrome (locked in the basement)
	Corticospinal and corticobulbar tracts	Quadriplegia; loss of voluntary facial, mouth, and tongue movements	
	Ocular cranial nerve nuclei, paramedian pontine reticular formation	Loss of horizontal, but not vertical, eye movements	
Posterior cerebral artery	Occipital lobe	Contralateral hemianopia with macular sparing; alexia without agraphia (dominant hemisphere).	



Central post-stroke pain syndrome

Neuropathic pain due to thalamic lesions. Initial paresthesias followed in weeks to months by allodynia (ordinarily painless stimuli cause pain) and dysesthesia on the contralateral side. Occurs in $10 \%$ of stroke patients.

Diffuse axonal injury


Caused by traumatic shearing forces during rapid acceleration and/or deceleration of the brain (eg, motor vehicle accident). Usually results in devastating neurologic injury, often causing coma or persistent vegetative state. $A$ shows multiple lesions (punctate hemorrhages) involving the white matter tracts.

| Aphasia | Aphasia-higher-order language deficit (inability to understand/produce/use language appropriately); <br> caused by pathology in dominant cerebral hemisphere (usually left). <br> Dysarthria-motor inability to speak (movement deficit). |
| :--- | :--- | :--- | :--- |
| COPPREHENION | comments |

## Aneurysms

## Saccular aneurysm

## Charcot-Bouchard

 microaneurysmAbnormal dilation of an artery due to weakening of vessel wall.
Also known as berry aneurysm. Occurs at bifurcations in the circle of Willis. Most common site is junction of ACom and ACA. Associated with ADPKD, Ehlers-Danlos syndrome. Other risk factors: advanced age, hypertension, smoking, race ( $\uparrow$ risk in African-Americans).
Usually clinically silent until rupture (most common complication) $\rightarrow$ subarachnoid hemorrhage ("worst headache of my life" or "thunderclap headache") $\rightarrow$ focal neurologic deficits. Can also cause symptoms via direct compression of surrounding structures by growing aneurysm.

- ACom-compression $\rightarrow$ bitemporal hemianopia (compression of optic chiasm); visual acuity deficits; rupture $\rightarrow$ ischemia in ACA distribution $\rightarrow$ contralateral lower extremity hemiparesis, sensory deficits.
- MCA-rupture $\rightarrow$ ischemia in MCA distribution $\rightarrow$ contralateral upper extremity and lower facial hemiparesis, sensory deficits.
- PCom-compression $\rightarrow$ ipsilateral CN III palsy $\rightarrow$ mydriasis ("blown pupil"); may also see ptosis, "down and out" eye.
Common, associated with chronic hypertension; affects small vessels (eg, lenticulostriate arteries in basal ganglia, thalamus) and can cause lacunar strokes. Not visible on angiography.

Seizures	Characterized by synchronized, high-frequenc	onal firing. Variety of forms.
Partial (focal) seizures	Affect single area of the brain. Most commonly originate in medial temporal lobe. Types:   - Simple partial (consciousness intact)motor, sensory, autonomic, psychic   - Complex partial (impaired consciousness, automatisms)	Epilepsy—a disorder of recurrent seizures   (febrile seizures are not epilepsy).   Status epilepticus-continuous ( $\geq 5 \mathrm{~min}$ ) or recurring seizures that may result in brain injury.   Causes of seizures by age:
Generalized seizures	Diffuse. Types:   - Absence (petit mal) - 3 Hz spike-and-wave discharges, no postictal confusion, blank stare   - Myoclonic-quick, repetitive jerks   - Tonic-clonic (grand mal)—alternating stiffening and movement   - Tonic-stiffening   - Atonic-"drop" seizures (falls to floor); commonly mistaken for fainting	- Children-genetic, infection (febrile), trauma, congenital, metabolic   - Adults-tumor, trauma, stroke, infection   - Elderly-stroke, tumor, trauma, metabolic, infection


Headaches	Pain due to irritation of structures such as the dura, cranial nerves, or extracranial structures. More common in females, except cluster headaches.			
CLASSIFICATION	Localization	DURATION	DESCRIPTION	Treatment
Cluster ${ }^{\text {a }}$	Unilateral	$\begin{aligned} & 15 \mathrm{~min}-3 \mathrm{hr} \text {; } \\ & \text { repetitive } \end{aligned}$	Excruciating periorbital pain ("suicide headache") with lacrimation and rhinorrhea. May present with Horner syndrome. More common in males.	Acute: sumatriptan, $100 \% \mathrm{O}_{2}$   Prophylaxis: verapamil
Tension	Bilateral	$>30 \mathrm{~min}$   (typically 4-6   hr); constant	Steady, "band-like" pain. No photophobia or phonophobia. No aura.	Analgesics, NSAIDs, acetaminophen; amitriptyline for chronic pain
Migraine	Unilateral	4-72 hr	Pulsating pain with nausea, photophobia, or phonophobia. May have "aura." Due to irritation of CN V, meninges, or blood vessels (release of substance P , calcitonin gene-related peptide, vasoactive peptides).	Acute: NSAIDs, triptans, dihydroergotamine Prophylaxis: lifestyle changes (eg, sleep, exercise, diet), $\beta$-blockers, amitriptyline, topiramate, valproate.   POUND-Pulsatile, One-day duration, Unilateral, Nausea, Disabling

Other causes of headache include subarachnoid hemorrhage ("worst headache of my life"), meningitis, hydrocephalus, neoplasia, giant cell (temporal) arteritis.
${ }^{a}$ Compare with trigeminal neuralgia, which produces repetitive, unilateral, shooting pain in the distribution of CN V. Triggered by chewing, talking, touching certain parts of the face. Lasts (typically) for seconds to minutes, but episodes often increase in intensity and frequency over time. First-line therapy: carbamazepine.

## Movement disorders

DISORDER	PRESENTATION	Characteristic lesion	Notes
Akathisia	Restlessness and intense urge to move		Can be seen with neuroleptic use or as a side-effect of Parkinson treatment.
Asterixis	Extension of wrists causes "flapping" motion		Associated with hepatic encephalopathy, Wilson disease, and other metabolic derangements.
Athetosis	Slow, snake-like, writhing movements; especially seen in the fingers	Basal ganglia	
Chorea	Sudden, jerky, purposeless movements	Basal ganglia	Chorea $=$ dancing.   Seen in Huntington disease and in acute rheumatic fever (Sydenham chorea).
Dystonia	Sustained, involuntary muscle contractions		Writer's cramp, blepharospasm, torticollis.
Essential tremor	High-frequency tremor with sustained posture (eg, outstretched arms), worsened with movement or when anxious		Often familial. Patients often self-medicate with alcohol, which $\downarrow$ tremor amplitude. Treatment: nonselective $\beta$-blockers (eg, propranolol), primidone.
Hemiballismus	Sudden, wild flailing of 1 arm +/- ipsilateral leg	Contralateral subthalamic nucleus (eg, lacunar stroke)	Pronounce "Half-of-body ballistic." Contralateral lesion.
Intention tremor	Slow, zigzag motion when pointing/extending toward a target	Cerebellar dysfunction	
Myoclonus	Sudden, brief, uncontrolled muscle contraction		Jerks; hiccups; common in metabolic abnormalities such as renal and liver failure.
Resting tremor	Uncontrolled movement of distal appendages (most noticeable in hands); tremor alleviated by intentional movement	Substantia nigra (Parkinson disease)	Occurs at rest; "pill-rolling tremor" of Parkinson disease. When you park your car, it is at rest.
Restless legs syndrome	Worse at rest/nighttime. Relieved by movement		Associated with iron deficiency, CKD. Treat with dopamine agonists (pramipexole, ropinirole).

## Neurodegenerative disorders

$\downarrow$ in cognitive ability, memory, or function with intact consciousness.
Must rule out depression as cause of dementia (known as pseudodementia).

DISEASE	DESCRIPTION	HISTOLOGII/GROSS FINDINGS
Parkinson disease	Parkinson TRAPS your body:   Tremor (pill-rolling tremor at rest)   Rigidity (cogwheel)   Akinesia (or bradykinesia)   Postural instability   Shuffling gait   MPTP, a contaminant in illegal drugs, is metabolized to MPP+, which is toxic to substantia nigra.	Loss of dopaminergic neurons (ie, depigmentation) of substantia nigra pars compacta.   Lewy bodies: composed of $\alpha$-synuclein (intracellular eosinophilic inclusions © $\boldsymbol{A}$ ).
Huntington disease	Autosomal dominant trinucleotide (CAG) ${ }_{n}$ repeat expansion in the huntingtin (HTT) gene on chromosome 4 (4 letters). Symptoms manifest between ages 20 and 50: chorea, athetosis, aggression, depression, dementia (sometimes initially mistaken for substance abuse).   Anticipation results from expansion of CAG repeats. Caudate loses ACh and GABA.	Atrophy of caudate and putamen with ex vacuo ventriculomegaly.   $\uparrow$ dopamine, $\downarrow$ GABA, $\downarrow$ ACh in brain. Neuronal death via NMDA-R binding and glutamate excitotoxicity.
Alzheimer disease	Most common cause of dementia in elderly. Down syndrome patients have $\uparrow$ risk of developing Alzheimer disease, as APP is located on chromosome 21.   $\downarrow$ ACh.   Associated with the following altered proteins:   - ApoE-2: $\downarrow$ risk of sporadic form   - ApoE-4: $\uparrow$ risk of sporadic form   - APP, presenilin-l, presenilin-2: familial forms ( $10 \%$ ) with earlier onset	Widespread cortical atrophy (normal cortex B; cortex in Alzheimer disease (C), especially hippocampus (arrows in $\mathbb{B}$ and ). Narrowing of gyri and widening of sulci.   Senile plaques in gray matter: extracellular $\beta$-amyloid core; may cause amyloid angiopathy $\rightarrow$ intracranial hemorrhage; $\mathrm{A} \beta$ (amyloid- $\beta$ ) synthesized by cleaving amyloid precursor protein (APP).   Neurofibrillary tangles [E: intracellular, hyperphosphorylated tau protein = insoluble cytoskeletal elements; number of tangles correlates with degree of dementia.
Frontotemporal dementia	Also known as Pick disease. Early changes in personality and behavior (behavioral variant), or aphasia (primary progressive aphasia).   May have associated movement disorders (eg, parkinsonism).	Frontotemporal lobe degeneration [F. Inclusions of hyperphosphorylated tau (round Pick bodies (G) or ubiquitinated TDP-43.
Lewy body dementia	Visual hallucinations ("haLewycinations"), dementia with fluctuating cognition/ alertness, REM sleep behavior disorder, and parkinsonism. Called Lewy body dementia if cognitive and motor symptom onset $<\mathrm{l}$ year apart, otherwise considered dementia $2^{\circ}$ to Parkinson disease.	Intracellular Lewy bodies $\boldsymbol{A}$ primarily in cortex.

## Neurodegenerative disorders (continued)

DISEASE	DESCRIPTION	HISTOLOGIC/GROSS FINDINGS
Vascular dementia	Result of multiple arterial infarcts and/or chronic ischemia.   Step-wise decline in cognitive ability with lateonset memory impairment. 2nd most common cause of dementia in elderly.	MRI or CT shows multiple cortical and/or subcortical infarcts.
Creutzfeldt-Jakob disease	Rapidly progressive (weeks to months) dementia with myoclonus ("startle myoclonus") and ataxia. Commonly see periodic sharp waves on EEG and $\uparrow$ 14-3-3 protein in CSF.	Spongiform cortex.   Prions ( $\mathrm{PrP}^{\mathrm{c}} \rightarrow \mathrm{PrP}^{\text {Pc }}$ sheet $[\beta$-pleated sheet resistant to proteases]) $\mathbf{H}$.

Idiopathic intracranial hypertension

Also known as pseudotumor cerebri. $\uparrow$ ICP with no apparent cause on imaging (eg, hydrocephalus, obstruction of CSF outflow). Risk factors include female gender, Tetracyclines, Obesity, vitamin A excess, Danazol (female TOAD).
Findings: headache, tinnitus, diplopia (usually from CN VI palsy), no change in mental status. Impaired optic nerve axoplasmic flow $\rightarrow$ papilledema. Visual field testing shows enlarged blind spot and peripheral constriction. Lumbar puncture reveals $\uparrow$ opening pressure and provides temporary headache relief.
Treatment: weight loss, acetazolamide, invasive procedures for refractory cases (eg, CSF shunt placement, optic nerve sheath fenestration surgery for visual loss).

Hydrocephalus $\quad \uparrow$ CSF volume $\rightarrow$ ventricular dilation $+/-\uparrow$ ICP.


## Multiple sclerosis

FINDINGS

treatment

Autoimmune inflammation and demyelination of CNS (brain and spinal cord) with subsequent axonal damage. Can present with:

- Acute optic neuritis (painful unilateral visual loss associated with Marcus Gunn pupil)
- Brain stem/cerebellar syndromes (eg, diplopia, ataxia, scanning speech, intention tremor, nystagmus/INO (bilateral > unilateral)
- Pyramidal tract weakness
- Spinal cord syndromes (eg, electric shock-like sensation along spine on neck flexion [Lhermitte phenomenon], neurogenic bladder, paraparesis, sensory manifestations affecting the trunk or one or more extremity)
Symptoms may exacerbate with increased body temperature (eg, hot bath, exercise). Relapsing and remitting is most common clinical course. Most often affects women in their 20s and 30s; more common in Caucasians living farther from equator.
$\uparrow$ IgG level and myelin basic protein in CSF. Oligoclonal bands are diagnostic. MRI is gold standard. Periventricular plaques A (areas of oligodendrocyte loss and reactive gliosis). Multiple white matter lesions disseminated in space and time.

Stop relapses and halt/slow progression with disease-modifying therapies (eg, $\beta$-interferon, glatiramer, natalizumab). Treat acute flares with IV steroids. Symptomatic treatment for neurogenic bladder (catheterization, muscarinic antagonists), spasticity (baclofen, GABA $_{B}$ receptor agonists), pain (TCAs, anticonvulsants).

## Other demyelinating and dysmyelinating disorders

Osmotic demyelination syndrome


Acute inflammatory demyelinating polyradiculopathy

Acute disseminated (postinfectious) encephalomyelitis Charcot-Marie-Tooth disease

Progressive multifocal leukoencephalopathy


Other disorders

Also known as central pontine myelinolysis. Massive axonal demyelination in pontine white matter A $2^{\circ}$ to rapid osmotic changes, most commonly iatrogenic correction of hyponatremia but also rapid shifts of other osmolytes (eg, glucose). Acute paralysis, dysarthria, dysphagia, diplopia, loss of consciousness. Can cause "locked-in syndrome."
Correcting serum $\mathrm{Na}^{+}$too fast:
-"From low to high, your pons will die" (osmotic demyelination syndrome).

- "From high to low, your brains will blow" (cerebral edema/herniation).

Most common subtype of Guillain-Barré syndrome. Autoimmune condition associated with infections (eg, Campylobacter jejuni, viruses [eg, Zika]) that destroys Schwann cells by inflammation and demyelination of peripheral nerves (including cranial nerves III-XII) and motor fibers likely due to molecular mimicry, inoculations, and stress, but no definitive link to pathogens.
Results in symmetric ascending muscle weakness/paralysis and depressed/absent DTRs beginning in lower extremities. Facial paralysis (usually bilateral) and respiratory failure are common. May see autonomic dysregulation (eg, cardiac irregularities, hypertension, hypotension) or sensory abnormalities. Almost all patients survive; majority recover completely after weeks to months.
$\uparrow$ CSF protein with normal cell count (albuminocytologic dissociation).
Respiratory support is critical until recovery. Disease-modifying treatment: plasmapheresis, IV immunoglobulins. No role for steroids.
Multifocal inflammation and demyelination after infection or vaccination. Presents with rapidly progressive multifocal neurologic symptoms, altered mental status.

Also known as hereditary motor and sensory neuropathy. Group of progressive hereditary nerve disorders related to the defective production of proteins involved in the structure and function of peripheral nerves or the myelin sheath. Typically autosomal dominant inheritance pattern and associated with foot deformities (eg, pes cavus, hammer toe), lower extremity weakness (eg, foot drop), and sensory deficits. Most common type, CMT1A, is caused by PMP22 gene duplication.
Demyelination of CNS B due to destruction of oligodendrocytes ( $2^{\circ}$ to reactivation of latent JC virus infection). Seen in 2-4\% of patients with AIDS. Rapidly progressive, usually fatal. Predominantly involves parietal and occipital areas; visual symptoms are common. $\uparrow$ risk associated with natalizumab, rituximab.

Krabbe disease, metachromatic leukodystrophy, adrenoleukodystrophy.

## Neurocutaneous disorders

Sturge-Weber syndrome

## Tuberous sclerosis

## Neurofibromatosis

 type INeurofibromatosis type II
von Hippel-Lindau disease

Also known as encephalotrigeminal angiomatosis. Congenital, noninherited (sporadic), developmental anomaly of neural crest derivatives due to somatic mosaicism for an activating mutation in one copy of the GNAQ gene. Affects small (capillary-sized) blood vessels $\rightarrow$ port-wine stain of the face $\boldsymbol{A}$ (nevus flammeus, a non-neoplastic "birthmark" in $C N V_{1} / V_{2}$ distribution); ipsilateral leptomeningeal angioma $\mathrm{B} \rightarrow$ seizures/epilepsy; intellectual disability; and episcleral hemangioma $\rightarrow \uparrow$ IOP $\rightarrow$ early-onset glaucoma.
STURGE-Weber: Sporadic, port-wine Stain; Tram track calcifications (opposing gyri); Unilateral; Retardation (intellectual disability); Glaucoma, GNAQ gene; Epilepsy.
TSCl mutation on chromosome 9 or TSC2 mutation on chromosome 16. Tumor suppressor genes. Autosomal dominant, variable expression. HAMARTOMAS: Hamartomas in CNS and skin; Angiofibromas C; Mitral regurgitation; Ash-leaf spots D; cardiac Rhabdomyoma; (Tuberous sclerosis); autosomal dOminant; Mental retardation (intellectual disability); renal Angiomyolipoma E; Seizures, Shagreen patches. $\uparrow$ incidence of subependymal giant cell astrocytomas and ungual fibromas.
Also known as von Recklinghausen disease. Mutation in NF1 tumor suppressor gene on chromosome 17 ( 17 letters in "von Recklinghausen"), which normally codes for neurofibromin, a negative regulator of RAS. Autosomal dominant, $100 \%$ penetrance. Café-au-lait spots [F, cutaneous neurofibromas G, optic gliomas, pheochromocytomas, Lisch nodules (pigmented iris hamartomas H).
Mutation in NF2 tumor suppressor gene on chromosome 22. Autosomal dominant. Findings: bilateral acoustic schwannomas, juvenile cataracts, meningiomas, and ependymomas. NF2 affects 2 ears, 2 eyes, and 2 parts of the brain.
Deletion of VHL gene on chromosome 3p (VHL $=3$ letters). Autosomal dominant. pVHL ubiquitinates hypoxia-inducible factor la. Characterized by development of numerous tumors, both benign and malignant. HARP: Hemangioblastomas (high vascularity with hyperchromatic nuclei $\square$ ) in retina, brain stem, cerebellum, spine J; Angiomatosis (eg, cavernous hemangiomas in skin, mucosa, organs); bilateral Renal cell carcinomas; Pheochromocytomas.


## Adult primary brain tumors

TUMOR	DESCRIPTION	HISTOLOGY
Glioblastoma multiforme	Grade IV astrocytoma. Common, highly malignant $1^{\circ}$ brain tumor with $\sim 1$-year median survival. Found in cerebral hemispheres $\boldsymbol{A}$. Can cross corpus callosum ("butterfly glioma").	Astrocyte origin, GFAP $\oplus$. "Pseudopalisading" pleomorphic tumor cells B border central areas of necrosis, hemorrhage, and/or microvascular proliferation.
Oligodendroglioma	Relatively rare, slow growing. Most often in frontal lobes [C. "Chicken-wire" capillary pattern.	Oligodendrocyte origin. "Fried egg" cellsround nuclei with clear cytoplasm $\mathbf{D}$. Often calcified.
Meningioma	Common, typically benign. Females > males. Most often occurs near surfaces of brain and in parasagittal region. Extra-axial (external to brain parenchyma) and may have a dural attachment ("tail" E®). Often asymptomatic; may present with seizures or focal neurologic signs. Resection and/or radiosurgery.	Arachnoid cell origin. Spindle cells concentrically arranged in a whorled pattern; psammoma bodies [laminated calcifications).
Hemangioblastoma	Most often cerebellar G. Associated with von Hippel-Lindau syndrome when found with retinal angiomas. Can produce erythropoietin $\rightarrow 2^{\circ}$ polycythemia.	Blood vessel origin. Closely arranged, thinwalled capillaries with minimal intervening parenchyma
Pituitary adenoma	Adenoma may be nonfunctioning (silent) or hyperfunctioning (hormone producing). Most commonly from lactotrophs (prolactinoma)   \| hyperprolactinemia; less commonly adenoma of somatotrophs $(\mathrm{GH}) \rightarrow$ acromegaly/ gigantism; corticotrophs (ACTH) $\rightarrow$ Cushing disease. Rarely, adenoma of thyrotrophs (TSH) and gonadotroph (FSH, LH). Nonfunctional tumors present with mass effect (bitemporal hemianopia, hypopituitarism, headache). Bitemporal hemianopia due to pressure on optic chiasm ( $\triangle$ shows normal visual field above, patient's perspective below). Sequelae include hyper- or hypopituitarism, which may be caused by pituitary apoplexy.	Hyperplasia of only one type of endocrine cells found in pituitary (ie, lactotroph, gonadotroph, somatotroph, corticotroph).   Prolactinoma in women classically presents as galactorrhea, amenorrhea, and $\downarrow$ bone density due to suppression of estrogen. Prolactinoma in men classically presents as low libido and infertility.   Treatment: dopamine agonists (eg, bromocriptine, cabergoline), transsphenoidal resection.
Schwannoma	Classically at the cerebellopontine angle $\mathbf{K}$ involving both CNs VII and VIII, but can be along any peripheral nerve. Often localized to CN VIII in internal acoustic meatus $\rightarrow$ vestibular schwannoma. Bilateral vestibular schwannomas found in NF-2. Resection or stereotactic radiosurgery.	Schwann cell origin LL, S-100 $\oplus$. Biphasic. Dense, hypercellular areas containing spindle cells alternating with hypocellular, myxoid areas.



TUMOR	DESCRIPTION	HISTOLOGY
Pilocytic astrocytoma	Low-grade astrocytoma. Most common $1^{\circ}$ brain tumor in childhood. Usually well circumscribed. In children, most often found in posterior fossa $\boldsymbol{A}$ (eg, cerebellum). May be supratentorial. Benign; good prognosis.	Glial cell origin, GFAP $\oplus$. Rosenthal fibers-eosinophilic, corkscrew fibers [B. Cystic + solid (gross).
Medulloblastoma	Most common malignant brain tumor in childhood. Commonly involves cerebellum C. Can compress 4th ventricle, causing noncommunicating hydrocephalus   $\rightarrow$ headaches, papilledema. Can send "drop metastases" to spinal cord.	Form of primitive neuroectodermal tumor (PNET). Homer-Wright rosettes, small blue cells D.
Ependymoma	Most commonly found in 4th ventricle ㅌ. Can cause hydrocephalus. Poor prognosis.	Ependymal cell origin. Characteristic perivascular pseudorosettes F. Rod-shaped blepharoplasts (basal ciliary bodies) found near the nucleus.
Craniopharyngioma	Most common childhood supratentorial tumor. May be confused with pituitary adenoma (both cause bitemporal hemianopia).	Derived from remnants of Rathke pouch (ectoderm). Calcification is common $\mathbf{G} \boldsymbol{H}$. Cholesterol crystals found in "motor oil"-like fluid within tumor.
Pinealoma	Tumor of pineal gland. Can cause Parinaud syndrome (compression of tectum $\rightarrow$ vertical gaze palsy); obstructive hydrocephalus (compression of cerebral aqueduct); precocious puberty in males ( $\beta$-hCG production).	Similar to germ cell tumors (eg, testicular seminoma).

Herniation syndromes

(1) Cingulate (subfalcine) herniation under Can compress anterior cerebral artery. falx cerebri
(2) Transtentorial (central/downward) herniation
(3) Uncal herniation
(4) Cerebellar tonsillar herniation into the foramen magnum

Caudal displacement of brain stem $\rightarrow$ rupture of paramedian basilar artery branches $\rightarrow$ Duret hemorrhages. Usually fatal.

Uncus = medial temporal lobe. Herniation compresses ipsilateral CN III and contralateral crus cerebri against Kernohan notch (causes contralateral CN III palsy and/or ipsilateral hemiparesis, ie, a false localizing sign).
Coma and death result when these herniations compress the brain stem.

## Motor neuron signs

SIGN	UMN LESION	LMN LESION	COMMENTS
Weakness	+	+	Lower motor neuron $=$ everything lowered
Atrophy	-	+	(less muscle mass, $\downarrow$ muscle tone, $\downarrow$ reflexes,
Fasciculations	-	+	downgoing toes).
Reflexes	$\uparrow$	$\downarrow$	Upper motor neuron $=$ everything up (tone,
Tone	$\uparrow$	$\downarrow$	DTRs, toes).
Babinski	+	-	Pasciculations $=$ muscle twitching.
Spastic paresis	+	-	
Flaccid paralysis	-	+	
Clasp knife spasticity	+	-	

CHARACTERISTICS
Congenital degeneration of anterior horns of spinal
cord. LMN lesions only, symmetric weakness.
"Floppy baby" with marked hypotonia (Flaccid
paralysis) and tongue Fasciculations. Autosomal
recessive inheritance of mutation in SMNl.
SMA type l is called Werdnig-Hoffmann disease.

## Poliomyelitis

Caused by poliovirus (fecal-oral transmission). Replicates in oropharynx and small intestine before spreading via bloodstream to CNS. Infection causes destruction of cells in anterior horn of spinal cord (LMN death).
Signs of LMN lesion: asymmetric weakness, hypotonia, flaccid paralysis, fasciculations, hyporeflexia, muscle atrophy. Respiratory muscle involvement leads to respiratory failure. Signs of infection: malaise, headache, fever, nausea, etc.
CSF shows $\uparrow$ WBCs (lymphocytic pleocytosis) and slight $\uparrow$ of protein (with no change in CSF glucose). Virus recovered from stool or throat.

## Brown-Séquard syndrome

Hemisection of spinal cord. Findings:
(1) Ipsilateral loss of all sensation at level of lesion
(2) Ipsilateral LMN signs (eg, flaccid paralysis) at level of lesion
(3) Ipsilateral UMN signs below level of lesion (due to corticospinal tract damage)
(4) Ipsilateral loss of proprioception, vibration, light (2-point discrimination) touch, and tactile sense below level of lesion (due to dorsal column damage).
(5) Contralateral loss of pain, temperature, and crude (nonadiscriminative) touch below level of lesion (due to spinothalamic tract damage)
If lesion occurs above Tl , patient may present with ipsilateral Horner syndrome due to damage of oculosympathetic pathway.


## Friedreich ataxia

Autosomal recessive trinucleotide repeat disorder $(\mathrm{GAA})_{\mathrm{n}}$ on chromosome 9 in gene that encodes frataxin (iron binding protein). Leads to impairment in mitochondrial functioning. Degeneration of lateral corticospinal tract (spastic paralysis), spinocerebellar tract (ataxia), dorsal columns ( $\downarrow$ vibratory sense, proprioception), and dorsal root ganglia (loss of DTRs). Staggering gait, frequent falling, nystagmus, dysarthria, pes cavus, hammer toes, diabetes mellitus, hypertrophic cardiomyopathy (cause of death). Presents in childhood with kyphoscoliosis A B.

Friedreich is Fratastic (frataxin): he's your favorite frat brother, always staggering and falling but has a sweet, big heart. Ataxic GAAit.


## Common cranial nerve lesions

CN V motor lesion	Jaw deviates toward side of lesion due to unopposed force from the opposite pterygoid muscle.
CN X lesion	Uvula deviates away from side of lesion. Weak side collapses and uvula points away.
CN XI lesion	Weakness turning head to contralateral side of lesion (SCM). Shoulder droop on side of lesion   (trapezius).
The left SCM contracts to help turn the head to the right.	

Facial nerve lesions Bell palsy is the most common cause of peripheral facial palsy ©. Usually develops after HSV
 reactivation. Treatment: corticosteroids $\pm$ acyclovir. Most patients gradually recover function, but aberrant regeneration can occur. Other causes of peripheral facial palsy include Lyme disease, herpes zoster (Ramsay Hunt syndrome), sarcoidosis, tumors (eg, parotid gland), diabetes mellitus.

	Upper motor neuron lesion	Lower motor neuron lesion
LeSION LOCATION	Motor cortex, connection from motor cortex to   facial nucleus in pons	Facial nucleus, anywhere along CN VII
AFFECTED SIDE	Contralateral	Ipsilateral
MUSCLES INVOLVED	Lower muscles of facial expression	Upper and lower muscles of facial expression
FOREHEAD INVOLVED?	Spared, due to bilateral UMN innervation	Affected
OTHER SYMPTOMS	None	Incomplete eye closure (dry eyes, corneal   ulceration), hyperacusis, loss of taste sensation   to anterior tongue



## , NEUROLOGY-OTOLOGY

## Auditory physiology

Outer ear

Middle ear

Inner ear

Visible portion of ear (pinna), includes auditory canal and tympanic membrane. Transfers sound waves via vibration of tympanic membrane.
Air-filled space with three bones called the ossicles (malleus, incus, stapes). Ossicles conduct and amplify sound from tympanic membrane to inner ear.
Snail-shaped, fluid-filled cochlea. Contains basilar membrane that vibrates $2^{\circ}$ to sound waves. Vibration transduced via specialized hair cells $\rightarrow$ auditory nerve signaling $\rightarrow$ brain stem. Each frequency leads to vibration at specific location on basilar membrane (tonotopy):

- Low frequency heard at apex near helicotrema (wide and flexible).
- High frequency heard best at base of cochlea (thin and rigid).


## Diagnosing hearing loss

	WEBER TEST	RINNE TEST
Conductive hearing   loss	Localizes to affected ear	Abnormal (bone $>$ air)
Sensorineural hearing   loss	Localizes to unaffected ear	Normal (air $>$ bone)

Types of hearing loss

Noise-induced   hearing loss
Damage to stereociliated cells in organ of Corti. Loss of high-frequency hearing first. Sudden   extremely loud noises can produce hearing loss due to tympanic membrane rupture.
Presbycusis
Aging-related progressive bilateral/symmetric sensorineural hearing loss (often of higher   frequencies) due to destruction of hair cells at the cochlear base (preserved low-frequency hearing   at apex).

Cholesteatoma


Overgrowth of desquamated keratin debris within the middle ear space ( $\boldsymbol{A}$, arrows); may erode ossicles, mastoid air cells $\rightarrow$ conductive hearing loss. Often presents with painless otorrhea.

Vertigo	Sensation of spinning while actually stationary. Subtype of "dizziness," but distinct from   "lightheadedness."
Peripheral vertigo	More common. Inner ear etiology (eg, semicircular canal debris, vestibular nerve infection,   Ménière disease [triad: sensorineural hearing loss, vertigo, tinnitus], benign paroxysmal positional   vertigo [BPPV]). Treatment: antihistamines, anticholinergics, antiemetics (symptomatic relief);   low-salt diet $\pm$ diuretics (Ménière disease); Epley maneuver (BPPV).
Central vertigo	Brain stem or cerebellar lesion (eg, stroke affecting vestibular nuclei or posterior fossa tumor).   Findings: directional or purely vertical nystagmus, skew deviation, diplopia, dysmetria. Focal   neurologic findings.

NEUROLOGY—OPHTHALMOLOGY

## Normal eye



## Conjunctivitis



Inflammation of the conjunctiva $\rightarrow$ red eye $\boldsymbol{A}$.
Allergic-itchy eyes, bilateral.
Bacterial-pus; treat with antibiotics.
Viral-most common, often adenovirus; sparse mucous discharge, swollen preauricular node; selfresolving.

Refractive errors	Common cause of impaired vision, correctable with glasses.
Hyperopia	Also known as "farsightedness." Eye too short for refractive power of cornea and lens $\rightarrow$ light   focused behind retina. Correct with convex (converging) lenses.
Myopia	Also known as "nearsightedness." Eye too long for refractive power of cornea and lens $\rightarrow$ light   focused in front of retina. Correct with concave (diverging) lens.
Astigmatism	Abnormal curvature of cornea $\rightarrow$ different refractive power at different axes. Correct with   cylindrical lens.
Presbyopia	Aging-related impaired accommodation (focusing on near objects), primarily due to $\downarrow$ lens   elasticity, changes in lens curvature, $\downarrow$ strength of the ciliary muscle. Patients often need "reading   glasses" (magnifiers).

## Cataract



Painless, often bilateral, opacification of lens $\boldsymbol{A}$, often resulting in glare and $\downarrow$ vision, especially at night. Acquired risk factors: $\uparrow$ age, smoking, excessive alcohol use, excessive sunlight, prolonged corticosteroid use, diabetes mellitus, trauma, infection. Congenital risk factors: classic galactosemia, galactokinase deficiency, trisomies (13, 18, 2l), ToRCHeS infections (eg, rubella), Marfan syndrome, Alport syndrome, myotonic dystrophy, neurofibromatosis 2.

## Aqueous humor pathway



Glaucoma	Optic disc atrophy with characteristic cupping (thinning of outer rim of optic nerve head B versus normal $\mathbb{A}$ ), usually with elevated intraocular pressure (IOP) and progressive peripheral visual field loss if untreated. Treatment is through pharmacologic or surgical lowering of IOP.
Open-angle glaucoma	Associated with $\uparrow$ age, African-American race, family history. Painless, more common in US. Primary-cause unclear.   Secondary-blocked trabecular meshwork from WBCs (eg, uveitis), RBCs (eg, vitreous hemorrhage), retinal elements (eg, retinal detachment).
Closed- or narrowangle glaucoma	Primary-enlargement or anterior movement of lens against central iris (pupil margin)   $\rightarrow$ obstruction of normal aqueous flow through pupil $\rightarrow$ fluid builds up behind iris, pushing peripheral iris against cornea $\mathbb{C}$ and impeding flow through trabecular meshwork. Secondary-hypoxia from retinal disease (eg, diabetes mellitus, vein occlusion) induces vasoproliferation in iris that contracts angle.   Chronic closure-often asymptomatic with damage to optic nerve and peripheral vision. Acute closure-true ophthalmic emergency. $\uparrow$ IOP pushes iris forward $\rightarrow$ angle closes abruptly. Very painful, red eye $\boldsymbol{D}$, sudden vision loss, halos around lights, frontal headache, fixed and mid-dilated pupil. Mydriatic agents contraindicated.

## Uveitis



Inflammation of uvea; specific name based on location within affected eye. Anterior uveitis: iritis; posterior uveitis: choroiditis and/or retinitis. May have hypopyon (accumulation of pus in anterior chamber $\boldsymbol{A}$ ) or conjunctival redness. Associated with systemic inflammatory disorders (eg, sarcoidosis, rheumatoid arthritis, juvenile idiopathic arthritis, HLA-B27-associated conditions).

Age-related macular degeneration


Degeneration of macula (central area of retina). Causes distortion (metamorphopsia) and eventual loss of central vision (scotomas).

- Dry (nonexudative, >80\%) -Deposition of yellowish extracellular material in between Bruch membrane and retinal pigment epithelium ("Drusen") A with gradual $\downarrow$ in vision. Prevent progression with multivitamin and antioxidant supplements.
- Wet (exudative, $10-15 \%$ ) -rapid loss of vision due to bleeding $2^{\circ}$ to choroidal neovascularization. Treat with anti-VEGF (vascular endothelial growth factor) injections (eg, bevacizumab, ranibizumab).


Retinal damage due to chronic hyperglycemia. Two types:

- Nonproliferative-damaged capillaries leak blood $\rightarrow$ lipids and fluid seep into retina $\rightarrow$ hemorrhages (arrows in $\boldsymbol{A}$ ) and macular edema. Treatment: blood sugar control.
- Proliferative-chronic hypoxia results in new blood vessel formation with resultant traction on retina. Treatment: peripheral retinal photocoagulation, surgery, anti-VEGF.

Hypertensive
retinopathy retinopathy


Retinal damage due to chronic uncontrolled HTN.
Flame-shaped retinal hemorrhages, arteriovenous nicking, microaneurysms, macular star (exudate, red arrow in $\boldsymbol{A}$ ), cotton-wool spots (blue arrow in $\boldsymbol{A}$ ). Presence of papilledema requires immediate lowering of BP .
Associated with $\uparrow$ risk of stroke, CAD, kidney disease.

Retinal vein occlusion


Blockage of central or branch retinal vein due to compression from nearby arterial atherosclerosis. Retinal hemorrhage and venous engorgement ("blood and thunder appearance"; arrows in $\mathbb{A}$ ), edema in affected area.

Retinal detachment


Separation of neurosensory layer of retina (photoreceptor layer with rods and cones) from outermost pigmented epithelium (normally shields excess light, supports retina) $\rightarrow$ degeneration of photoreceptors $\rightarrow$ vision loss. May be $2^{\circ}$ to retinal breaks, diabetic traction, inflammatory effusions. Visualized on fundoscopy as crinkling of retinal tissue $\boldsymbol{A}$ and changes in vessel direction.
Breaks more common in patients with high myopia and/or history of head trauma. Often preceded by posterior vitreous detachment ("flashes" and "floaters") and eventual monocular loss of vision like a "curtain drawn down." Surgical emergency.

Central retinal artery occlusion


Acute, painless monocular vision loss. Retina cloudy with attenuated vessels and "cherry-red" spot at fovea (center of macula) A. Evaluate for embolic source (eg, carotid artery atherosclerosis, cardiac vegetations, patent foramen ovale).

Retinitis pigmentosa


Inherited retinal degeneration. Painless, progressive vision loss beginning with night blindness (rods affected first). Bone spicule-shaped deposits around macula A.

## Retinitis



Retinal edema and necrosis (arrows in A) leading to scar. Often viral (CMV, HSV, VZV), but can be bacterial or parasitic. May be associated with immunosuppression.

## Papilledema



Optic disc swelling (usually bilateral) due to $\uparrow$ ICP (eg, $2^{\circ}$ to mass effect). Enlarged blind spot and elevated optic disc with blurred margins $\boldsymbol{A}$.

Pupillary control

Miosis	Constriction, parasympathetic:
	$=$ lst neuron: Edinger-Westphal nucleus to ciliary ganglion via CN III
- 2 nd neuron: short ciliary nerves to sphincter pupillae muscles	
Short ciliary nerves shorten the pupil diameter.	

## Mydriasis

Dilation, sympathetic:

- lst neuron: hypothalamus to ciliospinal center of Budge (C8-T2)
- 2nd neuron: exit at Tl to superior cervical ganglion (travels along cervical sympathetic chain near lung apex, subclavian vessels)
- 3rd neuron: plexus along internal carotid, through cavernous sinus; enters orbit as long ciliary nerve to pupillary dilator muscles. Sympathetic fibers also innervate smooth muscle of eyelids (minor retractors) and sweat glands of forehead and face.
Long ciliary nerves make the pupil diameter longer.


## Marcus Gunn pupil

When the light shines into a normal eye, constriction of the ipsilateral (direct reflex) and contralateral eye (consensual reflex) is observed. When the light is then swung to the affected eye, both pupils dilate instead of constrict due to impaired conduction of light signal along the injured optic nerve.

Horner syndrome

Sympathetic denervation of face $\rightarrow$ :

- Ptosis (slight drooping of eyelid: superior tarsal muscle)
- Anhidrosis (absence of sweating) and flushing of affected side of face
- Miosis (pupil constriction)

Associated with lesions along the sympathetic chain:

- lst neuron: pontine hemorrhage, lateral medullary syndrome, spinal cord lesion above Tl (eg, Brown-Séquard syndrome, late-stage syringomyelia)
- 2nd neuron (stellate ganglion): Pancoast tumor
- 3rd neuron: carotid dissection (painful)

PAM is horny (Horner).


## Ocular motility



To test each muscle, ask patient to move his/ her eye in the path diagrammed to the right, from neutral position toward the muscle being tested.

CN VI innervates the Lateral Rectus.
CN IV innervates the Superior Oblique.
CN III innervates the Rest.
The "chemical formula" $\mathrm{LR}_{6} \mathrm{SO}_{4} \mathrm{R}_{3}$.
The strongest action of the superior oblique is depression when the eye is adducted. The further the eye is abducted, the more the superior oblique acts to intort the eye toward the nose.


Obliques go Opposite (left SO and IO tested with patient looking right).
IOU: IO tested looking Up.

## CN III, IV, VI palsies

CN III has both motor (central) and parasympathetic (peripheral) components. Common causes include:

- Ischemia $\rightarrow$ pupil sparing
- Uncal herniation $\rightarrow$ coma
- PCA aneurysm $\rightarrow$ sudden-onset headache
- Cavernous sinus thrombosis $\rightarrow$ proptosis, involvement of CNs IV, $\mathrm{V}_{1} / \mathrm{V}_{2}$, VI
- Midbrain stroke $\rightarrow$ contralateral hemiplegia


Motor output to extraocular muscles-affected primarily by vascular disease (eg, diabetes mellitus: glucose $\rightarrow$ sorbitol) due to $\downarrow$ diffusion of oxygen and nutrients to the interior fibers from compromised vasculature that resides on outside of nerve. Signs: ptosis, "down and out" gaze.
Parasympathetic output-fibers on the periphery are first affected by compression (eg, PCom aneurysm, uncal herniation). Signs: diminished or absent pupillary light reflex, "blown pupil" often with "down-and-out" gaze $\boldsymbol{A}$.

## CN IV damage <br> Eye moves upward, particularly with contralateral

 gaze $B(\rightarrow$ going down stairs, head may tilt in the opposite direction to compensate).Can't see the floor with CN IV damage.


CN VI damage
Affected eye unable to abduct and is displaced medially in primary position of gaze C.


## Visual field defects

1. Right anopia
2. Bitemporal hemianopia (pituitary lesion, chiasm)
3. Left homonymous hemianopia
4. Left upper quadrantanopia (right temporal lesion, MCA)
5. Left lower quadrantanopia (right parietal lesion, MCA)
6. Left hemianopia with macular sparing (PCA infarct)
7. Central scotoma (eg, macular degeneration)

Meyer Loop—Lower retina; Loops around inferior horn of Lateral ventricle.
Dorsal optic radiation-superior retina; takes shortest path via internal capsule.


Note: When an image hits $1^{\circ}$ visual cortex, it is upside down and left-right reversed.

## Cavernous sinus

Collection of venous sinuses on either side of pituitary. Blood from eye and superficial cortex $\rightarrow$ cavernous sinus $\rightarrow$ internal jugular vein.
CNs III, IV, $V_{1}, V I$, and $V_{2}$ plus postganglionic sympathetic pupillary fibers en route to orbit all pass through cavernous sinus. Cavernous portion of internal carotid artery is also here.
Cavernous sinus syndrome—presents with variable ophthalmoplegia, $\downarrow$ corneal sensation, Horner syndrome and occasional decreased maxillary sensation. $2^{\circ}$ to pituitary tumor mass effect, carotid-cavernous fistula, or cavernous sinus thrombosis related to infection. CN VI is most susceptible to injury.


## Internuclear ophthalmoplegia

Medial longitudinal fasciculus (MLF): pair of tracts that allows for crosstalk between CN VI and CN III nuclei. Coordinates both eyes to move in same horizontal direction. Highly myelinated (must communicate quickly so eyes move at same time). Lesions may be unilateral or bilateral (latter classically seen in multiple sclerosis).
Lesion in MLF = internuclear ophthalmoplegia (INO), a conjugate horizontal gaze palsy. Lack of communication such that when CN VI nucleus activates ipsilateral lateral rectus, contralateral CN III nucleus does not stimulate medial rectus to contract. Abducting eye gets nystagmus (CN VI overfires to stimulate CN III). Convergence normal.


MLF in MS.
When looking left, the left nucleus of CN VI fires, which contracts the left lateral rectus and stimulates the contralateral (right) nucleus of CN III via the right MLF to contract the right medial rectus.
Directional term (eg, right INO, left INO) refers to which eye is paralyzed.
INO = Ipsilateral adduction failure, Nystagmus Opposite.

Right INO (right MLF lesion)


## D NEUROLOGY－PHARMACOLOGY

## Epilepsy drugs

		GEneralized			MECHANISM	SIDE EFFECTS	NOTES
		䓂	$\begin{aligned} & \text { 岂 } \\ & \text { 岂 } \end{aligned}$				
Benzodiazepines				$\begin{aligned} & * * \\ & * \\ & \hline \end{aligned}$	$\uparrow \mathrm{GABA}_{\mathrm{A}}$ action	Sedation，tolerance， dependence，respiratory depression	Also for eclampsia seizures（lst line is $\mathrm{MgSO}_{4}$ ）
Carbamazepine	$\checkmark$	$\checkmark$			Blocks $\mathrm{Na}^{+}$channels	Diplopia，ataxia，blood dyscrasias（agranulocytosis， aplastic anemia），liver toxicity，teratogenesis（cleft lip／palate，spina bifida）， induction of cytochrome P－450，SIADH，Stevens－ Johnson syndrome	lst line for trigeminal neuralgia
Ethosuximide			*		Blocks thalamic T－type $\mathrm{Ca}^{2+}$ channels	EFGHIJ－Ethosuximide causes Fatigue，GI distress， Headache，Itching（and urticaria），and Stevens－ Johnson syndrome	Sucks to have Silent （absence）Seizures
Gabapentin	$\checkmark$				Primarily inhibits high－voltage－ activated $\mathrm{Ca}^{2+}$ channels； designed as GABA analog	Sedation，ataxia	Also used for peripheral neuropathy，postherpetic neuralgia
Lamotrigine	$\checkmark$	$\checkmark$	$\checkmark$		Blocks voltage－gated $\mathrm{Na}^{+}$ channels，inhibits the release of glutamate	Stevens－Johnson syndrome （must be titrated slowly）	
Levetiracetam	$\checkmark$	$\checkmark$			Unknown；may modulate GABA and glutamate release	Neuropsychiatric symptoms （eg，personality change）， fatigue，drowsiness， headache	
Phenobarbital	$\checkmark$	$\checkmark$		$\checkmark$	$\uparrow \mathrm{GABA}_{\mathrm{A}}$ action	Sedation，tolerance， dependence，induction of cytochrome P－450， cardiorespiratory depression	lst line in neonates （＂phenobabytal＂）
Phenytoin， fosphenytoin	$\checkmark$	$\checkmark$		$\begin{gathered} * * * \\ \checkmark \end{gathered}$	Blocks $\mathrm{Na}^{+}$channels；zero－ order kinetics	PHENYTOIN：P450 induction，Hirsutism，Enlarged gums，Nystagmus，Yellow－brown skin，Teratogenicity（fetal hydantoin syndrome），Osteopenia，Inhibited folate absorption， Neuropathy．Rare adverse reactions including Stevens－Johnson syndrome，DRESS syndrome，SLE－like syndrome．Toxicity leads to diplopia，ataxia，sedation．	
Tiagabine	$\checkmark$				$\uparrow$ GABA by inhibiting reuptake		
Topiramate	$\checkmark$	$\checkmark$			Blocks $\mathrm{Na}^{+}$channels，$\uparrow$ GABA action	Sedation，mental dulling， word－finding difficulty， kidney stones，weight loss， glaucoma	Also used for migraine prevention
Valproic acid	$\checkmark$	$\checkmark$	$\checkmark$		$\uparrow \mathrm{Na}^{+}$channel inactivation， $\uparrow$ GABA concentration by inhibiting GABA transaminase	GI distress，rare but fatal hepatotoxicity（measure LFTs），pancreatitis，neural tube defects，tremor，weight gain，contraindicated in pregnancy	Also used for myoclonic seizures， bipolar disorder，migraine prophylaxis
Vigabatrin	$\checkmark$				$\uparrow$ GABA．Irreversible GABA transaminase inhibitor	Permanent visual loss（black box warning）	


Barbiturates	Phenobarbital, pentobarbital, thiopental, secobarbital.
MECHANSM	Facilitate $\mathrm{GABA}_{\mathrm{A}}$ action by $\uparrow$ duration of $\mathrm{Cl}^{-}$channel opening, thus $\downarrow$ neuron firing (barbidurates   $\uparrow$ duration).
CLINCAL USE	Sedative for anxiety, seizures, insomnia, induction of anesthesia (thiopental).
ADVERSE EFFECTS	Respiratory and cardiovascular depression (can be fatal); CNS depression (can be exacerbated by   alcohol use); dependence; drug interactions (induces cytochrome P-450).   Overdose treatment is supportive (assist respiration and maintain BP).   Contraindicated in porphyria.


Benzodiazepines	Diazepam, lorazepam, triazolam, temazepam, ox alprazolam.	epam, midazolam, chlordiazepoxide,
mechanism	Facilitate $\mathrm{GABA}_{\mathrm{A}}$ action by $\uparrow$ frequency of $\mathrm{Cl}^{-}$channel opening. $\downarrow$ REM sleep. Most have long half-lives and active metabolites (exceptions [ATOM]: Alprazolam, Triazolam, Oxazepam, and Midazolam are short acting $\rightarrow$ higher addictive potential).	"Frenzodiazepines" $\uparrow$ frequency.   Benzos, barbs, and alcohol all bind the $\mathrm{GABA}_{\mathrm{A}}$ receptor, which is a ligand-gated $\mathrm{Cl}^{-}$ channel.   Oxazepam, Temazepam, and Lorazepam are OK for Terrible Livers: they can be used to treat alcohol withdrawal in patients with liver disease due to minimal first-pass metabolism.
Clincal use	Anxiety, spasticity, status epilepticus (lorazepam, diazepam, midazolam), eclampsia, detoxification (especially alcohol withdrawalDTs), night terrors, sleepwalking, general anesthetic (amnesia, muscle relaxation), hypnotic (insomnia).	
adverse effects	Dependence, additive CNS depression effects with alcohol. Less risk of respiratory depression and coma than with barbiturates.   Treat overdose with flumazenil (competitive antagonist at GABA benzodiazepine receptor). Can precipitate seizures by causing acute benzodiazepine withdrawal.	

Nonbenzodiazepine hypnotics

MECHANISM

CLINICAL USE
ADVERSE EFFECTS

Zolpidem, Zaleplon, esZopiclone. "These ZZZs put you to sleep."

Act via the $\mathrm{BZ}_{1}$ subtype of the GABA receptor. Effects reversed by flumazenil. Sleep cycle less affected as compared with benzodiazepine hypnotics.
Insomnia.
Ataxia, headaches, confusion. Short duration because of rapid metabolism by liver enzymes. Unlike older sedative-hypnotics, cause only modest day-after psychomotor depression and few amnestic effects. $\downarrow$ dependence risk than benzodiazepines.

## Suvorexant

MECHANISM	Orexin (hypocretin) receptor antagonist.
ClINICAL USE	Insomnia.
AdVERSE EFFECTS	CNS depression, headache, dizziness, abnormal dreams, upper respiratory tract infection. Contraindicated in patients with narcolepsy. Not recommended in patients with liver disease. No or low physical dependence. Contraindicated with strong CYP3A4 inhibitors.
Ramelteon	
mechanism	Melatonin receptor agonist, binds MT1 and MT2 in suprachiasmatic nucleus.
CLINICAL USE	Insomnia.
ADVERSE EFFECTS	Dizziness, nausea, fatigue, headache. No dependence (not a controlled substance).
Triptans	Sumatriptan
MECHANISM	5-HT $1 \mathrm{~B} / 1 \mathrm{D}$ agonists. Inhibit trigeminal nerve   A sumo wrestler trips and falls on your head. activation; prevent vasoactive peptide release; induce vasoconstriction.
CLINICAL USE	Acute migraine, cluster headache attacks.
ADVERSE EFFECTS	Coronary vasospasm (contraindicated in patients with CAD or Prinzmetal angina), mild paresthesia, serotonin syndrome (in combination with other 5-HT agonists).



## Levodopa/carbidopa

MECHANSM	$\uparrow$ level of dopamine in brain. Unlike dopamine, L-DOPA can cross blood-brain barrier and is   converted by dopa decarboxylase in the CNS to dopamine. Carbidopa, a peripheral DOPA   decarboxylase inhibitor, is given with L-DOPA to $\uparrow$ the bioavailability of L-DOPA in the brain and   to limit peripheral side effects.
CuINCAL USE	Parkinson disease.

## Selegiline, rasagiline

MECHANISM	Selectively inhibit MAO-B (metabolize dopamine) $\rightarrow \uparrow$ dopamine availability.
CIIICALUSE	Adjunctive agent to L-DOPA in treatment of Parkinson disease.
ADVERSE EFFECTS	May enhance adverse effects of L-DOPA.

## Tetrabenazine, reserpine

MECHANISM	Inhibit vesicular monoamine transporter (VMAT) dopamine $\rightarrow \downarrow$ vesicle packaging and release.
CLINICALUSE	Huntington chorea, tardive dyskinesia

## Riluzole

MECHANISM	$\downarrow$ neuron glutamate excitotoxicity	ALS, $\uparrow$ survival
CLINICALUSE		

Alzheimer disease drugs

Memantine		
mechanism	NMDA receptor antagonist; helps prevent excitotoxicity (mediated by $\mathrm{Ca}^{2+}$ ).	
ADVERSE EFFECTS	Dizziness, confusion, hallucinations.	
Donepezil, rivastigmine, galantamine		
mechanism	AChE inhibitors.	Dona Riva dances at the gala.
ADVERSE EfFECTS	Nausea, dizziness, insomnia.	

Anesthetics-general principles

CNS drugs must be lipid soluble (cross the blood-brain barrier) or be actively transported.
Drugs with $\downarrow$ solubility in blood $=$ rapid induction and recovery times.
Drugs with $\uparrow$ solubility in lipids $=\uparrow$ potency $=\frac{1}{\text { MAC }}$
MAC $=$ Minimal Alveolar Concentration (of inhaled anesthetic) required to prevent $50 \%$ of subjects from moving in response to noxious stimulus (eg, skin incision).
Examples: nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ has $\downarrow$ blood and lipid solubility, and thus fast induction and low potency. Halothane, propofol, and thiopental, in contrast, have $\uparrow$ lipid and blood solubility, and thus high potency and slow induction.


Local anesthetics	Esters-procaine, tetracaine, benzocaine, chloroprocaine.   Amides-lidocaIne, mepIvacaIne, bupIvacaIne, ropIvacaIne (amIdes have 2 I's in name).
MECHANISM	Block $\mathrm{Na}^{+}$channels by binding to specific receptors on inner portion of channel. Most effective in rapidly firing neurons. $3^{\circ}$ amine local anesthetics penetrate membrane in uncharged form, then bind to ion channels as charged form.   Can be given with vasoconstrictors (usually epinephrine) to enhance local action- $\downarrow$ bleeding, $\uparrow$ anesthesia by $\downarrow$ systemic concentration.   In infected (acidic) tissue, alkaline anesthetics are charged and cannot penetrate membrane effectively $\rightarrow$ need more anesthetic.   Order of nerve blockade: small-diameter fibers > large diameter. Myelinated fibers > unmyelinated fibers. Overall, size factor predominates over myelination such that small myelinated fibers $>$ small unmyelinated fibers $>$ large myelinated fibers $>$ large unmyelinated fibers.   Order of loss: (1) pain, (2) temperature, (3) touch, (4) pressure.
Clinical use	Minor surgical procedures, spinal anesthesia. If allergic to esters, give amides.
ADVERSE EfFects	CNS excitation, severe cardiovascular toxicity (bupivacaine), hypertension, hypotension, arrhythmias (cocaine), methemoglobinemia (benzocaine).

## Neuromuscular blocking drugs

Depolarizing neuromuscular blocking drugs

Muscle paralysis in surgery or mechanical ventilation. Selective for Nm nicotinic receptors at neuromuscular junction but not autonomic Nn receptors.
Succinylcholine-strong ACh receptor agonist; produces sustained depolarization and prevents muscle contraction.
Reversal of blockade:

- Phase I (prolonged depolarization)-no antidote. Block potentiated by cholinesterase inhibitors.
- Phase II (repolarized but blocked; ACh receptors are available, but desensitized)-may be reversed with cholinesterase inhibitors.
Complications include hypercalcemia, hyperkalemia, malignant hyperthermia.
Nondepolarizing neuromuscular blocking drugs

Atracurium, cisatracurium, pancuronium, rocuronium, tubocurarine, vecuronium-competitive with ACh for receptors.
Reversal of blockade-neostigmine (must be given with atropine or glycopyrrolate to prevent muscarinic effects such as bradycardia), edrophonium, and other cholinesterase inhibitors.

Dantrolene
mechanism

CLINICAL USE

Prevents release of $\mathrm{Ca}^{2+}$ from the sarcoplasmic reticulum of skeletal muscle by binding to the ryanodine receptor.
Malignant hyperthermia (a toxicity of inhaled anesthetics and succinylcholine) and neuroleptic malignant syndrome (a toxicity of antipsychotic drugs).

Baclofen

меснаніsм
CLINCAL USE

Skeletal muscle relaxant. GABA $_{B}$ receptor agonist in spinal cord.
Muscle spasticity, dystonia, multiple sclerosis.

Cyclobenzaprine
mechanism
CLINCAL USE
adverse effects

Skeletal muscle relaxant. Acts within CNS.
Muscle spasms.
Anticholinergic side effects. Sedation.

Opioid analgesics

MECHANISM

EFFICACY

CLINICAL USE

ADVERSE EFFECTS

Act as agonists at opioid receptors ( $\mu=\beta$-endorphin, $\delta=$ enkephalin, $\kappa=$ dynorphin) to modulate synaptic transmission - close presynaptic $\mathrm{Ca}^{2+}$ channel, open postsynaptic $\mathrm{K}^{+}$channels $\rightarrow \downarrow$ synaptic transmission. Inhibit release of ACh, norepinephrine, $5-\mathrm{HT}$, glutamate, substance P .
Full agonist: morphine, heroin, meperidine, methadone, codeine.
Partial agonist: buprenorphine.
Mixed agonist/antagonist: nalbuphine, pentazocine.
Antagonist: naloxone, naltrexone, methylnaltrexone.
Moderate to severe or refractory pain, cough suppression (dextromethorphan), diarrhea (loperamide, diphenoxylate), acute pulmonary edema, maintenance programs for heroin addicts (methadone, buprenorphine + naloxone).
Nausea, vomiting, pruritus, addiction, respiratory depression, constipation, sphincter of Oddi spasm, miosis (except meperidine $\rightarrow$ mydriasis), additive CNS depression with other drugs. Tolerance does not develop to miosis and constipation. Toxicity treated with naloxone (opioid receptor antagonist) and relapse prevention with naltrexone once detoxified.

## Pentazocine

MECHANISM	K-opioid receptor agonist and $\mu$-opioid receptor weak antagonist or partial agonist.
CLINICALUSE	Analgesia for moderate to severe pain.
ADVERSE EFFECTS	Can cause opioid withdrawal symptoms if patient is also taking full opioid agonist (due to
competition for opioid receptors).	

## Butorphanol

MECHANISM	K-opioid receptor agonist and $\mu$-opioid receptor partial agonist.
CIINICAL USE	Severe pain (eg, migraine, labor). Causes less respiratory depression than full opioid agonists.
ADVERSEEFFCTS	Use with full opioid agonist can precipitate withdrawal. Not easily reversed with naloxone.

## Tramadol

mechanism
CLINICAL USE
ADVERSE EFFECTS

Very weak opioid agonist; also inhibits 5-HT receptors.
Chronic pain.
Similar to opioids. Decreases seizure threshold. Serotonin syndrome.

Glaucoma drugs $\quad \downarrow$ IOP via $\downarrow$ amount of aqueous humor (inhibit synthesis/secretion or $\uparrow$ drainage). BAD humor may not be Politically Correct.

DRUG class	EXAMPLES	MECHANISM	ADVERSEEFFECTS
$\beta$-blockers	Timolol, betaxolol, carteolol	$\downarrow$ aqueous humor synthesis	No pupillary or vision changes
$\alpha$-agonists	Epinephrine ( $\alpha_{1}$ ), apraclonidine, brimonidine $\left(\alpha_{2}\right)$	$\downarrow$ aqueous humor synthesis via vasoconstriction (epinephrine)   $\downarrow$ aqueous humor synthesis (apraclonidine, brimonidine)	Mydriasis $\left(\alpha_{1}\right)$; do not use in closed-angle glaucoma   Blurry vision, ocular hyperemia, foreign body sensation, ocular allergic reactions, ocular pruritus
Diuretics	Acetazolamide	$\downarrow$ aqueous humor synthesis via inhibition of carbonic anhydrase	No pupillary or vision changes
Prostaglandins	Bimatoprost, latanoprost $\left(\mathrm{PGF}_{2 \alpha}\right)$	$\uparrow$ outflow of aqueous humor via $\downarrow$ resistance of flow through uveoscleral pathway	Darkens color of iris (browning), eyelash growth
Cholinomimetics ( $\mathrm{M}_{3}$ )	Direct: pilocarpine, carbachol Indirect: physostigmine, echothiophate	$\uparrow$ outflow of aqueous humor via contraction of ciliary muscle and opening of trabecular meshwork   Use pilocarpine in acute angle closure glaucoma-very effective at opening meshwork into canal of Schlemm	Miosis (contraction of pupillary sphincter muscles) and cyclospasm (contraction of ciliary muscle)

## HIGH-YIELD PRINCIPLES IN

## Psychiatry

"Words of comfort, skillfully administered, are the oldest therapy known to man."
-Louis Nizer
"All men should strive to learn before they die what they are running from, and to, and why."

- James Thurber
"Man wishes to be happy even when he so lives as to make happiness impossible."
-St. Augustine
"It's no use going back to yesterday, because I was a different person then." -Lewis Carroll, Alice in Wonderland

This chapter encompasses overlapping areas in psychiatry, psychology, sociology, and psychopharmacology. High-yield topics include schizophrenia, mood disorders, eating disorders, personality disorders, psychosomatic/somatoform disorders, and antipsychotic agents. Know the DSM-5 criteria for diagnosing common psychiatric disorders.

PPsychology	538
>Pathology	540
PPharmacology	556

## - PSYCHIATRY—PSYCHOLOGY

Classical conditioning Learning in which a natural response (salivation) is elicited by a conditioned, or learned, stimulus (bell) that previously was presented in conjunction with an unconditioned stimulus (food).

Usually deals with involuntary responses. Pavlov's classical experiments with dogsringing the bell provoked salivation.

Operant conditioning	Learning in which a particular action is elicited because it produces a punishment or reward. Usually deals with voluntary responses.			
Reinforcement	Target behavior (response) is followed by desired reward (positive reinforcement) or removal of aversive stimulus (negative reinforcement).			
Extinction	Discontinuation of reinforcement (positive or negative) eventually eliminates behavior. Can occur in operant or classical conditioning.			
Punishment	Repeated application of aversive stimulus (positive punishment) or removal of desired reward (negative punishment) to extinguish unwanted behavior (Skinner's operant conditioning quadrant).		Increase behavior	Decrease behavior
		受点	Positive reinforcement	Positive punishment punishmen
			Negative reinforcement	Negative punishment

Transference and countertransference

Transference	Patient projects feelings about formative or other important persons onto physician (eg, psychiatrist   is seen as parent).
Countertransference	Doctor projects feelings about formative or other important persons onto patient (eg, patient   reminds physician of younger sibling).


Ego defenses	Mental processes (unconscious or conscious) used to resolve conflict and prevent undesirable feelings (eg, anxiety, depression).	
Immature defenses	description	EXAMPLE
Acting out	Expressing unacceptable feelings and thoughts through actions.	A young boy throws a temper tantrum when he does not get the toy he wants.
Denial	Avoiding the awareness of some painful reality.	A patient with cancer plans a full-time work schedule despite being warned of significant fatigue during chemotherapy.
Displacement	Redirection of emotions or impulses to a neutral person or object (vs projection).	A teacher is yelled at by the principal. Instead of confronting the principal directly, the teacher goes home and criticizes her husband's dinner selection.
Dissociation	Temporary, drastic change in personality, memory, consciousness, or motor behavior to avoid emotional stress. Patient has incomplete or no memory of traumatic event.	A victim of sexual abuse suddenly appears numb and detached when she is exposed to her abuser.

Ego defenses (continued)

IMMATURE DEFENSES	DESCRIPTION	EXAMPLE
Fixation	Partially remaining at a more childish level of development (vs regression).	A surgeon throws a tantrum in the operating room because the last case ran very late.
Idealization	Expressing extremely positive thoughts of self and others while ignoring negative thoughts.	A patient boasts about his physician and his accomplishments while ignoring any flaws.
Identification	Largely unconscious assumption of the characteristics, qualities, or traits of another person or group.	A resident starts putting his stethoscope in his pocket like his favorite attending, instead of wearing it around his neck like before.
Intellectualization	Using facts and logic to emotionally distance oneself from a stressful situation.	In a therapy session, patient diagnosed with cancer focuses only on rates of survival.
Isolation (of affect)	Separating feelings from ideas and events.	Describing murder in graphic detail with no emotional response.
Passive aggression	Demonstrating hostile feelings in a nonconfrontational manner; showing indirect opposition.	Disgruntled employee is repeatedly late to work, but won't admit it is a way to get back at the manager.
Projection	Attributing an unacceptable internal impulse to an external source (vs displacement).	A man who wants to cheat on his wife accuses his wife of being unfaithful.
Rationalization	Proclaiming logical reasons for actions actually performed for other reasons, usually to avoid self-blame.	After getting fired, claiming that the job was not important anyway.
Reaction formation	Replacing a warded-off idea or feeling with an (unconsciously derived) emphasis on its opposite (vs sublimation).	A patient with lustful thoughts enters a monastery.
Regression	Involuntarily turning back the maturational clock and going back to earlier modes of dealing with the world (vs fixation).	Seen in children under stress such as illness, punishment, or birth of a new sibling (eg, bedwetting in a previously toilet-trained child).
Repression	Involuntarily withholding an idea or feeling from conscious awareness (vs suppression).	A 20-year-old does not remember going to counseling during his parents' divorce 10 years earlier.
Splitting	Believing that people are either all good or all bad at different times due to intolerance of ambiguity. Commonly seen in borderline personality disorder.	A patient says that all the nurses are cold and insensitive but that the doctors are warm and friendly.
MATURE DEFENSES		
Sublimation	Replacing an unacceptable wish with a course of action that is similar to the wish but socially acceptable (vs reaction formation).	Teenager's aggressive urges toward his parents' high expectations are channeled into excelling in sports.
Altruism	Alleviating negative feelings via unsolicited generosity, which provides gratification (vs reaction formation).	Mafia boss makes large donation to charity.
Suppression	Intentionally withholding an idea or feeling from conscious awareness (vs repression); temporary.	Choosing to not worry about the big game until it is time to play.
Humor	Appreciating the amusing nature of an anxietyprovoking or adverse situation.	Nervous medical student jokes about the boards.

Mature adults wear a SASH.

## PSYCHIATRY—PATHOLOGY

## Infant deprivation effects

Long-term deprivation of affection results in:

- Failure to thrive
- Poor language/socialization skills
- Lack of basic trust
- Reactive attachment disorder (infant withdrawn/unresponsive to comfort)
- Disinhibited social engagement (infant indiscriminately attaches to strangers)

Deprivation for $>6$ months can lead to irreversible changes.
Severe deprivation can result in infant death.

## Child abuse

	Physical abuse	Sexual abuse
EVIDENCE	Fractures (eg, ribs, long bone spiral, multiple   in different stages of healing), bruises (eg,   trunk, ear, neck; in pattern of implement),   burns (eg, cigarette, buttocks/thighs), subdural   hematomas/retinal hemorrhages ("shaken   baby syndrome"). During exam, children often   avoid eye contact.   Red flags include history inconsistent with   degree or type of injury (eg, 2-month-old   rolling out of bed or falling down stairs),   delayed medical care, caregiver story changes   with retelling.	Genital, anal, or oral trauma; STIs; UTIs.

## Child neglect

Failure to provide a child with adequate food, shelter, supervision, education, and/or affection. Most common form of child maltreatment. Evidence: poor hygiene, malnutrition, withdrawal, impaired social/emotional development, failure to thrive.
As with child abuse, suspected child neglect must be reported to local child protective services.

Vulnerable child syndrome

Parents perceive the child as especially susceptible to illness or injury. Usually follows a serious illness or life-threatening event. Can result in missed school or overuse of medical services.

## Childhood and early-onset disorders

$\left.\begin{array}{cc}\text { Attention-deficit } \\ \text { hyperactivity } \\ \text { disorder }\end{array} \quad \begin{array}{c}\text { Onset before age 12. At least } 6 \text { months of limited attention span and/or poor impulse control. } \\ \text { Characterized by hyperactivity, impulsivity, and/or inattention in multiple settings (school, } \\ \text { home, places of worship, etc). Normal intelligence, but commonly coexists with difficulties in } \\ \text { school. Often persists into adulthood. Treatment: stimulants (eg, methylphenidate) +/- cognitive } \\ \text { behavioral therapy (CBT); alternatives include atomoxetine, guanfacine, clonidine. }\end{array}\right]$

## Orientation

Patient's ability to know who he or she is, where Order of loss: time $\rightarrow$ place $\rightarrow$ person. he or she is, and the date and time.
Common causes of loss of orientation: alcohol, drugs, fluid/electrolyte imbalance, head trauma, hypoglycemia, infection, nutritional deficiencies, hypoxia.

## Amnesias

Retrograde amnesia Inability to remember things that occurred before a CNS insult.
Anterograde amnesia Inability to remember things that occurred after a CNS insult ( $\downarrow$ acquisition of new memory).
Korsakoff syndrome
Amnesia (anterograde > retrograde) caused by vitamin $\mathrm{B}_{1}$ deficiency and associated destruction of mammillary bodies. Seen in alcoholics as a late neuropsychiatric manifestation of Wernicke encephalopathy. Confabulations are characteristic.

## Dissociative disorders

Depersonalization/ Persistent feelings of detachment or estrangement from one's own body, thoughts, perceptions, derealization and actions (depersonalization) or one's environment (derealization). Intact reality testing (vs disorder psychosis).
Dissociative amnesia
Inability to recall important personal information, usually subsequent to severe trauma or stress.
Dissociative identity disorder

Formerly known as multiple personality disorder. Presence of 2 or more distinct identities or personality states. More common in women. Associated with history of sexual abuse, PTSD, depression, substance abuse, borderline personality, somatoform conditions. May be accompanied by dissociative fugue (abrupt travel or wandering associated with traumatic circumstances).

## Delirium

"Waxing and waning" level of consciousness with acute onset; rapid $\downarrow$ in attention span and level of arousal. Characterized by disorganized thinking, hallucinations (often visual), illusions, misperceptions, disturbance in sleepwake cycle, cognitive dysfunction, agitation.
Usually $2^{\circ}$ to other illness (eg, CNS disease, infection, trauma, substance abuse/withdrawal, metabolic/electrolyte disturbances, hemorrhage, urinary/fecal retention).
Most common presentation of altered mental status in inpatient setting, especially in the intensive care unit and with prolonged hospital stays. EEG may show diffuse slowing. Treatment is aimed at identifying and addressing underlying condition. Use antipsychotics acutely as needed. Avoid benzodiazepines.

Delirium $=$ changes in sensorium .
May be caused by medications (eg, anticholinergics), especially in the elderly.

Psychosis Distorted perception of reality characterized by delusions, hallucinations, and/or disorganized thought/speech. Can occur in patients with medical illness, psychiatric illness, or both.
Delusions Unique, false, fixed, idiosyncratic beliefs that persist despite the facts and are not typical of a patient's culture or religion (eg, thinking aliens are communicating with you). Types include erotomanic, grandiose, jealous, persecutory, somatic, mixed, and unspecified.
Disorganized thought Speech may be incoherent ("word salad"), tangential, or derailed ("loose associations").
Hallucinations
Perceptions in the absence of external stimuli (eg, seeing a light that is not actually present). Contrast with illusions, misperceptions of real external stimuli. Types include:

- Visual-more commonly a feature of medical illness (eg, drug intoxication) than psychiatric illness.
- Auditory-more commonly a feature of psychiatric illness (eg, schizophrenia) than medical illness.
- Olfactory-often occur as an aura of temporal lobe epilepsy (eg, burning rubber) and in brain tumors.
- Gustatory-rare, but seen in epilepsy.
- Tactile-common in alcohol withdrawal and stimulant use (eg, cocaine, amphetamines), delusional parasitosis, "cocaine crawlies."
- Hypnagogic-occurs while going to sleep. Sometimes seen in narcolepsy.
- Hypnopompic-occurs while waking from sleep ("pompous upon awakening"). Sometimes seen in narcolepsy.


## Schizophrenia

Chronic mental disorder with periods of psychosis, disturbed behavior and thought, and decline in functioning lasting $\geq 6$ months (including prodrome and residual symptoms). Associated with $\uparrow$ dopaminergic activity, $\downarrow$ dendritic branching.
Diagnosis requires $\geq 2$ of the following symptoms for $\geq 1$ month, and at least 1 of these should include \#1-3 (first 4 are "positive symptoms"):

1. Delusions
2. Hallucinations-often auditory
3. Disorganized speech
4. Disorganized or catatonic behavior
5. Negative symptoms (affective flattening, avolition, anhedonia, asociality, alogia)
Brief psychotic disorder- $\geq 1$ positive symptom(s) lasting $<1$ month, usually stress related.
Schizophreniform disorder $-\geq 2$ symptoms, lasting 1-6 months.
Schizoaffective disorder-Meets criteria for schizophrenia in addition to major mood disorder (major depressive or bipolar). To differentiate from a major mood disorder with psychotic features, patient must have $>2$ weeks of psychotic symptoms without major mood episode.

Frequent cannabis use is associated with psychosis/schizophrenia in teens.
Lifetime prevalence $-1.5 \%$ (males $>$ females, African Americans = Caucasians). Presents earlier in men (late teens to early 20s vs late 20 s to early 30 s in women). Patients at $\uparrow$ risk for suicide.
Ventriculomegaly on brain imaging.
Treatment: atypical antipsychotics (eg, risperidone) are first line.
Negative symptoms often persist after treatment, despite resolution of positive symptoms.

Delusional disorder
Fixed, persistent, false belief system lasting > l month. Functioning otherwise not impaired (eg, a woman who genuinely believes she is married to a celebrity when, in fact, she is not). Can be shared by individuals in close relationships (folie à deux).

Mood disorder
Characterized by an abnormal range of moods or internal emotional states and loss of control over them. Severity of moods causes distress and impairment in social and occupational functioning. Includes major depressive, bipolar, dysthymic, and cyclothymic disorders. Episodic superimposed psychotic features (delusions, hallucinations, disorganized speech/behavior) may be present.

## Manic episode

Distinct period of abnormally and persistently elevated, expansive, or irritable mood and abnormally and persistently $\uparrow$ activity or energy lasting $\geq 1$ week. Often disturbing to patient and causes marked functional impairment and oftentimes hospitalization.
Diagnosis requires hospitalization or at least 3 of the following (manics DIG FAST):

- Distractibility
- Impulsivity/Indiscretion-seeks pleasure without regard to consequences (hedonistic)
- Grandiosity-inflated self-esteem
- Flight of ideas-racing thoughts
- $\uparrow$ goal-directed Activity/psychomotor Agitation
- $\downarrow$ need for Sleep
- Talkativeness or pressured speech

Hypomanic episode Similar to a manic episode except mood disturbance is not severe enough to cause marked impairment in social and/or occupational functioning or to necessitate hospitalization. No psychotic features. Lasts $\geq 4$ consecutive days.

## Bipolar disorder (manic depression)

Bipolar I defined by presence of at least l manic episode +/- a hypomanic or depressive episode (may be separated by any length of time).
Bipolar II defined by presence of a hypomanic and a depressive episode (no history of manic episodes).
Patient's mood and functioning usually normalize between episodes. Use of antidepressants can destabilize mood. High suicide risk. Treatment: mood stabilizers (eg, lithium, valproic acid, carbamazepine, lamotrigine), atypical antipsychotics.
Cyclothymic disorder-milder form of bipolar disorder lasting $\geq 2$ years, fluctuating between mild depressive and hypomanic symptoms.

Major depressive disorder

Episodes characterized by at least 5 of the 9 diagnostic symptoms lasting $\geq 2$ weeks (symptoms must include patient-reported depressed mood or anhedonia). Screen for history of manic episodes to rule out bipolar disorder.
Treatment: CBT and SSRIs are first line. SNRIs, mirtazapine, bupropion can also be considered. Electroconvulsive therapy (ECT) in treatment-resistant patients.

Persistent depressive disorder (dysthymia) often milder, $\geq 2$ depressive symptoms lasting $\geq 2$ years, with no more than 2 months without depressive symptoms.

MDD with seasonal pattern-formerly known as seasonal affective disorder. Lasting $\geq 2$ years with $\geq 2$ major depressive episodes associated with seasonal pattern (usually winter) and absence of nonseasonal depressive episodes. Atypical symptoms common (eg, hypersomnia, hyperphagia, leaden paralysis).

Diagnostic symptoms (SIG E CAPS):

- Depressed mood
- Sleep disturbance
- Loss of Interest (anhedonia)
- Guilt or feelings of worthlessness
- Energy loss and fatigue
- Concentration problems
- Appetite/weight changes
- Psychomotor retardation or agitation
- Suicidal ideations

Patients with depression typically have the following changes in their sleep stages:

- $\downarrow$ slow-wave sleep
- $\downarrow$ REM latency
- $\uparrow$ REM early in sleep cycle
- $\uparrow$ total REM sleep
- Repeated nighttime awakenings
- Early-morning awakening (terminal insomnia)


## Depression with atypical features

Characterized by mood reactivity (able to experience improved mood in response to positive events, albeit briefly), "reversed" vegetative symptoms (hypersomnia, hyperphagia), leaden paralysis (heavy feeling in arms and legs), long-standing interpersonal rejection sensitivity. Most common subtype of depression. Treatment: CBT and SSRIs are first line. MAO inhibitors are effective but not first line because of their risk profile.
Postpartum mood Onset during pregnancy or within 4 weeks of delivery.
disturbances disturbances

Maternal   (postpartum) blues	$50-85 \%$ incidence rate. Characterized by depressed affect, tearfulness, and fatigue starting 2-3   days after delivery. Usually resolves within 10 days. Treatment: supportive. Follow up to assess for   possible postpartum depression.
Postpartum	$10-15 \%$ incidence rate. Characterized by depressed affect, anxiety, and poor concentration for $\geq 2$   depression
weeks. Treatment: CBT and SSRIs are first line.	

## Grief

The five stages of grief per the Kübler-Ross model are denial, anger, bargaining, depression, and acceptance (may occur in any order). Other normal grief symptoms include shock, guilt, sadness, anxiety, yearning, and somatic symptoms that usually occur in waves. Simple hallucinations of the deceased person are common (eg, hearing the deceased speaking). Any thoughts of dying are limited to joining the deceased (vs pathological grief). Duration varies widely; usually within 6-12 months.
Pathologic grief is persistent and causes functional impairment. Can meet criteria for major depressive episode.

Electroconvulsive therapy	Rapid-acting method to treat resistant or refractory depression, depression with psychotic symptoms, and acute suicidality. Induces grand mal seizure while patient anesthetized. Advers effects include disorientation, temporary headache, partial anterograde/retrograde amnesia usually resolving in 6 months. No absolute contraindications. Safe in pregnant and elderly individuals.

Risk factors for suicide completion

Sex (male)
Age (young adult or elderly)
Depression
Previous attempt (highest risk factor)
Ethanol or drug use
Rational thinking loss (psychosis)
Sickness (medical illness)
Organized plan
No spouse or other social support
Stated future intent

SAD PERSONS are more likely to complete suicide.
Most common method in US is firearms; access to guns $\uparrow$ risk of suicide completion.
Women try more often; men complete more often.
Family history of completed suicide is another well-known risk factor.

## Anxiety disorder

Inappropriate experience of fear/worry and its physical manifestations (anxiety) incongruent with the magnitude of the perceived stressor. Symptoms interfere with daily functioning and are not attributable to another mental disorder, medical condition, or substance abuse. Includes panic disorder, phobias, generalized anxiety disorder, and selective mutism. Treatment: CBT, SSRIs, SNRIs.

## Panic disorder

Recurrent unexpected panic attacks not associated with a known trigger. Periods of intense fear and discomfort peak in 10 minutes with at least 4 of the following: Palpitations, Paresthesias, dePersonalization or derealization, Abdominal distress or Nausea, Intense fear of dying, Intense fear of losing control or "going crazy," lIght-headedness, Chest pain, Chills, Choking, Sweating, Shaking, Shortness of breath. Strong genetic component. $\uparrow$ risk of suicide. Treatment: CBT, SSRIs, and venlafaxine are first line. Benzodiazepines occasionally used in acute setting.

## PANICS.

Diagnosis requires attack followed by $\geq 1$ month of $\geq 1$ of the following:

- Persistent concern of additional attacks
- Worrying about consequences of attack
- Behavioral change related to attacks Symptoms are the systemic manifestations of fear.


## Specific phobia

Severe, persistent ( $\geq 6$ months) fear or anxiety due to presence or anticipation of a specific object or situation. Person often recognizes fear is excessive. Can be treated with systematic desensitization.

Social anxiety disorder-exaggerated fear of embarrassment in social situations (eg, public speaking, using public restrooms). Treatment: CBT, SSRIs, venlafaxine. For performance type (eg, anxiety restricted to public speaking), use $\beta$-blockers or benzodiazepines as needed.

Agoraphobia-irrational fear/anxiety while facing or anticipating $\geq 2$ specific situations (eg, open/ closed spaces, lines, crowds, public transport). If severe, patients may refuse to leave their homes. Associated with panic disorder. Treatment: CBT, SSRIs.

## Generalized anxiety disorder

Anxiety lasting $>6$ months unrelated to a specific person, situation, or event. Associated with restlessness, irritability, sleep disturbance, fatigue, muscle tension, difficulty concentrating. Treatment: CBT, SSRIs, SNRIs are first line. Buspirone, TCAs, benzodiazepines are second line.
Adjustment disorder-emotional symptoms (anxiety, depression) that occur within 3 months of an identifiable psychosocial stressor (eg, divorce, illness) lasting $<6$ months once the stressor has ended. If symptoms persist $>6$ months after stressor ends, it is GAD. Symptoms do not meet criteria for MDD. Treatment: CBT, SSRIs.

Obsessive-compulsive Recurring intrusive thoughts, feelings, or sensations (obsessions) that cause severe distress; disorder relieved in part by the performance of repetitive actions (compulsions). Ego-dystonic: behavior inconsistent with one's own beliefs and attitudes (vs obsessive-compulsive personality disorder, ego-syntonic). Associated with Tourette syndrome. Treatment: CBT, SSRIs, venlafaxine, and clomipramine are first line.
Body dysmorphic disorder-preoccupation with minor or imagined defect in appearance $\rightarrow$ significant emotional distress or impaired functioning; patients often repeatedly seek cosmetic treatment. Treatment: CBT.

## Post-traumatic stress disorder

Experiencing a potentially life-threatening situation (eg, serious injury, rape, witnessing death) $\rightarrow$ persistent Hyperarousal, Avoidance of associated stimuli, intrusive Re-experiencing of the event (nightmares, flashbacks), changes in cognition or mood (fear, horror, Distress) (having PTSD is HARD). Disturbance lasts $>1$ month with significant distress or impaired socialoccupational functioning. Treatment: CBT, SSRIs, and venlafaxine are first line. Prazosin can reduce nightmares.
Acute stress disorder-lasts between 3 days and 1 month. Treatment: CBT; pharmacotherapy is usually not indicated.

Diagnostic criteria by symptom duration


## Personality

Personality trait

Personality disorder

An enduring, repetitive pattern of perceiving, relating to, and thinking about the environment and oneself.
Inflexible, maladaptive, and rigidly pervasive pattern of behavior causing subjective distress and/or impaired functioning; person is usually not aware of problem (ego-syntonic). Usually presents by early adulthood.
Three clusters: A, B, C; remember as Weird, Wild, and Worried, respectively, based on symptoms.

Cluster A personality disorders	Odd or eccentric; inability to develop meaningful social relationships. No psychosis; genetic association with schizophrenia.	"Weird."   Cluster A: Accusatory, Aloof, Awkward.
Paranoid	Pervasive distrust (Accusatory) and suspiciousness of others and a profoundly cynical view of the world.	
Schizoid	Voluntary social withdrawal (Aloof), limited emotional expression, content with social isolation (vs avoidant).	
Schizotypal	Eccentric appearance, odd beliefs or magical thinking, interpersonal Awkwardness.	Pronounce schizo-type-al: odd-type thoughts.
Cluster B personality disorders	Dramatic, emotional, or erratic; genetic association with mood disorders and substance abuse.	"Wild."   Cluster B: Bad, Borderline, flamBoyant, must be the Best
Antisocial	Disregard for and violation of rights of others with lack of remorse, criminality, impulsivity; males $>$ females; must be $\geq 18$ years old and have history of conduct disorder before age 15 . Conduct disorder if < 18 years old.	Antisocial = sociopath. Bad.
Borderline	Unstable mood and interpersonal relationships, impulsivity, self-mutilation, suicidality, sense of emptiness; females > males; splitting is a major defense mechanism.	Treatment: dialectical behavior therapy. Borderline.
Histrionic	Excessive emotionality and excitability, attention seeking, sexually provocative, overly concerned with appearance.	FlamBoyant.
Narcissistic	Grandiosity, sense of entitlement; lacks empathy and requires excessive admiration; often demands the "best" and reacts to criticism with rage.	Must be the Best.

Cluster C personality

disorders $\quad$\begin{tabular}{l}
Anxious or fearful; genetic association with <br>
anxiety disorders.

$\quad$

"Worried." <br>
Cluster C: Cowardly, obsessive-Compulsive, <br>
Clingy.
\end{tabular}

Malingering | Symptoms are intentional, motivation is intentional. Patient consciously fakes, profoundly |
| :--- |
| exaggerates, or claims to have a disorder in order to attain a specific $2^{\circ}$ (external) gain (eg, |
| avoiding work, obtaining compensation). Poor compliance with treatment or follow-up of |
| diagnostic tests. Complaints cease after gain (vs factitious disorder). |

Factitious disorders	Symptoms are intentional, motivation is unconscious. Patient consciously creates physical and/or   psychological symptoms in order to assume "sick role" and to get medical attention and sympathy   (1 $\mathbf{1}^{\circ}[$ internal $]$ gain).
Factitious disorder   imposed on self	Also known as Munchausen syndrome. Chronic factitious disorder with predominantly physical   signs and symptoms. Characterized by a history of multiple hospital admissions and willingness to   undergo invasive procedures. More common in women and healthcare workers.
Factitious disorder   imposed on another	Also known as Munchausen syndrome by proxy. Ilness in a child or elderly patient is caused or   fabricated by the caregiver. Motivation is to assume a sick role by proxy. Form of child/elder abuse.


Somatic symptom and   related disorders	Symptoms are unconscious, motivation is unconscious. Category of disorders characterized by   physical symptoms causing significant distress and impairment. Symptoms not intentionally   produced or feigned. More common in women.
Somatic symptom   disorder	Variety of bodily complaints (eg, pain, fatigue) lasting for months to years. Associated with   excessive, persistent thoughts and anxiety about symptoms. May co-occur with medical illness.   Treatment: regular office visits with the same physician in combination with psychotherapy.
Conversion disorder	Also known as functional neurologic symptom disorder. Loss of sensory or motor function (eg,   paralysis, blindness, mutism), often following an acute stressor; patient may be aware of but   indifferent toward symptoms ("la belle indifférence"); more common in females, adolescents, and   young adults.
IIIness anxiety   disorder	Also known as hypochondriasis. Excessive preoccupation with acquiring or having a serious illness,   often despite medical evaluation and reassurance; minimal somatic symptoms.


Eating disorders	Most common in young females.
Anorexia nervosa	Intense fear of weight gain and distortion or overvaluation of body image leading to restriction of   caloric intake and severe weight loss (BMI $\left.<18.5 \mathrm{~kg} / \mathrm{m}^{2}\right)$. Restricting and binge/purge subtypes.   Associated with $\downarrow$ bone density (often irreversible), amenorrhea (due to loss of pulsatile GnRH   secretion), lanugo, anemia, electrolyte disturbances. Commonly coexists with depression.   Psychotherapy and nutritional rehabilitation are first line; pharmacotherapy includes SSRIs for   comorbid anxiety and/or depression.   Refeeding syndrome- insulin $\rightarrow$ hypophosphatemia, hypokalemia, hypomagnesemia $\rightarrow$ cardiac   complications, rhabdomyolysis, seizures. Can occur in significantly malnourished patients.
Bulimia nervosa	Binge eating with recurrent inappropriate compensatory behaviors (eg, self-induced vomiting,   using laxatives or diuretics, fasting, excessive exercise) occurring weekly for at least 3 months and   overvaluation of body image. Body weight often maintained within normal range. Associated with   parotitis, enamel erosion, electrolyte disturbances (eg, hypokalemia, hypochloremia), metabolic   alkalosis, dorsal hand calluses from induced vomiting (Russell sign). Treatment: psychotherapy,   nutritional rehabilitation, antidepressants (eg, SSRIs). Bupropion is contraindicated due to seizure   risk.
Binge eating disorderRegular episodes of excessive, uncontrollable eating without inappropriate compensatory behaviors.   $\uparrow$ trisk of diabetes. Treatment: psychotherapy such as CBT is first line; SSRIs, lisdexamfetamine.	

Gender dysphoria Persistent cross-gender identification that leads to persistent distress with sex assigned at birth.
Transsexualism - desire to live as the opposite sex, often through surgery or hormone treatment.
Transvestism - paraphilia, not gender dysphoria. Wearing clothes (eg, vest) of the opposite sex (cross-dressing).

## Sexual dysfunction

Includes sexual desire disorders (hypoactive sexual desire or sexual aversion), sexual arousal disorders (erectile dysfunction), orgasmic disorders (anorgasmia, premature ejaculation), sexual pain disorders (dyspareunia, vaginismus).
Differential diagnosis includes:

- Drug side effects (eg, antihypertensives, antipsychotics, SSRIs, ethanol)
- Medical disorders (eg, depression, diabetes, STIs)
- Psychological or performance anxiety (eg, nighttime erections [nocturnal tumescence])

Sleep terror disorder Inconsolable periods of terror with screaming in the middle of the night; occurs during slow-wave/ deep (stage N3) sleep. Most common in children. Occurs during non-REM sleep (no memory of the arousal episode) as opposed to nightmares that occur during REM sleep (remembering a scary dream). Cause unknown, but triggers include emotional stress, fever, or lack of sleep. Usually self limited.

## Enuresis

Urinary incontinence $\geq 2$ times/week for $\geq 3$ months in person $>5$ years old. First-line treatment: behavioral modification (eg, scheduled voids) and positive reinforcement. For refractory cases: bedwetting alarm, oral desmopressin (ADH analog; preferred over imipramine due to more favorable side effect profile).

## Narcolepsy

Disordered regulation of sleep-wake cycles characterized by excessive daytime sleepiness (despite feeling rested upon waking) and "sleep attacks" (rapid-onset, overwhelming sleepiness). Caused by $\downarrow$ hypocretin (orexin) production in lateral hypothalamus. Strong genetic component.
Also associated with:
" Hypnagogic (just before going to sleep) or hypnopompic (just before awakening; "pompous upon awakening") hallucinations.

- Nocturnal and narcoleptic sleep episodes that start with REM sleep (sleep paralysis).
- Cataplexy (loss of all muscle tone following strong emotional stimulus, such as laughter) in some patients.
Treatment: good sleep hygiene (scheduled naps, regular sleep schedule), daytime stimulants (eg, amphetamines, modafinil) and nighttime sodium oxybate (GHB).


## Substance use disorder

Maladaptive pattern of substance use defined as 2 or more of the following signs in 1 year related specifically to substance use:

- Tolerance - need more to achieve same effect
- Withdrawal—manifesting as characteristic signs and symptoms
- Substance taken in larger amounts, or over longer time, than desired
- Persistent desire or unsuccessful attempts to cut down
- Significant energy spent obtaining, using, or recovering from substance
- Important social, occupational, or recreational activities reduced
- Continued use despite knowing substance causes physical and/or psychological problems
- Craving
- Recurrent use in physically dangerous situations
- Failure to fulfill major obligations at work, school, or home
- Social or interpersonal conflicts


## Stages of change in overcoming substance addiction

1. Precontemplation-not yet acknowledging that there is a problem
2. Contemplation-acknowledging that there is a problem, but not yet ready or willing to make a change
3. Preparation/determination-getting ready to change behaviors
4. Action/willpower-changing behaviors
5. Maintenance-maintaining the behavioral changes
6. Relapse-returning to old behaviors and abandoning new changes. Does not always
 happen.

## Psychiatric emergencies

	CAUSE	MANIFESTATION	TREATMENT
Serotonin syndrome	Any drug that $\uparrow$ 5-HT.   Psychiatric drugs: MAO inhibitors, SSRIs, SNRIs, TCAs, vilazodone, vortioxetine   Nonpsychiatric drugs: tramadol, ondansetron, triptans, linezolid, MDMA, dextromethorphan, meperidine, St. John's wort	3 A's:   $\uparrow$ Activity (neuromuscular) Autonomic stimulation Agitation   Symptoms of neuromuscular hyperactivity include clonus, hyperreflexia, hypertonia, tremor, seizure   Symptoms of autonomic stimulation include hyperthermia, diaphoresis, diarrhea	Cyproheptadine ( $5-\mathrm{HT}_{2}$ receptor antagonist)
Carcinoid syndrome ${ }^{\text {a }}$	Carcinoid tumor of GI tract, lung	Diarrhea, flushing, wheezing, right heart disease (if tumor is in the gut)	Octreotide

Psychiatric emergencies (continued)

	CAUSE	MANIFESTATION	TREATMENT
Hypertensive crisis	Eating tyramine-rich foods (eg, aged cheeses, cured meats, wine) while taking MAO inhibitor	Hypertensive crisis (tyramine displaces other neurotransmitters [eg, $\mathrm{NE}]$ in the synaptic cleft $\rightarrow \uparrow$ sympathetic stimulation)	Phentolamine
Neuroleptic malignant syndrome	Antipsychotics + genetic predisposition	Malignant FEVER:   Myoglobinuria   Fever   Encephalopathy   Vitals unstable   $\uparrow$ Enzymes (eg, $\uparrow$ CK)   Rigidity of muscles ("lead pipe")	Dantrolene, dopamine agonist (eg, bromocriptine), discontinue causative agent
Malignant hyperthermia ${ }^{a}$	Inhaled anesthetics, succinylcholine + genetic predisposition	Fever, severe muscle contractions	Dantrolene
Delirium tremens	Alcohol withdrawal; occurs 2-4 days after last drink Classically seen in hospital setting when inpatient cannot drink	Altered mental status (eg, hallucinations), autonomic hyperactivity, anxiety, seizures, tremors, psychomotor agitation, insomnia, nausea	Benzodiazepines (eg, chlordiazepoxide, lorazepam, diazepam)
Acute dystonia	Typical antipsychotics, anticonvulsants (eg, carbamazepine), metoclopramide	Sudden onset of muscle spasm, stiffness, oculogyric crisis that occurs within hours to days after medication use; can lead to laryngospasm requiring intubation	Benztropine or diphenhydramine
Lithium toxicity	Change in lithium dosage or health status (narrow therapeutic window), concurrent use of thiazides, ACE inhibitors, NSAIDs, or other nephrotoxic agents	Nausea, vomiting, slurred speech, hyperreflexia, seizures, ataxia, nephrogenic diabetes insipidus	Discontinue lithium, hydrate aggressively with isotonic sodium chloride, consider hemodialysis
Tricyclic antidepressant toxicity	TCA overdose	Respiratory depression, hyperpyrexia, prolonged QT interval   Tri-C's:   Convulsions   Coma   Cardiotoxicity (arrhythmia due to $\mathrm{Na}^{+}$channel inhibition)	Supportive treatment, monitor ECG, $\mathrm{NaHCO}_{3}$ (prevents arrhythmia), activated charcoal

${ }^{\text {a Carcinoid syndrome and malignant hyperthermia are not psychiatric emergencies, but are included for comparison with }}$ serotonin syndrome and neuroleptic malignant syndrome, respectively.

Psychoactive drug intoxication and withdrawal

DRUG	Intoxication	WITHDRAWAL
Depressants		
	Nonspecific: mood elevation, $\downarrow$ anxiety, sedation, behavioral disinhibition, respiratory depression.	Nonspecific: anxiety, tremor, seizures, insomnia.
Alcohol	Emotional lability, slurred speech, ataxia, coma, blackouts. Serum $\gamma$-glutamyltransferase (GGT)-sensitive indicator of alcohol use. AST value is $2 \times$ ALT value ("toAST 2 ALcohol").	Time from last drink:   3-36 hr: tremors, insomnia, GI upset, diaphoresis, mild agitation   6-48 hr: withdrawal seizures   12-48 hr: alcoholic hallucinosis (usually visual)   48-96 hr: delirium tremens (DTs)   Treatment: benzodiazepines.
Opioids	Euphoria, respiratory and CNS depression, $\downarrow$ gag reflex, pupillary constriction (pinpoint pupils), seizures (overdose). Most common cause of drug overdose death. Treatment: naloxone.	Sweating, dilated pupils, piloerection ("cold turkey"), fever, rhinorrhea, lacrimation, yawning, nausea, stomach cramps, diarrhea ("flu-like" symptoms). Treatment: long-term support, methadone, buprenorphine.
Barbiturates	Low safety margin, marked respiratory depression. Treatment: symptom management (eg, assist respiration, $\uparrow \mathrm{BP}$ ).	Delirium, life-threatening cardiovascular collapse.
Benzodiazepines	Greater safety margin. Ataxia, minor respiratory depression. Treatment: flumazenil (benzodiazepine receptor antagonist, but rarely used as it can precipitate seizures).	Sleep disturbance, depression, rebound anxiety, seizure.
Stimulants		
	Nonspecific: mood elevation, psychomotor agitation, insomnia, cardiac arrhythmias, tachycardia, anxiety.	Nonspecific: post-use "crash," including depression, lethargy, $\uparrow$ appetite, sleep disturbance, vivid nightmares.
Amphetamines	Euphoria, grandiosity, pupillary dilation, prolonged wakefulness and attention, hypertension, tachycardia, anorexia, paranoia, fever. Skin excoriations with methamphetamine use. Severe: cardiac arrest, seizures. Treatment: benzodiazepines for agitation and seizures.	
Cocaine	Impaired judgment, pupillary dilation, hallucinations (including tactile), paranoid ideations, angina, sudden cardiac death. Chronic use may lead to perforated nasal septum due to vasoconstriction and resulting ischemic necrosis. Treatment: $\alpha$-blockers, benzodiazepines. $\beta$-blockers not recommended.	
Caffeine	Restlessness, $\uparrow$ diuresis, muscle twitching.	Headache, difficulty concentrating, flu-like symptoms.
Nicotine	Restlessness.	Irritability, anxiety, restlessness, difficulty concentrating. Treatment: nicotine patch, gum, or lozenges; bupropion/varenicline.

Psychoactive drug intoxication and withdrawal (continued)

DRUG	Intoxication	WITHDRAWAL
Hallucinogens		
Phencyclidine (PCP)	Violence, impulsivity, psychomotor agitation, nystagmus, tachycardia, hypertension, analgesia, psychosis, delirium, seizures. Trauma is most common complication.	
Lysergic acid diethylamide	Perceptual distortion (visual, auditory), depersonalization, anxiety, paranoia, psychosis, possible flashbacks.	
Marijuana (cannabinoid)	Euphoria, anxiety, paranoid delusions, perception of slowed time, impaired judgment, social withdrawal, $\uparrow$ appetite, dry mouth, conjunctival injection, hallucinations. Pharmaceutical form is dronabinol: used as antiemetic (chemotherapy) and appetite stimulant (in AIDS).	Irritability, anxiety, depression, insomnia, restlessness, $\downarrow$ appetite.
MDMA (ecstasy)	Hallucinogenic stimulant: euphoria, disinhibition, hyperactivity, distorted sensory and time perception, teeth clenching. Lifethreatening effects include hypertension, tachycardia, hyperthermia, hyponatremia, serotonin syndrome.	Depression, fatigue, change in appetite, difficulty concentrating, anxiety.


Alcoholism	Physiologic tolerance and dependence on alcohol with symptoms of withdrawal when intake is   interrupted.
	Complications: alcoholic cirrhosis, hepatitis, pancreatitis, peripheral neuropathy, testicular atrophy.   Treatment: disulfiram (to condition the patient to abstain from alcohol use), acamprosate,      naltrexone (reduces cravings), supportive care. Support groups such as Alcoholics Anonymous are   helpful in sustaining abstinence and supporting patient and family.
Wernicke-Korsakoff	Caused by vitamin $\mathrm{B}_{1}$ deficiency. Triad of confusion, ophthalmoplegia, ataxia (Wernicke   syndrome   encephalopathy). May progress to irreversible memory loss, confabulation, personality change   (Korsakoff syndrome). Symptoms may be precipitated by giving dextrose before administering   vitamin $\mathrm{B}_{1}$ to a patient with thiamine deficiency. Associated with periventricular hemorrhage/   necrosis of mammillary bodies. Treatment: IV vitamin $\mathrm{B}_{1}$.

## - PSYCHIATRY—PHARMACOLOGY

Preferred medications for selected psychiatric conditions	PsYchatric conotion	Preferred drugs
	ADHD	Stimulants (methylphenidate, amphetamines)
	Alcohol withdrawal	Benzodiazepines (eg, chlordiazepoxide, lorazepam, diazepam)
	Bipolar disorder	Lithium, valproic acid, carbamazepine, lamotrigine, atypical antipsychotics
	Bulimia nervosa	SSRIs
	Depression	SSRIs
	Generalized anxiety disorder	SSRIs, SNRIs
	Obsessive-compulsive disorder	SSRIs, venlafaxine, clomipramine
	Panic disorder	SSRIs, venlafaxine, benzodiazepines
	PTSD	SSRIs, venlafaxine
	Schizophrenia	Atypical antipsychotics
	Social anxiety disorder	SSRIs, venlafaxine   Performance only: $\beta$-blockers, benzodiazepines
	Tourette syndrome	Antipsychotics (eg, fluphenazine, risperidone), tetrabenazine

Central nervous system Methylphenidate, dextroamphetamine, methamphetamine. stimulants

MECHANSM	$\uparrow$ catecholamines in the synaptic cleft, especially norepinephrine and dopamine.
cIINCAL USE	ADHD, narcolepsy.
ADVERSE EFFECTS	Nervousness, agitation, anxiety, insomnia, anorexia, tachycardia, hypertension, weight loss, tics.


Typical antipsychotics	Haloperidol, pimozide, trifluoperazine, fluphenazine, thioridazine, chlorpromazine.
MECHANISM	Block dopamine $\mathrm{D}_{2}$ receptor ( $\uparrow$ cAMP).
Clinical use	Schizophrenia ( $1^{\circ}$ positive symptoms), psychosis, bipolar disorder, delirium, Tourette syndrome, Huntington disease, OCD.
Potency	High potency: Trifluoperazine, Fluphenazine, Haloperidol (Try to Fly High) - more neurologic side effects (eg, extrapyramidal symptoms [EPS]).   Low potency: Chlorpromazine, Thioridazine (Cheating Thieves are low)-more anticholinergic, antihistamine, $\alpha_{1}$-blockade effects.
ADVERSE EFFECTS	Lipid soluble $\rightarrow$ stored in body fat $\rightarrow$ slow to be removed from body.   Endocrine: dopamine receptor antagonism $\rightarrow$ hyperprolactinemia $\rightarrow$ galactorrhea, oligomenorrhea, gynecomastia.   Metabolic: dyslipidemia, weight gain, hyperglycemia.   Antimuscarinic: dry mouth, constipation.   Antihistamine: sedation.   $\alpha_{1}$-blockade: orthostatic hypotension.   Cardiac: QT prolongation.   Ophthalmologic: Chlorpromazine—Corneal deposits; Thioridazine—reTinal deposits.   Neuroleptic malignant syndrome.   EPS—ADAPT:   - Hours to days: Acute Dystonia (muscle spasm, stiffness, oculogyric crisis). Treatment: benztropine, diphenhydramine.   - Days to months:   - Akathisia (restlessness). Treatment: $\beta$-blockers, benztropine, benzodiazepines.   - Parkinsonism (bradykinesia). Treatment: benztropine, amantadine.   - Months to years: Tardive dyskinesia (orofacial chorea). Treatment: switch to atypical antipsychotic (eg, clozapine), tetrabenazine, reserpine.


Atypical antipsychotics	Aripiprazole, asenapine, clozapine, olanzapine, risperidone, lurasidone, ziprasidone.	uetiapine, iloperidone, paliperidone,
mechanism	Not completely understood. Most are $\mathrm{D}_{2}$ antagonists; aripiprazole is $\mathrm{D}_{2}$ partial agonist. Varied effects on 5 - $\mathrm{HT}_{2}$, dopamine, and $\alpha$ - and $\mathrm{H}_{1}$-receptors.	
clinical use	Schizophrenia-both positive and negative symptoms. Also used for bipolar disorder, OCD, anxiety disorder, depression, mania, Tourette syndrome.	Use clozapine for treatment-resistant schizophrenia or schizoaffective disorder and for suicidality in schizophrenia.
adverse effects	All-prolonged QT interval, fewer EPS and anticholinergic side effects than typical antipsychotics.	
	"-pines"-metabolic syndrome (weight gain, diabetes, hyperlipidemia).	Olanzapine, clOzapine $\rightarrow$ Obesity
	Clozapine-agranulocytosis (monitor WBCs frequently) and seizures (dose related).   Risperidone-hyperprolactinemia (amenorrhea, galactorrhea, gynecomastia).	Must watch bone marrow clozely with clozapine.

Lithium

MECHANSM	Not established; possibly related to inhibition of phosphoinositol cascade.	LiTHIUM:   Low Thyroid (hypothyroidism)
CLINICAL USE	Mood stabilizer for bipolar disorder; treats acute manic episodes and prevents relapse.	Heart (Ebstein anomaly)   Insipidus (nephrogenic diabetes insipidus)
ADVERSE EFFECTS	Tremor, hypothyroidism, polyuria (causes nephrogenic diabetes insipidus), teratogenesis. Causes Ebstein anomaly in newborn if taken by pregnant mother. Narrow therapeutic window requires close monitoring of serum levels. Almost exclusively excreted by kidneys; most is reabsorbed at PCT with $\mathrm{Na}^{+}$. Thiazides (and other nephrotoxic agents) are implicated in lithium toxicity.	Unwanted Movements (tremor)

## Buspirone

MECHANISM
Stimulates $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptors.
CLINICAL USE
Generalized anxiety disorder. Does not cause
sedation, addiction, or tolerance. Takes 1-2 weeks to take effect. Does not interact with alcohol (vs barbiturates, benzodiazepines).

I'm always anxious if the bus will be on time, so I take buspirone.

## Antidepressants



Selective serotonin   reuptake inhibitors	Fluoxetine, fluvoxamine, paroxetine, sertraline, escitalopram, citalopram.	
MECHANSM	SSRIs inhibit 5-HT reuptake.	It normally takes 4-8 weeks for antidepressants
ClINCAL USE	Depression, generalized anxiety disorder,   panic disorder, OCD, bulimia, social anxiety   disorder, PTSD, premature ejaculation,   premenstrual dysphoric disorder.	
ADVERSE EFFECTS	Fewer than TCAs. GI distress, SIADH, sexual   dysfunction (anorgasmia, $\downarrow$ libido).	


Serotonin-   norepinephrine   reuptake inhibitors	Venlafaxine, desvenlafaxine, duloxetine, levomilnacipran, milnacipran.
MECHANSM	SNRIs inhibit 5-HT and NE reuptake.
CLINCAL USE	Depression, general anxiety disorder, diabetic neuropathy. Venlafaxine is also indicated for social   anxiety disorder, panic disorder, PTSD, OCD. Duloxetine is also indicated for fibromyalgia.
ADVERSE EFFECTS	$\uparrow$ BP, stimulant effects, sedation, nausea.

Tricyclic antidepressants

Amitriptyline, nortriptyline, imipramine, desipramine, clomipramine, doxepin, amoxapine.

MECHANISM	TCAs inhibit 5-HT and NE reuptake.
CLINCAL USE	Major depression, OCD (clomipramine), peripheral neuropathy, chronic pain, migraine
prophylaxis. Nocturnal enuresis (imipramine, although adverse effects may limit use).	

Monoamine oxidase inhibitors

MECHANISM

CLINICALUSE
ADVERSE EFFECTS

Tranylcypromine, Phenelzine, Isocarboxazid, Selegiline (selective MAO-B inhibitor). (MAO Takes Pride In Shanghai).

Nonselective MAO inhibition $\uparrow$ levels of amine neurotransmitters (norepinephrine, 5-HT, dopamine).
Atypical depression, anxiety. Parkinson disease (selegiline).
CNS stimulation; hypertensive crisis, most notably with ingestion of tyramine. Contraindicated with SSRIs, TCAs, St. John's wort, meperidine, dextromethorphan (to prevent serotonin syndrome).
Wait 2 weeks after stopping MAO inhibitors before starting serotonergic drugs or stopping dietary restrictions.

## Atypical antidepressants

Bupropion	Inhibits NE and dopamine reuptake. Also used for smoking cessation. Toxicity: stimulant effects (tachycardia, insomnia), headache, seizures in anorexic/bulimic patients. Favorable sexual side effect profile.
Mirtazapine	$\alpha_{2}$-antagonist ( $\uparrow$ release of NE and 5-HT), potent $5-\mathrm{HT}_{2}$ and $5-\mathrm{HT}_{3}$ receptor antagonist and $\mathrm{H}_{1}$ antagonist. Toxicity: sedation (which may be desirable in depressed patients with insomnia), $\uparrow$ appetite, weight gain (which may be desirable in elderly or anorexic patients), dry mouth.
Trazodone	Primarily blocks 5-HT $2, \alpha_{1}$-adrenergic, and $\mathrm{H}_{1}$ receptors; also weakly inhibits 5-HT reuptake. Used primarily for insomnia, as high doses are needed for antidepressant effects. Toxicity: sedation, nausea, priapism, postural hypotension. Called traZZZobone due to sedative and male-specific side effects.
Varenicline	Nicotinic ACh receptor partial agonist. Used for smoking cessation. Toxicity: sleep disturbance, may depress mood. Varenicline helps nicotine cravings decline.
Vilazodone	Inhibits 5-HT reuptake; $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor partial agonist. Used for major depressive disorder. Toxicity: headache, diarrhea, nausea, $\uparrow$ weight, anticholinergic effects. May cause serotonin syndrome if taken with other serotonergic agents.
Vortioxetine	Inhibits 5-HT reuptake; $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor agonist and $5-\mathrm{HT}_{3}$ receptor antagonist. Used for major depressive disorder. Toxicity: nausea, sexual dysfunction, sleep disturbances (abnormal dreams), anticholinergic effects. May cause serotonin syndrome if taken with other serotonergic agents.

Opioid withdrawal and Intravenous drug users at $\uparrow$ risk for hepatitis, HIV, abscesses, bacteremia, right-heart endocarditis. detoxification

Buprenorphine + naloxone
Methadone Long-acting oral opiate used for heroin detoxification or long-term maintenance therapy.

Long-acting oral opiate used for heroin detoxification or long-term maintenance therapy.
Sublingual buprenorphine (partial agonist) is absorbed and used for maintenance therapy. Naloxone (antagonist, not orally bioavailable) is added to lower IV abuse potential.
Long-acting opioid given IM or as nasal spray to treat acute overdose in unconscious individual. Also used for relapse prevention once detoxified. Use naltrexone for the long trex back to sobriety.

## HIGH-YIELD SYSTEMS

## Renal

"But I know all about love already. I know precious little still about kidneys."

- Aldous Huxley, Antic Hay
"This too shall pass. Just like a kidney stone."
-Hunter Madsen
"I drink too much. The last time I gave a urine sample it had an olive in it."
-Rodney Dangerfield

Being able to understand and apply renal physiology will be critical for the exam. Important topics include electrolyte disorders, acidbase derangements, glomerular disorders (including histopathology), kidney failure, urine casts, diuretics, ACE inhibitors, and AT-II receptor blockers. Renal anomalies linked to various congenital defects is also a high-yield association to think about when you encounter pediatric vignettes.

D Embryology	562
PAnatomy	564
>Physiology	565
>Pathology	578
PPharmacology	589

## RENAL—EMBRYOLOGY

## Kidney embryology

Pronephros-week 4; then degenerates. Mesonephros-functions as interim kidney for 1st trimester; later contributes to male genital system.
Metanephros-permanent; first appears in 5th week of gestation; nephrogenesis continues through weeks 32-36 of gestation.

- Ureteric bud-derived from caudal end of mesonephric duct; gives rise to ureter, pelvises, calyces, collecting ducts; fully canalized by 10th week
- Metanephric mesenchyme (ie, metanephric blastema)-ureteric bud interacts with this tissue; interaction induces differentiation and formation of glomerulus through to distal convoluted tubule (DCT)
- Aberrant interaction between these 2 tissues may result in several congenital malformations of the kidney (eg, renal agenesis, multicystic dysplastic kidney) Ureteropelvic junction-last to canalize $\rightarrow$ most common site of obstruction (can be detected on prenatal ultrasound as hydronephrosis).


Potter sequence (syndrome)


Oligohydramnios $\rightarrow$ compression of developing fetus $\rightarrow$ limb deformities, facial anomalies (eg, low-set ears and retrognathia $\boldsymbol{A}$, flattened nose), compression of chest and lack of amniotic fluid aspiration into fetal lungs $\rightarrow$ pulmonary hypoplasia (cause of death).
Causes include ARPKD, obstructive uropathy (eg, posterior urethral valves), bilateral renal agenesis, chronic placental insufficiency.

Babies who can't "Pee" in utero develop Potter sequence.
POTTER sequence associated with:
Pulmonary hypoplasia
Oligohydramnios (trigger)
Twisted face
Twisted skin
Extremity defects
Renal failure (in utero)


Inferior poles of both kidneys fuse abnormally $\boldsymbol{A}$. As they ascend from pelvis during fetal development, horseshoe kidneys get trapped under inferior mesenteric artery and remain low in the abdomen. Kidneys function normally. Associated with hydronephrosis (eg, ureteropelvic junction obstruction), renal stones, infection, chromosomal aneuploidy syndromes (eg, Turner syndrome; trisomies $13,18,21$ ), and rarely renal cancer.


Congenital solitary functioning kidney

Condition of being born with only one functioning kidney. Majority asymptomatic with compensatory hypertrophy of contralateral kidney, but anomalies in contralateral kidney are common. Often diagnosed prenatally via ultrasound.

Unilateral renal agenesis
Multicystic dysplastic kidney

Ureteric bud fails to develop and induce differentiation of metanephric mesenchyme $\rightarrow$ complete absence of kidney and ureter.

Ureteric bud fails to induce differentiation of metanephric mesenchyme $\rightarrow$ nonfunctional kidney consisting of cysts and connective tissue. Predominantly nonhereditary and usually unilateral; bilateral leads to Potter sequence.

Duplex collecting system

Bifurcation of ureteric bud before it enters the metanephric blastema creates a Y-shaped bifid ureter. Duplex collecting system can alternatively occur through two ureteric buds reaching and interacting with metanephric blastema. Strongly associated with vesicoureteral reflux and/or ureteral obstruction, $\uparrow$ risk for UTIs.

## Posterior urethral valves

Membrane remnant in the posterior urethra in males; its persistence can lead to urethral obstruction. Can be diagnosed prenatally by hydronephrosis and dilated or thick-walled bladder on ultrasound. Most common cause of bladder outlet obstruction in male infants.

## - RENAL-ANATOMY

## Kidney anatomy and glomerular structure



Left kidney is taken during donor transplantation because it has a longer renal vein.
Afferent $=$ Arriving .
Efferent $=$ Exiting.
Renal blood flow: renal artery $\rightarrow$ segmental artery $\rightarrow$ interlobar artery $\rightarrow$ arcuate artery $\rightarrow$ interlobular artery $\rightarrow$ afferent arteriole
$\rightarrow$ glomerulus $\rightarrow$ efferent arteriole $\rightarrow$ vasa recta/ peritubular capillaries $\rightarrow$ venous outflow.

*Components of glomerular filtration barrier.
Cross-section of glomerulus $A$ 园

Course of ureters


Course of ureter $\mathbf{A}$ : arises from renal pelvis, travels under gonadal arteries $\rightarrow$ over common iliac artery $\rightarrow$ under uterine artery/vas deferens (retroperitoneal).
Gynecologic procedures (eg, ligation of uterine or ovarian vessels) may damage ureter $\rightarrow$ ureteral obstruction or leak.
Muscle fibers within the intramural part of the ureter prevent urine reflux.
3 constrictions of ureter:

- Ureteropelvic junction
- Pelvic inlet
- Ureterovesical junction

Water (ureters) flows over the iliacs and under the bridge (uterine artery or vas deferens).


## RENAL—PHYSIOLOGY

Fluid compartments


HIKIN: HIgh K+ INtracellularly.
$60-40-20$ rule (\% of body weight for average person):

- $60 \%$ total body water
- $40 \%$ ICF, mainly composed of $\mathrm{K}^{+}, \mathrm{Mg}^{2+}$, organic phosphates (eg, ATP)
- $20 \%$ ECF, mainly composed of $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$, $\mathrm{HCO}_{3}{ }^{-}$, albumin
Plasma volume can be measured by radiolabeling albumin.
Extracellular volume can be measured by inulin or mannitol.
Osmolality $=285-295 \mathrm{mOsm} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}$.

Glomerular filtration barrier


Responsible for filtration of plasma according to size and charge selectivity.
Composed of:

- Fenestrated capillary endothelium
- Basement membrane with type IV collagen chains and heparan sulfate
- Epithelial layer consisting of podocyte foot processes A

Charge barrier-all 3 layers contain $\Theta$ charged glycoproteins that prevent entry of $\Theta$ charged molecules (eg, albumin).
Size barrier-fenestrated capillary endothelium (prevent entry of $>100 \mathrm{~nm}$ molecules/blood cells); podocyte foot processes interpose with basement membrane; slit diaphragm (prevent entry of molecules > 50-60 nm).

Renal clearance	$\mathrm{C}_{\mathrm{x}}=\left(\mathrm{U}_{\mathrm{X}} \mathrm{V}\right) / \mathrm{P}_{\mathrm{x}}=$ volume of plasma from which	$\mathrm{C}_{\mathrm{x}}=$ clearance of $\mathrm{X}(\mathrm{mL} / \mathrm{min})$.
the substance is completely cleared per unit	$\mathrm{U}_{\mathrm{x}}=$ urine concentration of $\mathrm{X}(\mathrm{eg}, \mathrm{mg} / \mathrm{mL})$.	
time.	$\mathrm{P}_{\mathrm{x}}=$ plasma concentration of $\mathrm{X}(\mathrm{eg}, \mathrm{mg} / \mathrm{mL})$.	
If $\mathrm{C}_{\mathrm{x}}<$ GFR: net tubular reabsorption of X.	$\mathrm{V}=$ urine flow rate $(\mathrm{mL} / \mathrm{min})$.	
If $\mathrm{C}_{\mathrm{x}}>$ GFR: net tubular secretion of X.		
If $\mathrm{C}_{\mathrm{x}}=$ GFR: no net secretion or reabsorption.		

## Glomerular filtration

 rateInulin clearance can be used to calculate GFR because it is freely filtered and is neither reabsorbed nor secreted.

$$
\begin{aligned}
\mathrm{GFR} & =\mathrm{U}_{\text {inulin }} \times \mathrm{V} / \mathrm{P}_{\text {inulin }}=\mathrm{C}_{\text {inulin }} \\
& =\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{GC}}-\mathrm{P}_{\mathrm{BS}}\right)-\left(\pi_{\mathrm{GC}}-\pi_{\mathrm{BS}}\right)\right]
\end{aligned}
$$

(GC = glomerular capillary; BS = Bowman space; $\pi_{\mathrm{BS}}$ normally equals zero; $\mathrm{K}_{\mathrm{f}}=$ filtration coefficient).

Normal GFR $\approx 100 \mathrm{~mL} / \mathrm{min}$.
Creatinine clearance is an approximate measure of GFR. Slightly overestimates GFR because creatinine is moderately secreted by renal tubules.
Incremental reductions in GFR define the stages of chronic kidney disease.


## Effective renal plasma flow

Effective renal plasma flow (eRPF) can be estimated using para-aminohippuric acid (PAH) clearance. Between filtration and secretion, there is nearly $100 \%$ excretion of all PAH that enters the kidney.
eRPF $=U_{\text {PAH }} \times \mathrm{V} / \mathrm{P}_{\text {PAH }}=\mathrm{C}_{\text {PAH }}$.
Renal blood flow (RBF) $=$ RPF/( $1-$ Hct). Usually $20-25 \%$ of cardiac output.
Plasma volume $=\mathrm{TBV} \times(1-$ Hct $)$.
eRPF underestimates true renal plasma flow (RPF) slightly.

Filtration

Filtration fraction $(\mathrm{FF})=\mathrm{GFR} /$ RPF.
Normal FF = 20\%.
Filtered load $(\mathrm{mg} / \mathrm{min})=$ GFR $(\mathrm{mL} / \mathrm{min})$ $\times$ plasma concentration $(\mathrm{mg} / \mathrm{mL})$.

GFR can be estimated with creatinine clearance.
RPF is best estimated with PAH clearance.
Prostaglandins Dilate Afferent arteriole (PDA) Angiotensin II Constricts Efferent arteriole (ACE)


## Changes in glomerular dynamics

Effect	GFR	RPF	FF (GFR/RPF)
Afferent arteriole constriction	$\downarrow$	$\downarrow$	-
Efferent arteriole constriction	$\uparrow$	$\downarrow$	$\uparrow$
$\uparrow$ plasma protein concentration	$\downarrow$	-	$\downarrow$
$\downarrow$ plasma protein concentration	$\uparrow$	-	$\uparrow$
Constriction of ureter	$\downarrow$	-	$\downarrow$
Dehydration	$\downarrow$	$\downarrow \downarrow$	$\uparrow$

## Calculation of reabsorption and secretion rate

Filtered load $=\mathrm{GFR} \times \mathrm{P}_{\mathrm{x}}$.
Excretion rate $=\mathrm{V} \times \mathrm{U}_{\mathrm{x}}$.
Reabsorption rate $=$ filtered - excreted.
Secretion rate $=$ excreted - filtered.
$\mathrm{Fe}_{\mathrm{Na}}=$ fractional excretion of sodium.
$\mathrm{Fe}_{\mathrm{Na}}=\frac{\mathrm{Na}^{+} \text {excreted }}{\mathrm{Na}^{+} \text {filtered }}=\frac{\mathrm{V} \times \mathrm{U}_{\mathrm{Na}}}{\operatorname{GFR} \times \mathrm{P}_{\mathrm{Na}}}$ where $\mathrm{GFR}=\frac{\mathrm{U}_{\mathrm{Cr}} \times \mathrm{V}}{\mathrm{P}_{\mathrm{Cr}}}=\frac{\mathrm{P}_{\mathrm{Cr}} \times \mathrm{U}_{\mathrm{Na}}}{\mathrm{U}_{\mathrm{Cr}} \times \mathrm{P}_{\mathrm{Na}}}$

Glucose clearance

Glucose at a normal plasma level (range 60-120 $\mathrm{mg} / \mathrm{dL}$ ) is completely reabsorbed in proximal convoluted tubule (PCT) by $\mathrm{Na}^{+} / g l u c o s e$ cotransport.
In adults, at plasma glucose of $\sim 200 \mathrm{mg} / \mathrm{dL}$, glucosuria begins (threshold). At rate of $\sim 375 \mathrm{mg} / \mathrm{min}$, all transporters are fully saturated ( $\mathrm{T}_{\mathrm{m}}$ ).
Normal pregnancy is associated with $\uparrow$ GFR. With $\uparrow$ filtration of all substances, including glucose, the glucose threshold occurs at lower plasma glucose concentrations $\rightarrow$ glucosuria at normal plasma glucose levels.
Sodium-glucose cotransporter 2 (SGLT2) inhibitors (eg, -flozin drugs) result in glucosuria at plasma concentrations $<200 \mathrm{mg} / \mathrm{dL}$.

Glucosuria is an important clinical clue to diabetes mellitus.
Splay phenomenon- $\mathrm{T}_{\mathrm{m}}$ for glucose is reached gradually rather than sharply due to the heterogeneity of nephrons (ie, different $\mathrm{T}_{\mathrm{m}}$ points); represented by the portion of the titration curve between threshold and $\mathrm{T}_{\mathrm{m}}$.


## Nephron physiology



Early PCT - contains brush border. Reabsorbs all glucose and amino acids and most $\mathrm{HCO}_{3}^{-}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{PO}_{4}^{3-}, \mathrm{K}^{+}$, $\mathrm{H}_{2} \mathrm{O}$, and uric acid. Isotonic absorption. Generates and secretes $\mathrm{NH}_{3}$, which enables the kidney to secrete more $\mathrm{H}^{+}$.
PTH - inhibits $\mathrm{Na}^{+} / \mathrm{PO}_{4}{ }^{3-}$ cotransport $\rightarrow \mathrm{PO}_{4}{ }^{3-}$ excretion. AT II -stimulates $\mathrm{Na}^{+} / \mathrm{H}^{+}$exchange $\rightarrow \uparrow \mathrm{Na}^{+}, \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{HCO}_{3}{ }^{-}$reabsorption (permitting contraction alkalosis). $65-80 \% \mathrm{Na}^{+}$reabsorbed.

Thin descending loop of Henle-passively reabsorbs $\mathrm{H}_{2} \mathrm{O}$ via medullary hypertonicity (impermeable to $\mathrm{Na}^{+}$). Concentrating segment. Makes urine hypertonic.


Thick ascending loop of Henle - reabsorbs $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and $\mathrm{Cl}^{-}$. Indirectly induces paracellular reabsorption of $\mathrm{Mg}^{2+}$ and $\mathrm{Ca}^{2+}$ through $\oplus$ lumen potential generated by $\mathrm{K}^{+}$ backleak. Impermeable to $\mathrm{H}_{2} \mathrm{O}$. Makes urine less concentrated as it ascends.
$10-20 \% \mathrm{Na}^{+}$reabsorbed.


Early DCT - reabsorbs $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$. Impermeable to $\mathrm{H}_{2} \mathrm{O}$. Makes urine fully dilute (hypotonic).
PTH $-\uparrow \mathrm{Ca}^{2+} / \mathrm{Na}^{+}$exchange $\rightarrow \mathrm{Ca}^{2+}$ reabsorption.
$5-10 \% \mathrm{Na}^{+}$reabsorbed.


Collecting tubule-reabsorbs $\mathrm{Na}^{+}$in exchange for secreting $\mathrm{K}^{+}$and $\mathrm{H}^{+}$(regulated by aldosterone). Aldosterone-acts on mineralocorticoid receptor $\rightarrow$ mRNA $\rightarrow$ protein synthesis. In principal cells: $\uparrow$ apical $\mathrm{K}^{+}$ conductance, $\uparrow \mathrm{Na}^{+} / \mathrm{K}^{+}$pump, $\uparrow$ epithelial $\mathrm{Na}^{+}$channel $(\mathrm{ENaC})$ activity $\rightarrow$ lumen negativity $\rightarrow \mathrm{K}^{+}$secretion. In $\alpha$-intercalated cells: lumen negativity $\rightarrow \uparrow \mathrm{H}^{+}$ATPase activity $\rightarrow \uparrow \mathrm{H}^{+}$secretion $\rightarrow \uparrow \mathrm{HCO}_{3}^{-} / \mathrm{Cl}^{-}$exchanger activity.
ADH -acts at $\mathrm{V}_{2}$ receptor $\rightarrow$ insertion of aquaporin $\mathrm{H}_{2} \mathrm{O}$ channels on apical side.
$3-5 \% \mathrm{Na}^{+}$reabsorbed.

Renal tubular defects	The kidneys put out FaBulous Glittering LiquidS (from front to end of tube)			
	Defects	Effects	Causes	Notes
Fanconi syndrome	Generalized reabsorption defect in PCT $\rightarrow \uparrow$ excretion of amino acids, glucose, $\mathrm{HCO}_{3}{ }^{-}$, and $\mathrm{PO}_{4}^{3-}$, and all substances reabsorbed by the PCT	May lead to metabolic acidosis (proximal RTA), hypophosphatemia, osteopenia	Hereditary defects (eg, Wilson disease, tyrosinemia, glycogen storage disease), ischemia, multiple myeloma, nephrotoxins/drugs (eg, ifosfamide, cisplatin, expired tetracyclines), lead poisoning	
Bartter syndrome	Resorptive defect in thick ascending loop of Henle (affects $\mathrm{Na}^{+} / \mathrm{K}^{+} / 2 \mathrm{Cl}^{-}$ cotransporter)	Metabolic alkalosis, hypokalemia, hypercalciuria	Autosomal recessive	Presents similarly to chronic loop diuretic use
Gitelman syndrome	Reabsorption defect of NaCl in DCT	Metabolic alkalosis, hypomagnesemia, hypokalemia, hypocalciuria	Autosomal recessive	Presents similarly to lifelong thiazide diuretic use Less severe than Bartter syndrome
Liddle syndrome	Gain of function mutation $\rightarrow \uparrow$ activity of $\mathrm{Na}^{+}$channel $\rightarrow \uparrow \mathrm{Na}^{+}$reabsorption in collecting tubules	Metabolic alkalosis, hypokalemia, hypertension, $\downarrow$ aldosterone	Autosomal dominant	Presents similarly to hyperaldosteronism, but aldosterone is nearly undetectable Treat with amiloride
Syndrome of   Apparent   Mineralocorticoid   Excess	In cells containing mineralocorticoid receptors, 11 $\beta$-hydroxysteroid dehydrogenase converts cortisol (can activate these receptors) to cortisone (inactive on these receptors)   Hereditary deficiency of $11 \beta$-hydroxysteroid dehydrogenase   $\rightarrow$ excess cortisol   $\rightarrow \uparrow$ mineralocorticoid receptor activity	Metabolic alkalosis, hypokalemia, hypertension   $\downarrow$ serum aldosterone level; cortisol tries to be the SAME as aldosterone	Autosomal recessive Can acquire disorder from glycyrrhetinic acid (present in licorice), which blocks activity of 11 $\beta$-hydroxysteroid dehydrogenase	Treat with $\mathrm{K}^{+}$-sparing diuretics ( $\downarrow$ mineralocorticoid effects) or corticosteroids (exogenous corticosteroid $\downarrow$ endogenous cortisol production $\rightarrow \downarrow$ mineralocorticoid receptor activation)

## Relative concentrations along proximal convoluted tubules

[TF/P] > 1 when solute is reabsorbed less quickly than water or when solute is secreted
[TF/P] = 1 when solute and water are reabsorbed at the same rate
[TF/P] < 1 when solute is reabsorbed more quickly than water


回
Tubular inulin $\uparrow$ in concentration (but not amount) along the PCT as a result of water reabsorption. $\mathrm{Cl}^{-}$reabsorption occurs at a slower rate than $\mathrm{Na}^{+}$in early PCT and then matches the rate of $\mathrm{Na}^{+}$ reabsorption more distally. Thus, its relative concentration $\uparrow$ before it plateaus.

## Renin-angiotensin-aldosterone system



Renin	Secreted by JG cells in response to $\downarrow$ renal perfusion pressure (detected by renal baroreceptors in   afferent arteriole), $\uparrow$ renal sympathetic discharge ( $\beta_{1}$ effect), and $\downarrow \mathrm{NaCl}$ delivery to macula densa   cells.
AT II	Helps maintain blood volume and blood pressure. Affects baroreceptor function; limits reflex   bradycardia, which would normally accompany its pressor effects.
ANP, BNP	Released from atria (ANP) and ventricles (BNP) in response to $\uparrow$ volume; may act as a "check"   on renin-angiotensin-aldosterone system; relaxes vascular smooth muscle via cGMP $\rightarrow$ GFR,   $\downarrow$ renin. Dilates afferent arteriole, constricts efferent arteriole, promotes natriuresis.
ADHPrimarily regulates serum osmolality; also responds to low blood volume states. Stimulates   reabsorption of water il collecting ducts. Also stimulates reabsorption of urea in collecting ducts to   maintain corticopapillary osmotic gradient.	
AldosteronePrimarily regulates ECF volume and Na ${ }^{+}$content; responds to low blood volume states. Responds to   hyperkalemia by $\uparrow \mathrm{K}^{+}$excretion.	

## Juxtaglomerular apparatus

Consists of mesangial cells, JG cells (modified smooth muscle of afferent arteriole) and the macula densa ( NaCl sensor, located at distal end of loop of Henle). JG cells secrete renin in response to $\downarrow$ renal blood pressure and $\uparrow$ sympathetic tone $\left(\beta_{1}\right)$. Macula densa cells sense $\downarrow \mathrm{NaCl}$ delivery to DCT $\rightarrow \uparrow$ renin release $\rightarrow$ efferent arteriole vasoconstriction $\rightarrow \uparrow$ GFR.

JGA maintains GFR via renin-angiotensinaldosterone system.
In addition to vasodilatory properties, $\beta$-blockers can decrease BP by inhibiting $\beta_{1}$-receptors of the JGA $\rightarrow \downarrow$ renin release.

## Kidney endocrine functions

Erythropoietin
Calciferol (vitam
Prostaglandins
Released by interstitial cells in peritubular capillary bed in response to hypoxia.

Dopamine

Paracrine secretion vasodilates the afferent arterioles to $\uparrow$ RBF.

Secreted by PCT cells, promotes natriuresis. At low doses, dilates interlobular arteries, afferent arterioles, efferent arterioles $\rightarrow \uparrow$ RBF, little or no change in GFR. At higher doses, acts as vasoconstrictor.

Stimulates RBC proliferation in bone marrow. Erythropoietin often supplemented in chronic kidney disease.


NSAIDs block renal-protective prostaglandin synthesis $\rightarrow$ constriction of afferent arteriole and $\downarrow$ GFR; this may result in acute renal failure in low renal blood flow states.

## Hormones acting on kidney



Potassium shifts

SHIFTS $\mathrm{K}^{+}$INTO C CELL (CAUSING HYPOKALEMIA)	SHIFT $\mathrm{K}^{+}$OUT OF CELL (CAUSING HYPERKALEMA)
	Digitalis (blocks $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase)
Hypo-osmolarity	HyperOsmolarity
Lysis of cells (eg, crush injury, rhabdomyolysis,	
tumor lysis syndrome)	

## Electrolyte disturbances

ELECTROLYTE	LOW SERUM CONCENTRATION	HIGH SERUM CONCENTRATION
$\mathrm{Na}^{+}$	Nausea and malaise, stupor, coma, seizures	Irritability, stupor, coma
$\mathrm{K}^{+}$	U waves and flattened T waves on ECG,   arrhythmias, muscle cramps, spasm, weakness	Wide QRS and peaked T waves on ECG,   arrhythmias, muscle weakness
$\mathrm{Ca}^{2+}$	Tetany, seizures, QT prolongation, twitching   (Chvostek sign), spasm (Trousseau sign)	Stones (renal), bones (pain), groans (abdominal   pain), thrones ( $\uparrow$ urinary frequency), psychiatric   overtones (anxiety, altered mental status)
$\mathrm{Mg}^{2+}$	Tetany, torsades de pointes, hypokalemia,   hypocalcemia (when $\left.\left[\mathrm{Mg}^{2+}\right]<1.2 \mathrm{mg} / \mathrm{dL}\right)$	$\downarrow$ DTRs, lethargy, bradycardia, hypotension,   cardiac arrest, hypocalcemia
$\mathrm{PO}_{4}^{3-}$	Bone loss, osteomalacia (adults), rickets   (children)	Renal stones, metastatic calcifications,   hypocalcemia

## Features of renal disorders

CONDITION	BLOOD PRESSURE	PLASMA RENIN	ALDOSTERONE	SERUM Mg ${ }^{2+}$	URINE Ca ${ }^{2+}$
Bartter syndrome	-	$\uparrow$	$\uparrow$		$\uparrow$
Gitelman syndrome	-	$\uparrow$	$\uparrow$	$\downarrow$	$\downarrow$
Liddle syndrome, syndrome of apparent mineralocorticoid excess	$\uparrow$	$\downarrow$	$\downarrow$		
SIADH	-/ $\uparrow$	$\downarrow$	$\downarrow$		
Primary hyperaldosteronism (Conn syndrome)	$\uparrow$	$\downarrow$	$\uparrow$		
Renin-secreting tumor	$\uparrow$	$\uparrow$	$\uparrow$		

$\uparrow \downarrow=$ important differentiating feature.

## Acid-base physiology

	pH	$\mathrm{PCO}_{2}$	$\left[\mathrm{HCO}_{3}{ }^{-}\right]$	COMPENSATORY RESPONSE
Metabolic acidosis	$\downarrow$	$\downarrow$	$\downarrow$	Hyperventilation (immediate)
Metabolic alkalosis	$\uparrow$	$\uparrow$	$\uparrow$	Hypoventilation (immediate)
Respiratory acidosis	$\downarrow$	$\uparrow$	$\uparrow$	$\uparrow$ renal $\left[\mathrm{HCO}_{3}{ }^{-}\right]$reabsorption (delayed)
Respiratory alkalosis	$\uparrow$	$\downarrow$	$\downarrow$	$\downarrow$ renal $\left[\mathrm{HCO}_{3}{ }^{-}\right]$reabsorption (delayed)

Key: $\uparrow \downarrow=1^{\circ}$ disturbance; $\downarrow \uparrow=$ compensatory response.
Henderson-Hasselbalch equation: $\mathrm{pH}=6.1+\log \frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{0.03 \mathrm{PcO}_{2}}$
Predicted respiratory compensation for a simple metabolic acidosis can be calculated using the Winters formula. If measured $\mathrm{PCO}_{2}>$ predicted $\mathrm{PCO}_{2} \rightarrow$ concomitant respiratory acidosis; if measured $\mathrm{PCO}_{2}<$ predicted $\mathrm{PCO}_{2} \rightarrow$ concomitant respiratory alkalosis:

$$
\mathrm{PCO}_{2}=1.5\left[\mathrm{HCO}_{3}^{-}\right]+8 \pm 2
$$

## Acidosis and alkalosis



Renal tubular acidosis	Disorder of the renal tubules that causes normal anion gap (hyperchloremic) metabolic acidosis.				
RTA TYPE	Defect	URINE PH	SERUM K ${ }^{+}$	CAUSES	Associations
Distal renal tubular acidosis (type 1)	Inability of $\alpha$-intercalated cells to secrete $\mathrm{H}^{+} \rightarrow$ no new $\mathrm{HCO}_{3}^{-}$is generated $\rightarrow$ metabolic acidosis	> 5.5	$\downarrow$	Amphotericin B toxicity, analgesic nephropathy, congenital anomalies (obstruction) of urinary tract, autoimmune diseases (eg, SLE)	$\uparrow$ risk for calcium phosphate kidney stones (due to $\uparrow$ urine pH and $\uparrow$ bone turnover)
Proximal renal tubular acidosis (type 2)	Defect in PCT   $\mathrm{HCO}_{3}{ }^{-}$reabsorption   $\rightarrow \uparrow$ excretion of $\mathrm{HCO}_{3}{ }^{-}$in urine $\rightarrow$ metabolic acidosis Urine can be acidified by $\alpha$-intercalated cells in collecting duct, but not enough to overcome the increased excretion of $\mathrm{HCO}_{3}{ }^{-} \rightarrow$ metabolic acidosis	< 5.5	$\downarrow$	Fanconi syndrome, multiple myeloma, carbonic anhydrase inhibitors	$\uparrow$ risk for hypophosphatemic rickets (in Fanconi syndrome)
Hyperkalemic tubular acidosis (type 4)	Hypoaldosteronism or aldosterone resistance; hyperkalemia $\rightarrow \downarrow \mathrm{NH}_{3}$ synthesis in PCT $\rightarrow \downarrow \mathrm{NH}_{4}^{+}$excretion	$\begin{aligned} & <5.5 \text { (or } \\ & \text { variable) } \end{aligned}$	$\uparrow$	$\downarrow$ aldosterone production (eg, diabetic hyporeninism, ACE inhibitors, ARBs, NSAIDs, heparin, cyclosporine, adrenal insufficiency) or aldosterone resistance (eg, $\mathrm{K}^{+}$-sparing diuretics, nephropathy due to obstruction, TMP-SMX)	

## RENAL—PATHOLOGY

Casts in urine	Presence of casts indicates that hematuria/pyuria is of glomerular or renal tubular origin. Bladder cancer, kidney stones $\rightarrow$ hematuria, no casts.   Acute cystitis $\rightarrow$ pyuria, no casts.
RBC casts A	Glomerulonephritis, hypertensive emergency.
WBC casts B	Tubulointerstitial inflammation, acute pyelonephritis, transplant rejection.
Fatty casts ("oval fat bodies")	Nephrotic syndrome. Associated with "Maltese cross" sign.
Granular ("muddy brown") casts [C	Acute tubular necrosis (ATN).
Waxy casts [	End-stage renal disease/chronic renal failure.
Hyaline casts [	Nonspecific, can be a normal finding, often seen in concentrated urine samples.



## Nomenclature of glomerular disorders

TYPE	CHARACTERISTICS	EXAMPLE
Focal	$<50 \%$ of glomeruli are involved	Focal segmental glomerulosclerosis
Diffuse	$>50 \%$ of glomeruli are involved	Diffuse proliferative glomerulonephritis
Proliferative	Typercellular glomeruli	Membranoproliferative glomerulonephritis
Membranous	Thickening of glomerular basement membrane   (GBM)	Membranous nephropathy
Primary glomerular   disease	$1^{\circ}$ disease of the kidney specifically impacting   the glomeruli	Minimal change disease
Secondary glomerular   disease	Systemic disease or disease of another organ   system that also impacts the glomeruli	SLE, diabetic nephropathy

## Glomerular diseases



GRAMS OF PROTEIN EXCRETED PER DAY ( $\mathrm{g} / \mathrm{day}$ )

## Nephrotic syndrome

NephrOtic syndrome-massive prOteinuria ( $>3.5 \mathrm{~g} /$ day ) with hypoalbuminemia, resulting edema, hyperlipidemia. Frothy urine with fatty casts.
Disruption of glomerular filtration charge barrier may be $1^{\circ}$ (eg, direct sclerosis of podocytes) or $2^{\circ}$ (systemic process [eg, diabetes] secondarily damages podocytes).
Severe nephritic syndrome may present with nephrotic syndrome features (nephritic-nephrotic syndrome) if damage to GBM is severe enough to damage charge barrier.
Associated with hypercoagulable state due to antithrombin (AT) III loss in urine and $\uparrow$ risk of infection (loss of immunoglobulins in urine and soft tissue compromise by edema).

## Minimal change disease (lipoid nephrosis)

Most common cause of nephrotic syndrome in children.
Often $1^{\circ}$ (idiopathic) and may be triggered by recent infection, immunization, immune stimulus. Rarely, may be $2^{\circ}$ to lymphoma (eg, cytokine-mediated damage).
$1^{\circ}$ disease has excellent response to corticosteroids.

- LM—Normal glomeruli (lipid may be seen in PCT cells)
- IF- $\ominus$
- EM—effacement of podocyte foot processes


## Focal segmental glomerulosclerosis

Most common cause of nephrotic syndrome in African-Americans and Hispanics.
Can be $1^{\circ}$ (idiopathic) or $2^{\circ}$ to other conditions (eg, HIV infection, sickle cell disease, heroin abuse, massive obesity, interferon treatment, or congenital malformations).
$1^{\circ}$ disease has inconsistent response to steroids. May progress to CKD.

- LM-segmental sclerosis and hyalinosis B
- IF-often $\Theta$ but may be $\oplus$ for nonspecific focal deposits of IgM, C3, Cl
- EM-effacement of foot processes similar to minimal change disease

Also known as membranous glomerulonephritis.
Can be $1^{\circ}$ (eg, antibodies to phospholipase $\mathrm{A}_{2}$ receptor) or $2^{\circ}$ to drugs (eg, NSAIDs, penicillamine, gold), infections (eg, HBV, HCV, syphilis), SLE, or solid tumors.
$1^{\circ}$ disease has poor response to steroids. May progress to CKD.

- LM-diffuse capillary and GBM thickening
- IF-granular due to IC deposition
- EM-"Spike and dome" appearance of subepithelial deposits

Kidney is the most commonly involved organ (systemic amyloidosis). Associated with chronic conditions that predispose to amyloid deposition (eg, AL amyloid, AA amyloid).

- LM—Congo red stain shows apple-green birefringence under polarized light due to amyloid deposition in the mesangium

Most common cause of ESRD in the United States.
Hyperglycemia $\rightarrow$ nonenzymatic glycation of tissue proteins $\rightarrow$ mesangial expansion; GBM thickening and $\uparrow$ permeability. Hyperfiltration (glomerular HTN and $\uparrow$ GFR) $\rightarrow$ glomerular hypertrophy and glomerular scarring (glomerulosclerosis) leading to further progression of nephropathy.

- LM—Mesangial expansion, GBM thickening, eosinophilic nodular glomerulosclerosis (Kimmelstiel-Wilson lesions, arrows in $\mathbf{D}$ )



## Nephritic syndrome

## Acute <br> poststreptococcal glomerulonephritis

Rapidly progressive (crescentic) glomerulonephritis

## Diffuse proliferative

 glomerulonephritis
## IgA nephropathy (Berger disease)

## Alport syndrome

Membranoproliferative glomerulonephritis

NephrItic syndrome $=$ Inflammatory process. When glomeruli are involved, leads to hematuria and RBC casts in urine. Associated with azotemia, oliguria, hypertension (due to salt retention), proteinuria, hypercellular/inflamed glomeruli on biopsy.
Most frequently seen in children. $\sim 2-4$ weeks after group A streptococcal infection of pharynx or skin. Resolves spontaneously in most children; may progress to renal insufficiency in adults. Type III hypersensitivity reaction. Presents with peripheral and periorbital edema, cola-colored urine, HTN. $\oplus$ strep titers/serologies, $\downarrow$ complement levels (C3) due to consumption.

- LM-glomeruli enlarged and hypercellular A
" IF-("starry sky") granular appearance ("lumpy-bumpy") B due to IgG, IgM, and C3 deposition along GBM and mesangium
- EM-subepithelial immune complex (IC) humps

Poor prognosis, rapidly deteriorating renal function (days to weeks).

- LM-crescent moon shape Crescents consist of fibrin and plasma proteins (eg, C3b) with glomerular parietal cells, monocytes, macrophages
Several disease processes may result in this pattern which may be delineated via IF pattern.
- Linear IF due to antibodies to GBM and alveolar basement membrane: Goodpasture syndrome-hematuria/hemoptysis; type II hypersensitivity reaction; Treatment: plasmapheresis
- Negative IF/Pauci-immune (no Ig/C3 deposition): Granulomatosis with polyangiitis (Wegener) - PR3-ANCA/c-ANCA or Microscopic polyangiitis-MPO-ANCA/p-ANCA
- Granular IF-PSGN or DPGN

Often due to SLE (think "wire lupus"). DPGN and MPGN often present as nephrotic syndrome and nephritic syndrome concurrently.
" LM-"wire looping" of capillaries

- IF-granular; EM-subendothelial and sometimes intramembranous IgG-based ICs often with C3 deposition
Episodic hematuria that occurs concurrently with respiratory or GI tract infections (IgA is secreted by mucosal linings). Renal pathology of IgA vasculitis (HSP).
- LM-mesangial proliferation
- IF-IgA-based IC deposits in mesangium; EM-mesangial IC deposition

Mutation in type IV collagen $\rightarrow$ thinning and splitting of glomerular basement membrane.
Most commonly X-linked dominant. Eye problems (eg, retinopathy, lens dislocation), glomerulonephritis, sensorineural deafness; "can't see, can't pee, can't hear a bee."

- EM-"Basket-weave"

MPGN is a nephritic syndrome that often co-presents with nephrotic syndrome.
Type I may be $2^{\circ}$ to hepatitis B or C infection. May also be idiopathic.
= Subendothelial IC deposits with granular IF
Type II is associated with C3 nephritic factor (IgG antibody that stabilizes C3 convertase $\rightarrow$ persistent complement activation $\rightarrow \downarrow$ C3 levels).

- Intramembranous deposits, also called dense deposit disease

In both types, mesangial ingrowth $\rightarrow$ GBM splitting $\rightarrow$ "tram-track" appearance on H\&E D and PAS Estains.


Kidney Can lead to severe complications such as hydronephrosis, pyelonephritis. Obstructed stone presents with stones unilateral flank tenderness, colicky pain radiating to groin, hematuria. Treat and prevent by encouraging fluid intake.
Most common kidney stone presentation: calcium oxalate stone in patient with hypercalciuria and normocalcemia.

Content	PRECIPITATES WITH	X-Ray finoling	CT Findings	URINE CRYSTAL	Notes
Calcium	Calcium oxalate: hypocitraturia	Radiopaque	Radiopaque	Shaped like envelope A or dumbbell	Calcium stones most common ( $80 \%$ ); calcium oxalate more common than calcium phosphate stones.   Hypocitraturia often associated with $\downarrow$ urine pH . Can result from ethylene glycol (antifreeze) ingestion, vitamin C abuse, hypocitraturia, malabsorption (eg, Crohn disease).   Treatment: thiazides, citrate, low-sodium diet.
	Calcium phosphate: ${ }^{\uparrow} \mathrm{pH}$	Radiopaque	Radiopaque	Wedgeshaped prism	Treatment: low-sodium diet, thiazides.
Ammonium magnesium phosphate	${ }^{\uparrow} \mathrm{pH}$	Radiopaque	Radiopaque	Coffin lid ${ }^{\text {a }}$	Also known as struvite; account for $15 \%$ of stones. Caused by infection with urease $\oplus$ bugs (eg, Proteus mirabilis, Staphylococcus saprophyticus, Klebsiella) that hydrolyze urea to ammonia $\rightarrow$ urine alkalinization. Commonly form staghorn calculi $\mathbf{C}$.   Treatment: eradication of underlying infection, surgical removal of stone.
Uric acid	$\downarrow \mathrm{pH}$	RadiolUcent	Minimally visible	Rhomboid D or rosettes	About $5 \%$ of all stones. Risk factors: $\downarrow$ urine volume, arid climates, acidic pH .   Strong association with hyperuricemia (eg, gout). Often seen in diseases with $\uparrow$ cell turnover (eg, leukemia).   Treatment: alkalinization of urine, allopurinol.
Cystine	$\downarrow_{\mathrm{p}} \mathrm{H}$	Faintly radiopaque	Moderately radiopaque	Hexagonal [E	Hereditary (autosomal recessive) condition in which Cystine-reabsorbing PCT transporter loses function, causing cystinuria. Transporter defect also results in poor reabsorption of Ornithine, Lysine, Arginine (COLA). Cystine is poorly soluble, thus stones form in urine. Usually begins in childhood. Can form staghorn calculi. Sodium cyanide nitroprusside test $\oplus$.   "SIXtine" stones have SIX sides.   Treatment: low sodium diet, alkalinization of urine, chelating agents if refractory.



Hydronephrosis


Renal cell carcinoma

Distention/dilation of renal pelvis and calyces $\boldsymbol{A}$. Usually caused by urinary tract obstruction (eg, renal stones, severe BPH, congenital obstructions, cervical cancer, injury to ureter); other causes include retroperitoneal fibrosis, vesicoureteral reflux. Dilation occurs proximal to site of pathology. Serum creatinine becomes elevated if obstruction is bilateral or if patient has an obstructed solitary kidney. Leads to compression and possible atrophy of renal cortex and medulla.

Polygonal clear cells $\boldsymbol{A}$ filled with accumulated lipids and carbohydrate. Often golden-yellow B due to $\uparrow$ lipid content.
Originates from PCT $\rightarrow$ invades renal vein (may develop varicocele if left sided) $\rightarrow$ IVC $\rightarrow$ hematogenous spread $\rightarrow$ metastasis to lung and bone.
Manifests with hematuria, palpable masses, $2^{\circ}$ polycythemia, flank pain, fever, weight loss.
Treatment: surgery/ablation for localized disease. Immunotherapy (eg, aldesleukin) or targeted therapy for metastatic disease, rarely curative. Resistant to chemotherapy and radiation therapy.

Most common $1^{\circ}$ renal malignancy [C. Most common in men 50-70 years old, $\uparrow$ incidence with smoking and obesity. Associated with paraneoplastic syndromes ("PEAR"-aneoplastic), eg, PTHrP, Ectopic EPO, ACTH, Renin).
Associated with gene deletion on chromosome 3 (sporadic, or inherited as von Hippel-Lindau syndrome).


## Renal oncocytoma



Benign epithelial cell tumor arising from collecting ducts (arrows in A point to wellcircumscribed mass with central scar). Large eosinophilic cells with abundant mitochondria without perinuclear clearing B (vs chromophobe renal cell carcinoma). Presents with painless hematuria, flank pain, abdominal mass.
Often resected to exclude malignancy (eg, renal cell carcinoma).


Nephroblastoma (Wilms tumor)


Most common renal malignancy of early childhood (ages 2-4). Contains embryonic glomerular structures. Presents with large, palpable, unilateral flank mass A and/or hematuria.
"Loss of function" mutations of tumor suppressor genes WT1 or WT2 on chromosome 11.
May be a part of several syndromes:

- WAGR complex: Wilms tumor, Aniridia (absence of iris), Genitourinary malformations, mental Retardation/intellectual disability (WT1 deletion)
- Denys-Drash syndrome-Wilms tumor, Diffuse mesangial sclerosis (early-onset nephrotic syndrome), Dysgenesis of gonads (male pseudohermaphroditism), WTl mutation
- Beckwith-Wiedemann syndrome-Wilms tumor, macroglossia, organomegaly, hemihyperplasia (WT2 mutation)

Transitional cell carcinoma


Also known as urothelial carcinoma. Most common tumor of urinary tract system (can occur in renal calyces, renal pelvis, ureters, and bladder) A B. Can be suggested by painless hematuria (no casts).
Associated with problems in your Pee SAC:
Phenacetin, Smoking, Aniline dyes, and Cyclophosphamide.


## Squamous cell carcinoma of the bladder

Chronic irritation of urinary bladder $\rightarrow$ squamous metaplasia $\rightarrow$ dysplasia and squamous cell carcinoma.
Risk factors include Schistosoma haematobium infection (Middle East), chronic cystitis, smoking, chronic nephrolithiasis. Presents with painless hematuria.

## Urinary incontinence

Stress incontinence
Outlet incompetence (urethral hypermobility or intrinsic sphincteric deficiency) $\rightarrow$ leak with $\uparrow$ intra-abdominal pressure (eg, sneezing, lifting). $\uparrow$ risk with obesity, vaginal delivery, prostate surgery. $\oplus$ bladder stress test (directly observed leakage from urethra upon coughing or Valsalva maneuver). Treatment: pelvic floor muscle strengthening (Kegel) exercises, weight loss, pessaries.
Urgency incontinence Overactive bladder (detrusor instability) $\rightarrow$ leak with urge to void immediately. Associated with UTI. Treatment: Kegel exercises, bladder training (timed voiding, distraction or relaxation techniques), antimuscarinics (eg, oxybutynin).
Mixed incontinence
Overflow incontinence

Features of both stress and urgency incontinence.
Incomplete emptying (detrusor underactivity or outlet obstruction) $\rightarrow$ leak with overfilling. Associated with polyuria (eg, diabetes), bladder outlet obstruction (eg, BPH), neurogenic bladder (eg, MS). $\uparrow$ post-void residual (urinary retention) on catheterization or ultrasound. Treatment: catheterization, relieve obstruction (eg, $\alpha$-blockers for BPH).

Urinary tract infection (acute bacterial cystitis)

Inflammation of urinary bladder. Presents as suprapubic pain, dysuria, urinary frequency, urgency. Systemic signs (eg, high fever, chills) are usually absent.
Risk factors include female gender (short urethra), sexual intercourse ("honeymoon cystitis"), indwelling catheter, diabetes mellitus, impaired bladder emptying.

## Causes:

- E coli (most common).
- Staphylococcus saprophyticus-seen in sexually active young women (E coli is still more common in this group).
- Klebsiella.
- Proteus mirabilis-urine has ammonia scent.

Lab findings: $\oplus$ leukocyte esterase. $\oplus$ nitrites (indicate gram $\Theta$ organisms). Sterile pyuria and $\Theta$ urine cultures suggest urethritis by Neisseria gonorrhoeae or Chlamydia trachomatis.

## Pyelonephritis

## Acute pyelonephritis

Neutrophils infiltrate renal interstitium A. Affects cortex with relative sparing of glomeruli/vessels. Presents with fevers, flank pain (costovertebral angle tenderness), nausea/vomiting, chills. Causes include ascending UTI ( E coli is most common), hematogenous spread to kidney. Presents with WBCs in urine +/- WBC casts. CT would show striated parenchymal enhancement B.
Risk factors include indwelling urinary catheter, urinary tract obstruction, vesicoureteral reflux, diabetes mellitus, pregnancy.
Complications include chronic pyelonephritis, renal papillary necrosis, perinephric abscess, urosepsis.
Treatment: antibiotics.
Chronic
pyelonephritis

The result of recurrent episodes of acute pyelonephritis. Typically requires predisposition to infection such as vesicoureteral reflux or chronically obstructing kidney stones.
Coarse, asymmetric corticomedullary scarring, blunted calyx. Tubules can contain eosinophilic casts resembling thyroid tissue $\mathbf{C}$ (thyroidization of kidney).
Xanthogranulomatous pyelonephritis—rare; grossly orange nodules that can mimic tumor nodules; characterized by widespread kidney damage due to granulomatous tissue containing foamy macrophages. Associated with Proteus infection.


Acute kidney injury	Formerly known as acute renal failure. Acute kidney injury is defined as an abrupt decline in renal function as measured by $\uparrow$ creatinine and $\uparrow$ BUN or by oliguria/anuria.			
Prerenal azotemia	Due to $\downarrow$ RBF (eg, hypotension) $\rightarrow \downarrow$ GFR. $\mathrm{Na}^{+} / \mathrm{H}_{2} \mathrm{O}$ and urea retained by kidney in an attempt to conserve volume $\rightarrow \uparrow$ BUN/creatinine ratio (urea is reabsorbed, creatinine is not) and $\downarrow \mathrm{FE}_{\mathrm{Na}}$.			
Intrinsic renal failure	Most commonly due to acute tubular necrosis (from ischemia or toxins); less commonly due to acute glomerulonephritis (eg, RPGN, hemolytic uremic syndrome) or acute interstitial nephritis.   In ATN, patchy necrosis $\rightarrow$ debris obstructing tubule and fluid backflow across necrotic tubule $\rightarrow \downarrow$ GFR. Urine has epithelial/granular casts. Urea reabsorption is impaired $\rightarrow \downarrow$ BUN/creatinine ratio and $\uparrow \mathrm{FE}_{\mathrm{Na}}$.			
Postrenal azotemia	Due to outflow obstruction (stones, BPH, neoplasia, congenital anomalies). Develops only with bilateral obstruction or in a solitary kidney.			
		Prerenal	Intrinsic renal	Postrenal
	Urine osmolality ( $\mathrm{mOsm} / \mathrm{kg}$ )	> 500	$<350$	< 350
	Urine $\mathrm{Na}^{+}(\mathrm{mEq} / \mathrm{L})$	$<20$	$>40$	Varies
	$\mathrm{FE}_{\mathrm{Na}}$	$<1 \%$	$>2 \%$	Varies
	Serum BUN/Cr	> 20	$<15$	Varies

Consequences of renal Decline in renal filtration can lead to excess failure retained nitrogenous waste products and
electrolyte disturbances. Consequences (MAD HUNGER):

- Metabolic Acidosis
- Dyslipidemia (especially $\uparrow$ triglycerides)
- Hyperkalemia
- Uremia-clinical syndrome marked by:
- Nausea and anorexia
- Pericarditis
- Asterixis
- Encephalopathy
- Platelet dysfunction
- $\mathrm{Na}^{+} / \mathrm{H}_{2} \mathrm{O}$ retention (HF, pulmonary edema, hypertension)
- Growth retardation and developmental delay
- Erythropoietin failure (anemia)
- Renal osteodystrophy

2 forms of renal failure: acute (eg, ATN) and chronic (eg, hypertension, diabetes mellitus, congenital anomalies).

Renal osteodystrophy Hypocalcemia, hyperphosphatemia, and failure of vitamin D hydroxylation associated with chronic renal disease $\rightarrow 2^{\circ}$ hyperparathyroidism. High serum phosphate can bind with $\mathrm{Ca}^{2+} \rightarrow$ tissue deposits $\rightarrow \downarrow$ serum $\mathrm{Ca}^{2+} . \downarrow 1,25-(\mathrm{OH})_{2} \mathrm{D}_{3} \rightarrow \downarrow$ intestinal $\mathrm{Ca}^{2+}$ absorption. Causes subperiosteal thinning of bones.

## Acute interstitial nephritis (tubulointerstitial nephritis)

Acute interstitial renal inflammation. Pyuria (classically eosinophils) and azotemia occurring after administration of drugs that act as haptens, inducing hypersensitivity (eg, diuretics, penicillin derivatives, proton pump inhibitors, sulfonamides, rifampin, NSAIDs). Less commonly may be $2^{\circ}$ to other processes such as systemic infections (eg, Mycoplasma) or autoimmune diseases (eg, Sjögren syndrome, SLE, sarcoidosis).

Associated with fever, rash, hematuria, pyuria, and costovertebral angle tenderness, but can be asymptomatic.
Remember these P's:

- Pee (diuretics)
- Pain-free (NSAIDs)
- Penicillins and cephalosporins
- Proton pump inhibitors
- RifamPin

Acute tubular necrosis


Diffuse cortical necrosis

Acute generalized cortical infarction of both kidneys. Likely due to a combination of vasospasm and DIC.

Associated with obstetric catastrophes (eg, abruptio placentae), septic shock.

## Renal papillary

 necrosis

Sloughing of necrotic renal papillae $\boldsymbol{A} \rightarrow$ gross hematuria and proteinuria. May be triggered by recent infection or immune stimulus. Associated with sickle cell disease or trait, acute pyelonephritis, NSAIDs, diabetes mellitus.

SAAD papa with papillary necrosis:
Sickle cell disease or trait
Acute pyelonephritis
Analgesics (NSAIDs)
Diabetes mellitus

## Renal cyst disorders

Autosomal dominant polycystic kidney disease

Autosomal recessive polycystic kidney disease

Autosomal dominant tubulointerstitial kidney disease

Simple vs complex renal cysts

Numerous cysts in cortex and medulla $\boldsymbol{A}$ causing bilateral enlarged kidneys ultimately destroy kidney parenchyma. Presents with flank pain, hematuria, hypertension, urinary infection, progressive renal failure in $\sim 50 \%$ of individuals.
Mutation in PKD1 ( $85 \%$ of cases, chromosome 16) or PKD2 (15\% of cases, chromosome 4). Death from complications of chronic kidney disease or hypertension (caused by $\uparrow$ renin production). Associated with berry aneurysms, mitral valve prolapse, benign hepatic cysts, diverticulosis. Treatment: If hypertension or proteinuria develops, treat with ACE inhibitors or ARBs.
Cystic dilation of collecting ducts B. Often presents in infancy. Associated with congenital hepatic fibrosis. Significant oliguric renal failure in utero can lead to Potter sequence. Concerns beyond neonatal period include systemic hypertension, progressive renal insufficiency, and portal hypertension from congenital hepatic fibrosis.
Also known as medullary cystic kidney disease. Inherited disease causing tubulointerstitial fibrosis and progressive renal insufficiency with inability to concentrate urine. Medullary cysts usually not visualized; smaller kidneys on ultrasound. Poor prognosis.

Simple cysts are filled with ultrafiltrate (anechoic on ultrasound C). Very common and account for majority of all renal masses. Found incidentally and typically asymptomatic.
Complex cysts, including those that are septated, enhanced, or have solid components on imaging require follow-up or removal due to risk of renal cell carcinoma.


## RENAL—PHARMACOLOGY

## Diuretics site of action



Mannitol	
MECHANSM	Osmotic diuretic. $\uparrow$ tubular fluid osmolarity $\rightarrow \uparrow$ urine flow, $\downarrow$ intracranial/intraocular pressure.
CLINCAL USE	Drug overdose, elevated intracranial/intraocular pressure.
ADVERSE EFFECTS	Pulmonary edema, dehydration, hypo- or hypernatremia. Contraindicated in anuria, HF.

## Acetazolamide



## Loop diuretics

## Furosemide, bumetanide, torsemide




## Diuretics: electrolyte changes

Urine NaCl

Urine $\mathrm{Ca}^{2+}$

Urine $\mathrm{K}^{+} \quad \uparrow$ especially with loop and thiazide diuretics. Serum $\mathrm{K}^{+}$may decrease as a result.
Blood $\mathrm{pH} \quad \downarrow$ (acidemia): carbonic anhydrase inhibitors: $\downarrow \mathrm{HCO}_{3}{ }^{-}$reabsorption. $\mathrm{K}^{+}$sparing: aldosterone blockade prevents $\mathrm{K}^{+}$secretion and $\mathrm{H}^{+}$secretion. Additionally, hyperkalemia leads to $\mathrm{K}^{+}$entering all cells (via $\mathrm{H}^{+} / \mathrm{K}^{+}$exchanger) in exchange for $\mathrm{H}^{+}$exiting cells.
$\uparrow$ (alkalemia): loop diuretics and thiazides cause alkalemia through several mechanisms:

- Volume contraction $\rightarrow \uparrow$ AT II $\rightarrow \uparrow \mathrm{Na}^{+} / \mathrm{H}^{+}$exchange in PCT $\rightarrow \uparrow \mathrm{HCO}_{3}{ }^{-}$reabsorption ("contraction alkalosis")
- $\mathrm{K}^{+}$loss leads to $\mathrm{K}^{+}$exiting all cells (via $\mathrm{H}^{+} / \mathrm{K}^{+}$exchanger) in exchange for $\mathrm{H}^{+}$entering cells
= In low $\mathrm{K}^{+}$state, $\mathrm{H}^{+}$(rather than $\mathrm{K}^{+}$) is exchanged for $\mathrm{Na}^{+}$in cortical collecting tubule $\rightarrow$ alkalosis and "paradoxical aciduria"
$\uparrow$ with all diuretics (strength varies based on potency of diuretic effect). Serum NaCl may decrease as a result.
with loop diuretics: $\downarrow$ paracellular $\mathrm{Ca}^{2+}$ reabsorption $\rightarrow$ hypocalcemia.
$\downarrow$ with thiazides: enhanced $\mathrm{Ca}^{2+}$ reabsorption.

Angiotensinconverting enzyme inhibitors	Captopril, enalapril, lisinopril, ramipril.	
mechanism	Inhibit ACE $\rightarrow \downarrow$ AT II $\rightarrow \downarrow$ GFR by preventing constriction of efferent arterioles. $\uparrow$ renin due to loss of negative feedback. Inhibition of ACE also prevents inactivation of bradykinin, a potent vasodilator.	
clincal use	Hypertension, HF ( $\downarrow$ mortality), proteinuria, diabetic nephropathy. Prevent unfavorable heart remodeling as a result of chronic hypertension.	In chronic kidney disease (eg, diabetic nephropathy), $\downarrow$ intraglomerular pressure, slowing GBM thickening.
adverse effects	Cough, Angioedema (both due to $\uparrow$ bradykinin; contraindicated in Cl esterase inhibitor deficiency), Teratogen (fetal renal malformations), $\uparrow$ Creatinine ( $\downarrow$ GFR), Hyperkalemia, and Hypotension. Used with caution in bilateral renal artery stenosis because ACE inhibitors will further $\downarrow$ GFR $\rightarrow$ renal failure.	Captopril's CATCHH.

Angiotensin II receptor Losartan, candesartan, valsartan. blockers

mechanism	Selectively block binding of angiotensin II to $\mathrm{AT}_{1}$ receptor. Effects similar to ACE inhibitors, but ARBs do not increase bradykinin.
clincal use	Hypertension, HF, proteinuria, or chronic kidney disease (eg, diabetic nephropathy) with intolerance to ACE inhibitors (eg, cough, angioedema).
adverse effects	Hyperkalemia, $\downarrow$ GFR, hypotension; teratogen.
Aliskiren	
mechanism	Direct renin inhibitor, blocks conversion of angiotensinogen to angiotensin I.
clinical use	Hypertension.
adverse effects	Hyperkalemia, $\downarrow$ GFR, hypotension, angioedema. Relatively contraindicated in patients already taking ACE inhibitors or ARBs and contraindicated in pregnancy.

## HIGH-YIELD SYSTEMS

## Reproductive

"Artificial insemination is when the farmer does it to the cow instead of the bull."
"Whoever called it necking was a poor judge of anatomy." $\quad$-Student essay
"See, the problem is that God gives men a brain and a penis, and only enough blood to run one at a time."
-Robin Williams
"I think you can say that life is a system in which proteins and nucleic acids interact in ways that allow the structure to grow and reproduce. It's that growth and reproduction, the ability to make more of yourself, that's important."
-Andrew H. Knoll

The reproductive system can be intimidating at first but is manageable once you organize the concepts into the pregnancy, endocrinologic, embryologic, and oncologic aspects of reproduction. Study the endocrine and reproductive chapters together, because mastery of the hypothalamic-pituitary-gonadal axis is key to answering questions on ovulation, menstruation, disorders of sexual development, contraception, and many pathologies.

Embryology is a nuanced subject that covers multiple organ systems. Approaching it from a clinical perspective will allow for better understanding. For instance, make the connection between the presentation of DiGeorge syndrome and the 3rd/4th branchial pouch, and between the Müllerian/Wolffian systems and disorders of sexual development.

As for oncology, don't worry about remembering screening or treatment guidelines. It is more important to know how these cancers present (eg, hormonal derangements, signs, and symptoms), their histologic pathology, and their underlying risk factors. In addition, some of the testicular and ovarian cancers have distinct patterns of hCG, AFP, LH, or FSH derangement that make good clues in exam questions.


## - REPRODUCTIVE—EMBRYOLOGY

## Important genes of embryogenesis

Sonic hedgehog gene Produced at base of limbs in zone of polarizing activity. Involved in patterning along anteroposterior axis and CNS development; mutation can cause holoprosencephaly.
Wnt-7 gene Produced at apical ectodermal ridge (thickened ectoderm at distal end of each developing limb). Necessary for proper organization along dorsal-ventral axis.
Fibroblast growth factor (FGF) gene Homeobox (Hox) Produced at apical ectodermal ridge. Stimulates mitosis of underlying mesoderm, providing for lengthening of limbs. "Look at that Fetus, Growing Fingers."

Homeobox(Hox)
Involved in segmental organization of embryo in a craniocaudal direction. Code for transcription genes factors. Hox mutations $\rightarrow$ appendages in wrong locations.

## Early fetal development

Early embryonic
development
development

hCG secretion begins around the time of implantation of blastocyst.

$$
\text { Bilaminar disc (epiblast, hypoblast). } \quad 2 \text { weeks }=2 \text { layers. }
$$

Gastrulation forms trilaminar embryonic disc. Cells from epiblast invaginate $\rightarrow$ primitive streak $\rightarrow$ endoderm, mesoderm, ectoderm. Notochord arises from midline mesoderm; overlying ectoderm becomes neural plate.

Blastocyst "sticks" at day 6 .

3 weeks $=3$ layers.

## Weeks 3-8 <br> (embryonic period)

Neural tube formed by neuroectoderm and closes by week 4 .
Organogenesis.
Week 4 Heart begins to beat.
Upper and lower limb buds begin to form.
Fetal cardiac activity visible by transvaginal ultrasound.

Week 8
Week 10

Fetal movements start.
Genitalia have male/female characteristics.

Extremely susceptible to teratogens.

4 weeks $=4$ limbs and 4 heart chambers.

Gait at week 8.
Tenitalia

## Embryologic derivatives

Ectoderm		External/outer layer
Surface ectoderm	Epidermis; adenohypophysis (from Rathke pouch); lens of eye; epithelial linings of oral cavity, sensory organs of ear, and olfactory epithelium; anal canal below the pectinate line; parotid, sweat, mammary glands.	Craniopharyngioma-benign Rathke pouch tumor with cholesterol crystals, calcifications.
Neural tube	Brain (neurohypophysis, CNS neurons, oligodendrocytes, astrocytes, ependymal cells, pineal gland), retina, spinal cord.	Neuroectoderm—think CNS.
Neural crest	Melanocytes, Myenteric (Auerbach) plexus, Odontoblasts, Endocardial cushions, Laryngeal cartilage, Parafollicular (C) cells of the thyroid, PNS (dorsal root ganglia, cranial nerves, autonomic ganglia), Adrenal medulla and all ganglia, Spiral membrane (aorticopulmonary septum), Schwann cells, pia and arachnoid, bones of skull.	MMOtEL PPASS   Neural crest-think PNS and non-neural structures nearby.
Mesoderm	Muscle, bone, connective tissue, serous linings of body cavities (eg, peritoneum, pericardium, pleura), spleen (derived from foregut mesentery), cardiovascular structures, lymphatics, blood, wall of gut tube, upper vagina, kidneys, adrenal cortex, dermis, testes, ovaries.   Notochord induces ectoderm to form neuroectoderm (neural plate); its only postnatal derivative is the nucleus pulposus of the intervertebral disc.	Middle/"meat" layer.   Mesodermal defects = VACTERL:   Vertebral defects   Anal atresia   Cardiac defects   Tracheo-Esophageal fistula   Renal defects   Limb defects (bone and muscle)
Endoderm	Gut tube epithelium (including anal canal above the pectinate line), most of urethra and lower vagina (derived from urogenital sinus), luminal epithelial derivatives (eg, lungs, liver, gallbladder, pancreas, eustachian tube, thymus, parathyroid, thyroid follicular cells).	"Enternal" layer.

Types of errors in morphogenesis

Agenesis
Aplasia
Hypoplasia
Disruption
Deformation
Malformation
Sequence

Absent organ due to absent primordial tissue.
Absent organ despite presence of primordial tissue.
Incomplete organ development; primordial tissue present.
$2^{\circ}$ breakdown of previously normal tissue or structure (eg, amniotic band syndrome).
Extrinsic disruption; occurs after embryonic period.
Intrinsic disruption; occurs during embryonic period (weeks 3-8).
Abnormalities result from a single $1^{\circ}$ embryologic event (eg, oligohydramnios $\rightarrow$ Potter sequence).

Teratogens

teratogen	EfFECTS ONfetus	NOTES
Medications		
ACE inhibitors	Renal damage	
Alkylating agents	Absence of digits, multiple anomalies	
Aminoglycosides	Ototoxicity	A mean guy hit the baby in the ear.
Antiepileptic drugs	Neural tube defects, cardiac defects, cleft palate, skeletal abnormalities (eg, phalanx/nail hypoplasia, facial dysmorphism)	High-dose folate supplementation recommended. Most commonly valproate, carbamazepine, phenytoin, phenobarbital.
Diethylstilbestrol	Vaginal clear cell adenocarcinoma, congenital Müllerian anomalies	
Folate antagonists	Neural tube defects	Includes trimethoprim, methotrexate, antiepileptic drugs.
Isotretinoin	Multiple severe birth defects	Contraception mandatory. IsoTERATinoin.
Lithium	Ebstein anomaly (apical displacement of tricuspid valve)	
Methimazole	Aplasia cutis congenita	
Tetracyclines	Discolored teeth, inhibited bone growth	"Teethracyclines."
Thalidomide	Limb defects (phocomelia, micromelia"flipper" limbs)	Limb defects with "tha-limb-domide."
Warfarin	Bone deformities, fetal hemorrhage, abortion, ophthalmologic abnormalities	Do not wage warfare on the baby; keep it heppy with heparin (does not cross placenta).
Substance abuse		
Alcohol	Common cause of birth defects and intellectual disability; fetal alcohol syndrome	
Cocaine	Low birth weight, preterm birth, IUGR, placental abruption	Cocaine $\rightarrow$ vasoconstriction.
Smoking (nicotine, CO)	Low birth weight (leading cause in developed countries), preterm labor, placental problems, IUGR, SIDS, ADHD	Nicotine $\rightarrow$ vasoconstriction. $\mathrm{CO} \rightarrow$ impaired $\mathrm{O}_{2}$ delivery.
Other		
lodine (lack or excess)	Congenital goiter or hypothyroidism (cretinism)	
Maternal diabetes	Caudal regression syndrome (anal atresia to sirenomelia), congenital heart defects (eg, VSD, transposition of the great vessels), neural tube defects, macrosomia, neonatal hypoglycemia, polycythemia	
Methylmercury	Neurotoxicity	Highest in swordfish, shark, tilefish, king mackerel.
Vitamin A excess	Extremely high risk for spontaneous abortions and birth defects (cleft palate, cardiac)	
X-rays	Microcephaly, intellectual disability	Minimized by lead shielding.

Fetal alcohol
syndrome


Leading cause of intellectual disability in the US. Newborns of alcohol-consuming mothers have $\uparrow$ incidence of congenital abnormalities, including pre- and postnatal developmental retardation, microcephaly, facial abnormalities $\boldsymbol{A}$ (eg, smooth philtrum, thin vermillion border [upper lip], small palpebral fissures), limb dislocation, heart defects. Heart-lung fistulas and holoprosencephaly in most severe form. Mechanism is failure of cell migration.

Neonatal abstinence syndrome

Complex disorder involving CNS, ANS, and GI systems. Secondary to maternal opiate use/abuse. Risk factors for maternal substance abuse during pregnancy include poor mental health, poor prenatal care, low SES, lack of family support, HCV. Universal screening for substance abuse is recommended in all pregnant patients.
Newborns may present with uncoordinated sucking reflexes, irritability, high-pitched crying, tremors, tachypnea, sneezing, diarrhea, and possibly seizures.

Twinning
Dizygotic ("fraternal") twins arise from 2 eggs that are separately fertilized by 2 different sperm (always 2 zygotes) and will have 2 separate amniotic sacs and 2 separate placentas (chorions).
Monozygotic ("identical") twins arise from 1 fertilized egg (l egg + l sperm) that splits in early pregnancy. The timing of cleavage determines chorionicity (number of chorions) and amnionicity (number of amnions) (SCAB):

- Cleavage 0-4 days: Separate chorion and amnion
- Cleavage 4-8 days: shared Chorion
- Cleavage 8-12 days: shared Amnion
- Cleavage 13+ days: shared Body (conjoined)


Placenta
$1^{\circ}$ site of nutrient and gas exchange between mother and fetus.
Fetal component

Cytotrophoblast
Syncytiotrophoblast

Inner layer of chorionic villi.
Outer layer of chorionic villi; synthesizes and secretes hormones, eg, hCG (structurally similar to LH ; stimulates corpus luteum to secrete progesterone during first trimester).

Cytotrophoblast makes Cells.
Syncytiotrophoblast synthesizes hormones. Lacks MHC-I expression $\rightarrow \downarrow$ chance of attack by maternal immune system.

## Maternal component

Decidua basalis
Derived from endometrium. Maternal blood in lacunae.



Aortic arch derivatives Develop into arterial system.

1st	Part of maxillary artery (branch of external carotid).	lst arch is maximal.
2nd	Stapedial artery and hyoid artery.	Second $=$ Stapedial.
3rd	Common Carotid artery and proximal part of internal Carotid artery.	C is 3rd letter of alphabet.
4th	On left, aortic arch; on right, proximal part of right subclavian artery.	4th arch (4 limbs) = systemic.
6th	Proximal part of pulmonary arteries and (on left only) ductus arteriosus.	6th arch = pulmonary and the pulmonary-tosystemic shunt (ductus arteriosus).

## Branchial apparatus

Composed of branchial clefts, arches, pouches. Branchial clefts-derived from ectoderm. Also called branchial grooves.
Branchial arches-derived from mesoderm (muscles, arteries) and neural crest (bones, cartilage).
Branchial pouches-derived from endoderm.

CAP covers outside to inside:
Clefts = ectoderm
Arches $=$ mesoderm + neural crest
Pouches $=$ endoderm


## Branchial cleft derivatives

1st cleft develops into external auditory meatus.
2nd through 4th clefts form temporary cervical sinuses, which are obliterated by proliferation of 2nd arch mesenchyme.
Persistent cervical sinus $\rightarrow$ branchial cleft cyst within lateral neck, anterior to sternocleidomastoid muscle.

## Branchial arch derivatives

ARCH	CaRTILAGE	muscles	NERVES ${ }^{\text {a }}$	ABNORMALITIES/COMMENTS
1st branchial arch	Maxillary process   $\rightarrow$ Maxilla, zygoMatic bone   Mandibular process   $\rightarrow$ Meckel cartilage   $\rightarrow$ Mandible,   Malleus and incus, sphenoMandibular ligament	Muscles of Mastication (temporalis, Masseter, lateral and Medial pterygoids), Mylohyoid, anterior belly of digastric, tensor tympani, anterior $2 / 3$ of tongue, tensor veli palatini	$\mathrm{CN} \mathrm{V} \mathrm{V}_{3}$ chew	Pierre Robin sequencemicrognathia, glossoptosis, cleft palate, airway obstruction   Treacher Collins syndrome-neural crest dysfunction $\rightarrow$ mandibular
2nd branchial arch	Reichert cartilage:   Stapes, Styloid process, lesser horn of hyoid, Stylohyoid ligament	Muscles of facial expression, Stapedius, Stylohyoid, platySma, posterior belly of digastric	CN VII (facial expression) smile	hypoplasia, facial abnormalities
3rd branchial arch	Greater horn of hyoid	Stylopharyngeus (think of stylopharyngeus innervated by glossopharyngeal nerve)	CN IX (stylopharyngeus) swallow stylishly	
4th-6th branchial arches	Arytenoids, Cricoid, Corniculate, Cuneiform, Thyroid (used to sing and ACCCT)	4th arch: most pharyngeal constrictors; cricothyroid, levator veli palatini 6th arch: all intrinsic muscles of larynx except cricothyroid	4th arch: CN   X (superior laryngeal branch) simply swallow 6th arch: CN X (recurrent/ inferior laryngeal branch) speak	Arches 3 and 4 form posterior $1 / 3$ of tongue; arch 5 makes no major developmental contributions

${ }^{a}$ These are the only CNs with both motor and sensory components (except $\mathrm{V}_{2}$, which is sensory only).
When at the restaurant of the golden arches, children tend to first chew (1), then smile (2), then swallow stylishly (3) or simply swallow (4), and then speak (6).

## Branchial pouch derivatives

POUCH	DERIVATIVES	NOTES	MNEMONIC
1st branchial pouch	Middle ear cavity, eustachian tube, mastoid air cells.	lst pouch contributes to endoderm-lined structures of ear.	Ear, tonsils, bottom-to-top:   1 (ear),   2 (tonsils),   3 dorsal (bottom for inferior parathyroids),   3 ventral (to = thymus),   4 (top = superior parathyroids).
2nd branchial pouch	Epithelial lining of palatine tonsil.		
3rd branchial pouch	Dorsal wings $\rightarrow$ inferior parathyroids.   Ventral wings $\rightarrow$ thymus.	3rd pouch contributes to 3 structures (thymus, left and right inferior parathyroids). 3rd-pouch structures end up below 4th-pouch structures.	
4th branchial pouch	Dorsal wings $\rightarrow$ superior parathyroids. Ventral wings   $\rightarrow$ ultimobranchial body $\rightarrow$ parafollicular (C) cells of thyroid.		
DiGeorge syndrome	Chromosome 22qll deletion. (thymic aplasia) and hypocal defects (conotruncal anomal	errant development of 3 rd and 4 nia (failure of parathyroid develo	pouches $\rightarrow$ T-cell deficiency ment). Associated with cardiac

## Cleft lip and cleft palate



Cleft lip

Cleft lip-failure of fusion of the maxillary and merged medial nasal processes (formation of $1^{\circ}$ palate).

Cleft palate-failure of fusion of the two lateral palatine shelves or failure of fusion of lateral palatine shelves with the nasal septum and/or median palatine shelf (formation of $2^{\circ}$ palate).

Cleft lip and cleft palate have distinct, multifactorial etiologies, but often occur together.


## Genital embryology



Sexual differentiation

(1) No Sertoli cells or lack of Müllerian inhibitory factor $\rightarrow$ develop both male and female internal genitalia and male external genitalia $5 \alpha$-reductase deficiency-inability to convert testosterone into DHT $\rightarrow$ male internal genitalia, ambiguous external genitalia until puberty (when $\uparrow$ testosterone levels cause masculinization)
In the testes:
Leydig Leads to male (internal and external) sexual differentiation.
Sertoli Shuts down female (internal) sexual differentiation.

## Uterine (Müllerian duct) anomalies

## Septate uterus

Bicornuate uterus

Uterus didelphys

Common anomaly vs normal uterus A. Incomplete resorption of septum $\square$ $\downarrow$ fertility and early miscarriage/pregnancy loss. Treat with septoplasty.

Incomplete fusion of Müllerian ducts © $\uparrow$ risk of complicated pregnancy, early pregnancy loss, malpresentation, prematurity.
Complete failure of fusion $\rightarrow$ double uterus, cervix, vagina $\mathbb{D}$. Pregnancy possible.


Normal



Septate


Bicornuate


Didelphys
回


## Male/female genital homologs



Dihydrotestosterone
Glans penis
Corpus cavernosum
and spongiosum
Bulbourethral glands
(of Cowper)
Prostate gland
$\longleftarrow$
Estrogen
Genital tubercle
Genital tubercle
Urogenital sinus
Urogenital sinus
Urogenital folds
Glans clitoris
Vestibular bulbs

Greater vestibular glands
(of Bartholin)
Urethral and paraurethral
glands (of Skene)

Labioscrotal swelling $\longrightarrow$| Labia minora |
| :--- |

Labia majora

## Congenital penile abnormalities



回
Epispadias


國

Abnormal opening of penile urethra on ventral surface of penis due to failure of urethral folds to fuse.

Abnormal opening of penile urethra on dorsal surface of penis due to faulty positioning of genital tubercle.

Hypospadias is more common than epispadias.
Associated with inguinal hernia and cryptorchidism.
Hypo is below.

Exstrophy of the bladder is associated with Epispadias.
When you have Epispadias, you hit your Eye when you pEE.

## Descent of testes and ovaries

	DESCRIPTION	MALE REMNANT	FEMALE REMNANT
Gubernaculum	Band of fibrous tissue.	Anchors testes within scrotum.	Ovarian ligament + round   ligament of uterus.
Processus vaginalis	Evagination of peritoneum.	Forms tunica vaginalis.	Obliterated.

## REPRODUCTIVE—ANATOMY

## Gonadal drainage

Venous drainage	```Left ovary/testis \(\rightarrow\) left gonadal vein \(\rightarrow\) left renal vein \(\rightarrow\) IVC. Right ovary/testis \(\rightarrow\) right gonadal vein \(\rightarrow\) IVC.```	"Left gonadal vein takes the Longest way." Because the left spermatic vein enters the left renal vein at a $90^{\circ}$ angle, flow is less laminar on left than on right $\rightarrow$ left venous pressure $>$ right venous pressure $\rightarrow$ varicocele more common on the left.
Lymphatic drainage	Ovaries/testes $\rightarrow$ para-aortic lymph nodes.   Body of uterus/superior bladder $\rightarrow$ external iliac nodes.	
	Prostate/cervix/corpus cavernosum/proximal vagina $\rightarrow$ internal iliac nodes.   Distal vagina/vulva/scrotum/distal anus $\rightarrow$ superficial inguinal nodes.   Glans penis $\rightarrow$ deep inguinal nodes.	

## Female reproductive anatomy



LIGAMENT	CONNECTS	Structures Contalned	Notes
Infundibulopelvic ligament	Ovaries to lateral pelvic wall	Ovarian vessels	Also called suspensory ligament of the ovary. Ligate vessels during oophorectomy to avoid bleeding.   Ureter courses retroperitoneally, close to gonadal vessels $\rightarrow$ at risk of injury during ligation of ovarian vessels.
Cardinal ligament	Cervix to side wall of pelvis	Uterine vessels	Ureter at risk of injury during ligation of uterine vessels in hysterectomy.   Not shown in diagram.
Round ligament of the uterus	Uterine horn to labia majora		Derivative of gubernaculum. Travels through round inguinal canal; above the artery of Sampson.
Broad ligament	Uterus, fallopian tubes, and ovaries to pelvic side wall	Ovaries, fallopian tubes, round ligaments of uterus	Fold of peritoneum that comprises the mesosalpinx, mesometrium, and mesovarium.
Ovarian ligament	Medial pole of ovary to uterine horn		Derivative of gubernaculum.   Ovarian Ligament Latches to Lateral uterus.


Female reproductive epithelial histology	tissue	Histology/notes
	Vagina	Stratified squamous epithelium, nonkeratinized
	Ectocervix	Stratified squamous epithelium, nonkeratinized
	Transformation zone	Squamocolumnar junction A (most common area for cervical cancer)
	Endocervix	Simple columnar epithelium
	Uterus	Simple columnar epithelium with long tubular glands in proliferative phase; coiled glands in secretory phase
	Fallopian tube	Simple columnar epithelium, ciliated
	Ovary, outer surface	Simple cuboidal epithelium (germinal epithelium covering surface of ovary)

## Male reproductive anatomy



Pathway of sperm during ejaculation-
SEVEN UP:
Seminiferous tubules
Epididymis
Vas deferens
Ejaculatory ducts
(Nothing)
Urethra
Penis

Urethral injury Occurs almost exclusively in men. Suspect if blood seen at urethral meatus. Urethral catheterization is relatively contraindicated.

	Anterior urethral injury	Posterior urethral injury
PART OFURETHRA	Bulbar (spongy) urethra	Membranous urethra
MECHANSM	Perineal straddle injury	Pelvic fracture
LOCATIONOFURINE LEAK/BLLOOD	Blood accumulates in scrotum   If Buck fascia is torn, urine escapes into perineal   ACCUMULATION	Urine leaks into retropubic space
PRESENTATION	Blood at urethral meatus and scrotal hematoma	Blood at urethral meatus and high-riding   prostate



## Autonomic innervation of male sexual response

Erection-Parasympathetic nervous system (pelvic splanchnic nerves, S2-S4):

- NO $\rightarrow \uparrow$ cGMP $\rightarrow$ smooth muscle relaxation $\rightarrow$ vasodilation $\rightarrow$ proerectile.
- Norepinephrine $\rightarrow \uparrow\left[\mathrm{Ca}^{2+}\right]_{\text {in }} \rightarrow$ smooth muscle contraction $\rightarrow$ vasoconstriction $\rightarrow$ antierectile.
Emission-Sympathetic nervous system
(hypogastric nerve, T11-L2).
Ejaculation-visceral and Somatic nerves (pudendal nerve).

Point, Squeeze, and Shoot.
PDE-5 inhibitors (eg, sildenafil) $\downarrow$ cGMP breakdown.

Seminiferous tubules

CELL	FUNCTION	LOCATION/NOTES
Spermatogonia	Maintain germ cell pool and produce $1^{\circ}$ spermatocytes.	Line seminiferous tubules A Germ cells
Sertoli cells	Secrete inhibin B $\rightarrow$ inhibit FSH.   Secrete androgen-binding protein $\rightarrow$ maintain local levels of testosterone.   Produce MIF.   Tight junctions between adjacent Sertoli cells form blood-testis barrier $\rightarrow$ isolate gametes from autoimmune attack.   Support and nourish developing spermatozoa.   Regulate spermatogenesis.   Temperature sensitive; $\downarrow$ sperm production and $\downarrow$ inhibin B with $\uparrow$ temperature.	Line seminiferous tubules   Non-germ cells   Convert testosterone and androstenedione to   estrogens via aromatase   Sertoli cells Support Sperm Synthesis and inhibit FSH   Homolog of female granulosa cells   $\uparrow$ temperature seen in varicocele, cryptorchidism
Leydig cells	Secrete testosterone in the presence of LH; testosterone production unaffected by temperature.	Interstitium   Endocrine cells   Homolog of female theca interna cells   LH stimulates Leydig cells



## Estrogen

SOURCE	Ovary (17 $\beta$-estradiol), placenta (estriol), adipose tissue (estrone via aromatization).	Potency: estradiol > estrone > estriol
FUNCTION	Development of genitalia and breast, female fat distribution.   Growth of follicle, endometrial proliferation, $\uparrow$ myometrial excitability.   Upregulation of estrogen, LH, and progesterone receptors; feedback inhibition of FSH and LH, then LH surge; stimulation of prolactin secretion.   $\uparrow$ transport proteins, SHBG; $\uparrow$ HDL; $\downarrow$ LDL.	Pregnancy:   - 50-fold $\uparrow$ in estradiol and estrone   - 1000-fold $\uparrow$ in estriol (indicator of fetal wellbeing)   Estrogen receptors expressed in cytoplasm; translocate to nucleus when bound by estrogen



## Progesterone

SOURCE
FUNCTION

Corpus luteum, placenta, adrenal cortex, testes.
Stimulation of endometrial glandular secretions and spiral artery development.
Maintenance of pregnancy.
$\downarrow$ myometrial excitability.
Production of thick cervical mucus, which inhibits sperm entry into uterus.
$\uparrow$ body temperature.
Inhibition of gonadotropins (LH, FSH).
Uterine smooth muscle relaxation (preventing contractions).
$\downarrow$ estrogen receptor expression.
Prevents endometrial hyperplasia.

Fall in progesterone after delivery disinhibits prolactin $\rightarrow$ lactation. $\uparrow$ progesterone is indicative of ovulation.
Progesterone is pro-gestation.
Prolactin is pro-lactation.

## Oogenesis

$1^{\circ}$ oocytes begin meiosis I during fetal life and complete meiosis I just prior to ovulation.
Meiosis I is arrested in prOphase I for years until Ovulation ( $1^{\circ}$ oocytes).
Meiosis II is arrested in metaphase II until fertilization ( $2^{\circ}$ oocytes). "An egg met a sperm." If fertilization does not occur within 1 day, the $2^{\circ}$ oocyte degenerates.


## Ovulation

$\uparrow$ estrogen, $\uparrow$ GnRH receptors on anterior pituitary. Estrogen surge then stimulates LH release $\rightarrow$ ovulation (rupture of follicle). $\uparrow$ temperature (progesterone induced).

Mittelschmerz—transient mid-cycle ovulatory pain ("Middle hurts"); classically associated with peritoneal irritation (eg, follicular swelling/rupture, fallopian tube contraction). Can mimic appendicitis.

Menstrual cycle
Follicular phase can vary in length. Luteal phase is 14 days. Ovulation day +14 days $=$ menstruation.
Follicular growth is fastest during 2nd week of the follicular phase.
Estrogen stimulates endometrial proliferation.
Progesterone maintains endometrium to support implantation.
$\downarrow$ progesterone $\rightarrow \downarrow$ fertility.


## Abnormal uterine bleeding

Characterized as either heavy menstrual bleeding (AUB/HMB) or intermenstrual bleeding (AUB/IMB).
These are further subcategorized by PALMCOEIN:

- Structural causes (PALM): Polyp, Adenomyosis, Leiomyoma, or Malignancy/ hyperplasia
- Non-structural causes (COEIN): Coagulopathy, Ovulatory, Endometrial, Iatrogenic, Not yet classified

Terms such as dysfunctional uterine bleeding, menorrhagia, oligomenorrhea are no longer recommended.

Pregnancy
Fertilization most commonly occurs in upper end of fallopian tube (the ampulla). Occurs within $l$ day of ovulation.
Implantation within the wall of the uterus occurs 6 days after fertilization. Syncytiotrophoblasts secrete hCG, which is detectable in blood 1 week after conception and on home test in urine 2 weeks after conception.
Gestational age-calculated from date of last menstrual period.
Embryonic age-calculated from date of conception (gestational age minus 2 weeks).
Physiologic adaptations in pregnancy:

- $\uparrow$ cardiac output ( $\uparrow$ preload, $\downarrow$ afterload,
$\uparrow \mathrm{HR} \rightarrow \uparrow$ placental and uterus perfusion)
- Anemia ( $\uparrow \uparrow$ plasma, $\uparrow$ RBCs)
- Hypercoagulability (to $\downarrow$ blood loss at delivery)
- Hyperventilation (eliminate fetal $\mathrm{CO}_{2}$ )


Placental hormone secretion generally increases over the course of pregnancy, but hCG peaks at 8-10 weeks.

## Human chorionic gonadotropin

SOURCE
FUNCTION

Syncytiotrophoblast of placenta.
Maintains corpus luteum (and thus progesterone) for first 8-10 weeks of pregnancy by acting like LH (otherwise no luteal cell stimulation $\rightarrow$ abortion). After 8-10 weeks, placenta synthesizes its own estriol and progesterone and corpus luteum degenerates.
Used to detect pregnancy because it appears early in urine (see above).
Has identical $\alpha$ subunit as LH, FSH, TSH (states of $\uparrow$ hCG can cause hyperthyroidism). $\beta$ subunit is unique (pregnancy tests detect $\beta$ subunit). hCG is $\uparrow$ in multiple gestations, hydatidiform moles, choriocarcinomas, and Down syndrome; hCG is $\downarrow$ in ectopic/failing pregnancy, Edwards syndrome, and Patau syndrome.
Human placental Also known as chorionic somatomammotropin.
lactogen lactogen

SOURCE	Syncytiotrophoblast of placenta.
function	Stimulates insulin production; overall $\uparrow$ insulin resistance. Maternal hypoglycemia from insulin resistance leads to lipolysis, which preserves available glucose and amino acids for the fetus. Gestational diabetes can occur if maternal pancreatic function cannot overcome the insulin resistance.

## Apgar score

Appearance

Assessment of newborn vital signs following delivery via a 10 -point scale evaluated at 1 minute and 5 minutes. Apgar score is based on Appearance, Pulse, Grimace, Activity, and Respiration. Apgar scores $<7$ require further evaluation. If Apgar score remains low at later time points, there is $\uparrow$ risk the child will develop long-term neurologic damage.

Infant/child development	Milestone dates are ranges that have been approximated and vary by source. Children not meeting milestones may need assessment for potential developmental delay.		
AGE	MOTOR	Social	VERBAL/COGNITIVE
Infant	Parents	Start	Observing,
0-12 mo	Primitive reflexes disappearMoro (by 3 mo), rooting (by 4 mo), palmar (by 6 mo), Babinski (by 12 mo ) Posture-lifts head up prone (by 1 mo ), rolls and sits (by 6 mo ), crawls (by 8 mo), stands (by 10 mo ), walks (by $12-18 \mathrm{mo}$ )   Picks-passes toys hand to hand (by 6 mo), Pincer grasp (by 10 mo )   Points to objects (by 12 mo )	Social smile (by 2 mo)   Stranger anxiety (by 6 mo)   Separation anxiety (by 9 mo)	Orients-first to voice (by 4 mo ), then to name and gestures (by 9 mo) Object permanence (by 9 mo) Oratory-says "mama" and "dada" (by 10 mo )
Toddler	Child	Rearing	Working,
12-36 mo	Cruises, takes first steps (by 12 mo )   Climbs stairs (by 18 mo) Cubes stacked-number $=$ age $(\mathrm{yr}) \times 3$   Cutlery-feeds self with fork and spoon (by 20 mo )   Kicks ball (by 24 mo)	Recreation-parallel play (by 24-36 mo)   Rapprochement-moves away from and returns to mother (by 24 mo )   Realization-core gender identity formed (by 36 mo )	Words -200 words by age 2 (2 zeros), 2 -word sentences
Preschool	Don't	Forget, they're still	Learning!
3-5 yr	Drive-tricycle ( 3 wheels at $3 \mathrm{yr})$   Drawings-copies line or circle, stick figure (by 4 yr) Dexterity-hops on one foot (by 4 yr), uses buttons or zippers, grooms self (by 5 yr)	Freedom—comfortably spends part of day away from mother (by 3 yr)   Friends-cooperative play, has imaginary friends (by 4 yr)	Language - 1000 words by age 3 ( 3 zeros), uses complete sentences and prepositions (by 4 yr)   Legends-can tell detailed stories (by 4 yr)

## Low birth weight

Defined as $<2500 \mathrm{~g}$. Caused by prematurity or intrauterine growth restriction (IUGR). Associated with $\uparrow$ risk of sudden infant death syndrome (SIDS) and with $\uparrow$ overall mortality. Other problems include impaired thermoregulation and immune function, hypoglycemia, polycythemia, and impaired neurocognitive/emotional development. Complications include infections, respiratory distress syndrome, necrotizing enterocolitis, intraventricular hemorrhage, and persistent fetal circulation.

## Lactation

After parturition and delivery of placenta, rapid $\downarrow$ in progesterone disinhibits and initiates lactation. Suckling is required to maintain milk production and ejection, since $\uparrow$ nerve stimulation $\rightarrow \uparrow$ oxytocin and prolactin.
Prolactin-induces and maintains lactation and $\downarrow$ reproductive function.
Oxytocin-assists in milk letdown; also promotes uterine contractions.
Breast milk is the ideal nutrition for infants $<6$ months old. Contains maternal immunoglobulins (conferring passive immunity; mostly $\operatorname{IgA}$ ), macrophages, lymphocytes. Breast milk reduces infant infections and is associated with $\downarrow$ risk for child to develop asthma, allergies, diabetes mellitus, and obesity. Guidelines recommend exclusively breastfed infants get vitamin D and possibly iron supplementation.
Breastfeeding $\downarrow$ maternal risk of breast and ovarian cancer and facilitates mother-child bonding.

Menopause
Diagnosed by amenorrhea for 12 months. $\downarrow$ estrogen production due to age-linked decline in number of ovarian follicles. Average age at onset is 51 years (earlier in smokers).
Usually preceded by $4-5$ years of abnormal menstrual cycles. Source of estrogen (estrone) after menopause becomes peripheral conversion of androgens, $\uparrow$ androgens $\rightarrow$ hirsutism.
$\uparrow \uparrow$ FSH is specific for menopause (loss of negative feedback on FSH due to $\downarrow$ estrogen).

Hormonal changes: $\downarrow$ estrogen, $\uparrow \uparrow$ FSH, $\uparrow$ LH (no surge), $\uparrow$ GnRH.
Causes HAVOCS: Hot flashes, Atrophy of the Vagina, Osteoporosis, Coronary artery disease, Sleep disturbances.
Menopause before age 40 suggests $1^{\circ}$ ovarian insufficiency (premature ovarian failure).

Androgens	Testosterone, dihydrotestosterone (DHT), andros	ione.
SOURCE	DHT and testosterone (testis), AnDrostenedione   (ADrenal)	Potency: DHT > testosterone > androstenedione.
function	Testosterone:   - Differentiation of epididymis, vas deferens, seminal vesicles (internal genitalia, except prostate).   - Growth spurt: penis, seminal vesicles, sperm, muscle, RBCs.   - Deepening of voice.   - Closing of epiphyseal plates (via estrogen converted from testosterone).   - Libido.   DHT:   - Early-differentiation of penis, scrotum, prostate.   - Late-prostate growth, balding, sebaceous gland activity.	Testosterone is converted to DHT by $5 \alpha$-reductase, which is inhibited by finasteride. In the male, androgens are converted to estrogen by cytochrome P-450 aromatase (primarily in adipose tissue and testis).   Aromatase is the key enzyme in conversion of androgens to estrogen.   Exogenous testosterone $\rightarrow$ inhibition of hypothalamic-pituitary-gonadal axis $\rightarrow \downarrow$ intratesticular testosterone $\rightarrow \downarrow$ testicular size $\rightarrow$ azoospermia.

Spermatogenesis
Spermatogonium
Diploid (2N, 2C)

Spermatogenesis begins at puberty with spermatogonia. Full development takes 2 months. Occurs in seminiferous tubules.
Produces spermatids that undergo spermiogenesis (loss of cytoplasmic contents, gain of acrosomal cap) to form mature spermatozoon.
"Gonium" is going to be a sperm; "Zoon" is "Zooming" to egg.


## Tanner stages of sexual development

Tanner stage is assigned independently to genitalia, pubic hair, and breast (eg, a person can have Tanner stage 2 genitalia, Tanner stage 3 pubic hair).


## Stage I

No sexual hair $O^{7} ?$ Flat-appearing chest with raised nipple $q$

Pre-pubertal


## Stage II

Pubic hair appears $\mathrm{O}^{7}$ ? (pubarche)
Testicular enlargement $O^{7}$ Breast bud forms $?$ (thelarche)
~ 8-11.5 years


## Stage IV

Coarse hair across pubis, sparing thigh $\mathrm{O}^{7}$ ? Penis width/glans $\uparrow O^{7}$ Breast enlarges, raised areola, mound on mound $q$
~ 13-15 years

Stage V
Coarse hair across pubis and medial thigh $O^{7}$ Penis and testis enlarge to adult size $O^{7}$ Adult breast contour, areola flattens ? Usually > 15 years

## - REPRODUCTIVE—PATHOLOGY

Sex chromosome disorders


Turner syndrome


Double Y males

Female, 45,XO.
Short stature (if untreated; preventable with growth hormone therapy), ovarian dysgenesis (streak ovary), shield chest B, bicuspid aortic valve, coarctation (femoral < brachial pulse), lymphatic defects (result in webbed neck or cystic hygroma; lymphedema in feet, hands), horseshoe kidney.
Most common cause of $1^{\circ}$ amenorrhea. No Barr body.

Dysgenesis of seminiferous tubules $\rightarrow \downarrow$ inhibin $\mathrm{B} \rightarrow \uparrow$ FSH.
Abnormal Leydig cell function $\rightarrow \downarrow$ testosterone $\rightarrow \uparrow \mathrm{LH} \rightarrow \uparrow$ estrogen.

Menopause before menarche.
$\downarrow$ estrogen leads to $\uparrow$ LH, FSH.
Sometimes due to mitotic error $\rightarrow$ mosaicism (eg, 45, XO/46, XX).
Pregnancy is possible in some cases (IVF, exogenous estradiol- $17 \beta$ and progesterone).

## Ovotesticular disorder of sex development

47, XYY.
Phenotypically normal (usually undiagnosed), very tall. Normal fertility. May be associated with severe acne, learning disability, autism spectrum disorders.

## $46, \mathrm{XX}>46, \mathrm{XY}$.

Both ovarian and testicular tissue present (ovotestis); ambiguous genitalia. Previously called true hermaphroditism.

Diagnosing disorders of sex hormones	Testosterone		LH	Diagnosis
	$\uparrow$		$\uparrow$	Defective androgen receptor
	$\uparrow$		$\downarrow$	Testosterone-secreting tumor, exogenous steroids
	$\downarrow$		$\uparrow$	Hypergonadotropic hypogonadism ( $1^{\circ}$ )
	$\downarrow$		$\downarrow$	Hypogonadotropic hypogonadism (2)
Other disorders of sex development	Disagreement between the phenotypic sex (external genitalia, influenced by hormonal levels) and the gonadal sex (testes vs ovaries, corresponds with Y chromosome). Includes the terms pseudohermaphrodite, hermaphrodite, and intersex.			
46,XX DSD	Ovaries present, but external genitalia are virilized or ambiguous. Due to excessive and inappropriate exposure to androgenic steroids during early gestation (eg, congenital adrenal hyperplasia or exogenous administration of androgens during pregnancy).			
46,XY DSD	Testes present, but external genitalia are female or ambiguous. Most common form is androgen insensitivity syndrome (testicular feminization).			
Disorders by physical characteristics	Uterus Breasts		Disorders	
	$\oplus$	$\Theta$	Hypergonadotropic hypogonadism (eg, Turner syndrome, genetic mosaicism, pure gonadal dysgenesis)   Hypogonadotropic hypogonadism (eg, CNS lesions, Kallmann syndrome)	
	$\Theta$	$\oplus$	Uterovaginal agenesis in genotypic female or androgen insensitivity in genotypic male	
	$\Theta$	$\Theta$	Male	nt production of testosterone

## Placental aromatase deficiency

Inability to synthesize estrogens from androgens. Masculinization of female (46,XX DSD) infants (ambiguous genitalia), $\uparrow$ serum testosterone and androstenedione. Can present with maternal virilization during pregnancy (fetal androgens cross the placenta).

Androgen insensitivity syndrome

Defect in androgen receptor resulting in normal-appearing female ( $46, \mathrm{XY}$ DSD); female external genitalia with scant axillary and pubic hair, rudimentary vagina; uterus and fallopian tubes absent. Patients develop normal functioning testes (often found in labia majora; surgically removed to prevent malignancy). $\uparrow$ testosterone, estrogen, LH (vs sex chromosome disorders).

$$
\begin{array}{ll}
\mathbf{5} \boldsymbol{\alpha} \text {-reductase } & \text { Autosomal recessive; sex limited to genetic males (46,XY DSD). Inability to convert testosterone to } \\
\text { deficiency } & \text { DHT. Ambiguous genitalia until puberty, when } \uparrow \text { testosterone causes masculinization/ } \uparrow \text { growth of } \\
& \text { external genitalia. Testosterone/estrogen levels are normal; LH is normal or } \uparrow \text {. Internal genitalia } \\
\text { are normal. }
\end{array}
$$

Kallmann syndrome
Failure to complete puberty; a form of hypogonadotropic hypogonadism. Defective migration of GnRH-releasing neurons and subsequent failure of GnRH-releasing olfactory bulbs to develop $\rightarrow \downarrow$ synthesis of GnRH in the hypothalamus; hyposmia/anosmia; $\downarrow$ GnRH, FSH, LH, testosterone. Infertility (low sperm count in males; amenorrhea in females).

Hydatidiform mole


Cystic swelling of chorionic villi and proliferation of chorionic epithelium (only trophoblast). Presents with vaginal bleeding, uterine enlargement more than expected, pelvic pressure/pain.
Associated with hCG-mediated sequelae: early preeclampsia (before 20 weeks), theca-lutein cysts, hyperemesis gravidarum, hyperthyroidism.
Treatment: dilation and curettage and methotrexate. Monitor $\beta$-hCG.

	Complete mole	Partial mole
KARYOTYPE	46,XX; 46,XY	69,XXX; 69,XXY; 69,XYY
COMPONENTS	Most commonly enucleated egg + single sperm (subsequently duplicates paternal DNA)	2 sperm + 1 egg
Fetal parts	No	Yes (partial = fetal parts)
uterinesize	$\uparrow$	-
hcg	$\uparrow \uparrow \uparrow \uparrow$	$\uparrow$
IMAGING	"Honeycombed" uterus or "clusters of grapes" A, "snowstorm" on ultrasound B	Fetal parts
RISK OF MALIGNANCY (GESTATIONAL TROPHOBLASTIC NEOPLASIA)	15-20\%	< $5 \%$
RISK OF CHORIOCARCINOMA	2\%	Rare

## Choriocarcinoma



Rare; can develop during or after pregnancy in mother or baby. Malignancy of trophoblastic tissue A (cytotrophoblasts, syncytiotrophoblasts); no chorionic villi present. $\uparrow$ frequency of bilateral/ multiple theca-lutein cysts. Presents with abnormal $\uparrow \beta$-hCG, shortness of breath, hemoptysis. Hematogenous spread to lungs $\rightarrow$ "cannonball" metastases B.


Defective decidual layer $\rightarrow$ abnormal attachment and separation after delivery. Risk factors: prior C-section or uterine surgery involving myometrium, inflammation, placenta previa, advanced maternal age, multiparity. Three types distinguishable by the depth of penetration: Placenta accreta—placenta attaches to myometrium without penetrating it; most common type.
Placenta increta-placenta penetrates into myometrium.
Placenta percreta-placenta penetrates


Complete abruption with concealed hemorrhage


Partial abruption (blue arrow) with apparent hemorrhage (red arrow)

Morbidly adherent placenta ("perforates") through myometrium and into uterine serosa (invades entire uterine wall);
can result in placental attachment to rectum uterine serosa (invades entire uterine wall); or bladder (can result in hematuria).
Presentation: often detected on ultrasound prior to delivery. No separation of placenta after delivery $\rightarrow$ postpartum bleeding (can cause Sheehan syndrome).
Attachment of placenta to lower uterine segment over (or $<2 \mathrm{~cm}$ from) internal cervical os. Risk factors: multiparity, prior C-section. Associated with painless thirdtrimester bleeding. A "preview" of the placenta is visible through cervix.


Premature separation (partial or complete) of placenta from uterine wall before delivery of infant. Risk factors: trauma (eg, motor vehicle accident), smoking, hypertension, preeclampsia, cocaine abuse.
Presentation: abrupt, painful bleeding (concealed or apparent) in third trimester; possible DIC, maternal shock, fetal distress. Life threatening for mother and fetus.

## Placenta previa



## Pregnancy complications (continued)



## Amniotic fluid abnormalities

Polyhydramnios

Oligohydramnios

Too much amniotic fluid. Often idiopathic, but associated with fetal malformations (eg, esophageal/duodenal atresia, anencephaly; both result in inability to swallow amniotic fluid), maternal diabetes, fetal anemia, multiple gestations.
Too little amniotic fluid. Associated with placental insufficiency, bilateral renal agenesis, posterior urethral valves (in males) and resultant inability to excrete urine. Any profound oligohydramnios can cause Potter sequence.

Hypertension in pregnancy

Gestational hypertension	BP $>140 / 90 \mathrm{~mm} \mathrm{Hg}$ after 20th week of gestation. No pre-existing hypertension. No proteinuria or end-organ damage.	Treatment: antihypertensives (Hydralazine, $\alpha$-Methyldopa, Labetalol, Nifedipine), deliver at 37-39 weeks. Hypertensive Moms Love Nifedipine.
Preeclampsia	New-onset hypertension with either proteinuria or end-organ dysfunction after 20th week of gestation ( $<20$ weeks suggests molar pregnancy).   Caused by abnormal placental spiral arteries $\rightarrow$ endothelial dysfunction, vasoconstriction, ischemia.   Incidence $\uparrow$ in patients with pre-existing hypertension, diabetes, chronic renal disease, autoimmune disorders (eg, antiphospholipid antibody syndrome).   Complications: placental abruption, coagulopathy, renal failure, pulmonary edema, uteroplacental insufficiency; may lead to eclampsia (+ seizures) and/or HELLP syndrome.	Treatment: antihypertensives, IV magnesium sulfate (to prevent seizure); definitive is delivery of fetus.
Eclampsia	Preeclampsia + maternal seizures.   Maternal death due to stroke, intracranial hemorrhage, or ARDS	Treatment: IV magnesium sulfate, antihypertensives, immediate delivery.
HELLP syndrome	Hemolysis, Elevated Liver enzymes, Low Platelets. A manifestation of severe preeclampsia. Blood smear shows schistocytes. Can lead to DIC and hepatic subcapsular hematomas $\rightarrow$ rupture $\rightarrow$ severe hypotension.	Treatment: immediate delivery.

## Gynecologic tumor epidemiology

Incidence (US)—endometrial > ovarian > cervical; cervical cancer is more common worldwide due to lack of screening or HPV vaccination.
Prognosis: Cervical (best prognosis, diagnosed $<45$ years old) $>$ Endometrial (middleaged, about 55 years old) $>$ Ovarian (worst prognosis, $>65$ years).

CEOs often go from best to worst as they get older.

## Vulvar pathology

Non-neoplastic	
Bartholin cyst and abscess	Due to blockage of Bartholin gland duct causing accumulation of gland fluid. May lead to abscess $2^{\circ}$ to obstruction and inflammation ©. Usually in reproductive-age females. Associated with $N$ gonorrhoeae infections.
Lichen sclerosus	Thinning of epidermis with fibrosis/sclerosis of dermis. Presents with porcelain-white plaques with a red or violet border. Skin fragility with erosions can be observed Most common in postmenopausal women. Benign, but slightly increased risk for SCC.
Lichen simplex chronicus	Hyperplasia of vulvar squamous epithelium. Presents with leathery, thick vulvar skin with enhanced skin markings due to chronic rubbing or scratching. Benign, no risk of SCC.
Neoplastic	
Vulvar carcinoma	Carcinoma from squamous epithelial lining of vulva C. Rare. Presents with leukoplakia, biopsy often required to distinguish carcinoma from other causes.   HPV-related vulvar carcinoma-associated with high-risk HPV types 16, 18. Risk factors: multiple partners, early coitarche. Usually in reproductive-age females.   Non-HPV vulvar carcinoma-usually from long-standing lichen sclerosus. Females $>70$ years old.
Extramammary Paget disease	Intraepithelial adenocarcinoma. Carcinoma in situ, low risk of underlying carcinoma. Presents with pruritus, erythema, crusting, ulcers $\operatorname{D}$.

## Vaginal tumors

Vaginal squamous cell Usually $2^{\circ}$ to cervical SCC; $1^{\circ}$ vaginal carcinoma rare. carcinoma

Clear cell adenocarcinoma
Sarcoma botryoides

Affects women who had exposure to DES in utero.

Embryonal rhabdomyosarcoma variant.
Affects girls < 4 years old; spindle-shaped cells; desmin $\oplus$.
Presents with clear, grape-like, polypoid mass emerging from vagina.

## Cervical pathology

Dysplasia and carcinoma in situ


Invasive carcinoma

Disordered epithelial growth; begins at basal layer of squamocolumnar junction (transformation zone) and extends outward. Classified as CIN 1, CIN 2, or CIN 3 (severe, irreversible dysplasia or carcinoma in situ), depending on extent of dysplasia. Associated with HPV-16 and HPV-18, which produce both the E6 gene product (inhibits $p 53$ ) and E7 gene product (inhibits $p R b$ ); koilocytes $A$ are pathognomonic of HPV infection. May progress slowly to invasive carcinoma if left untreated. Typically asymptomatic (detected with Pap smear) or presents as abnormal vaginal bleeding (often postcoital).
Risk factors: multiple sexual partners (\#1), smoking, early coitarche, DES exposure, immunocompromise (eg, HIV, transplant).

Often squamous cell carcinoma. Pap smear can detect cervical dysplasia before it progresses to invasive carcinoma. Diagnose via colposcopy and biopsy. Lateral invasion can block ureters $\rightarrow$ renal failure.

Primary ovarian insufficiency

Also known as premature ovarian failure.
Premature atresia of ovarian follicles in women of reproductive age. Most often idiopathic; associated with chromosomal abnormalities (especially in females $<30$ years). Need karyotype screening. Patients present with signs of menopause after puberty but before age 40 . $\downarrow$ estrogen, $\uparrow \mathrm{LH}, \uparrow \mathrm{FSH}$.

Most common causes Pregnancy, polycystic ovarian syndrome, obesity, HPO axis abnormalities, premature ovarian of anovulation failure, hyperprolactinemia, thyroid disorders, eating disorders, competitive athletics, Cushing syndrome, adrenal insufficiency, chromosomal abnormalities (eg, Turner syndrome).

## Polycystic ovarian

 syndrome

Also known as Stein-Leventhal syndrome. Hyperinsulinemia and/or insulin resistance hypothesized to alter hypothalamic hormonal feedback response $\rightarrow \uparrow$ LH:FSH, $\uparrow$ androgens (eg, testosterone) from theca interna cells, $\downarrow$ rate of follicular maturation $\rightarrow$ unruptured follicles (cysts) + anovulation. Common cause of $\downarrow$ fertility in women.
Enlarged, bilateral cystic ovaries $\boldsymbol{A}$; presents with amenorrhea/oligomenorrhea, hirsutism, acne, $\downarrow$ fertility. Associated with obesity. $\uparrow$ risk of endometrial cancer $2^{\circ}$ to unopposed estrogen from repeated anovulatory cycles.
Treatment: cycle regulation via weight reduction ( $\downarrow$ peripheral estrone formation), OCPs (prevent endometrial hyperplasia due to unopposed estrogen); clomiphene, metformin to induce ovulation; spironolactone, ketoconazole (antiandrogens) to treat hirsutism.

## Ovarian cysts

Follicular cyst
Theca-lutein cyst

Distention of unruptured graafian follicle. May be associated with hyperestrogenism, endometrial hyperplasia. Most common ovarian mass in young women.
Theca-lutein cyst
Often bilateral/multiple. Due to gonadotropin stimulation. Associated with choriocarcinoma and hydatidiform moles.

## Ovarian neoplasms

Most common adnexal mass in women $>55$ years old. Can be benign or malignant. Arise from surface epithelium, germ cells, or sex cord stromal tissue.
Majority of malignant tumors are epithelial (serous cystadenocarcinoma most common). Risk $\uparrow$ with advanced age, infertility, endometriosis, PCOS, genetic predisposition BRCAl or BRCA2 mutation, Lynch syndrome, strong family history. Risk $\downarrow$ with previous pregnancy, history of breastfeeding, OCPs, tubal ligation. Presents with adnexal mass, abdominal distension, bowel obstruction, pleural effusion. Monitor response to therapy/relapse by measuring CA 125 levels (not good for screening).


## Ovarian neoplasms (continued)

Serous   cystadenocarcinoma	Most common malignant ovarian neoplasm, frequently bilateral. Psammoma bodies.
Mucinous	Rare malignant mucinous ovarian epithelial tumor. May be metastatic from appendiceal or other
cystadenocarcinoma	GI tumors. Can result in pseudomyxoma peritonei-intraperitoneal accumulation of mucinous   material.

Germ cell tumors (malignant)

Dysgerminoma	Most common in adolescents. Equivalent to male seminoma but rarer. $1 \%$ of all ovarian tumors; $30 \%$ of germ cell tumors. Sheets of uniform "fried egg" cells E. hCG, LDH = tumor markers.
Immature teratoma	Aggressive, contains fetal tissue, neuroectoderm. Commonly diagnosed before age 20. Typically represented by immature/embryonic-like neural tissue.
Yolk sac tumor	Also known as ovarian endodermal sinus tumor. Aggressive, in ovaries or testes and sacrococcygeal area in young children. Most common tumor in male infants. Yellow, friable (hemorrhagic), solid mass. 50\% have Schiller-Duval bodies (resemble glomeruli) F. AFP = tumor marker.
Sex cord stromal tumors (malignant)	
Granulosa cell tumor	Most common malignant stromal tumor. Predominantly women in their 50s. Often produces estrogen and/or progesterone and presents with postmenopausal bleeding, sexual precocity (in pre-adolescents), breast tenderness. Histology shows Call-Exner bodies (granulosa cells arranged haphazardly around collections of eosinophilic fluid, resembling primordial follicles). "Give Granny a Call!"
Other (malignant)	
Krukenberg tumor	GI malignancy that metastasizes to ovaries $\rightarrow$ mucin-secreting signet cell adenocarcinoma. Commonly presents as bilateral ovarian masses.



Endometrial conditions

Polyp	Well-circumscribed collection of endometrial tissue within uterine wall. May contain smooth muscle cells. Can extend into endometrial cavity in the form of a polyp. May be asymptomatic or present with painless abnormal uterine bleeding.
Adenomyosis	Extension of endometrial tissue (glandular) into uterine myometrium. Caused by hyperplasia of basal layer of endometrium. Presents with dysmenorrhea, menorrhagia, uniformly enlarged, soft, globular uterus.   Treatment: GnRH agonists, hysterectomy or excision of an organized adenomyoma.
Asherman syndrome	Adhesions and/or fibrosis of the endometrium. Presents with $\downarrow$ fertility, recurrent pregnancy loss, abnormal uterine bleeding, pelvic pain. Often associated with dilation and curettage of intrauterine cavity.
Leiomyoma (fibroid)	Most common tumor in females. Often presents with multiple discrete tumors A. $\uparrow$ incidence in African Americans. Benign smooth muscle tumor; malignant transformation to leiomyosarcoma is rare. Estrogen sensitive-tumor size $\uparrow$ with pregnancy and $\downarrow$ with menopause. Peak occurrence at 20-40 years old. May be asymptomatic, cause abnormal uterine bleeding, or result in miscarriage. Severe bleeding may lead to iron deficiency anemia. Whorled pattern of smooth muscle bundles with well-demarcated borders B.
Endometrial hyperplasia	Abnormal endometrial gland proliferation usually caused by excess estrogen stimulation. $\uparrow$ risk for endometrial carcinoma; nuclear atypia is greater risk factor than complex (vs simple) architecture. Presents as postmenopausal vaginal bleeding. Risk factors include anovulatory cycles, hormone replacement therapy, polycystic ovarian syndrome, granulosa cell tumor.
Endometrial carcinoma	Most common gynecologic malignancy IC. Peak occurrence at 55-65 years old. Presents with vaginal bleeding. Typically preceded by endometrial hyperplasia. Risk factors include prolonged use of estrogen without progestins, obesity, diabetes, hypertension, nulliparity, late menopause, early menarche, Lynch syndrome.
Endometritis	Inflammation of endometrium $D$ associated with retained products of conception following delivery, miscarriage, abortion, or with foreign body (eg, IUD). Retained material in uterus promotes infection by bacterial flora from vagina or intestinal tract. Chronic endometritis characterized by presence of plasma cells on histology.   Treatment: gentamicin + clindamycin $+/-$ ampicillin.
Endometriosis	Non-neoplastic endometrium-like glands/stroma outside endometrial cavity. Can be found anywhere; most common sites are ovary (frequently bilateral), pelvis, peritoneum. In ovary, appears as endometrioma (blood-filled "chocolate cysts" [oval structures above and below asterisks in E]]). May be due to retrograde flow, metaplastic transformation of multipotent cells, transportation of endometrial tissue via lymphatic system.   Characterized by cyclic pelvic pain, bleeding, dysmenorrhea, dyspareunia, dyschezia (pain with defecation), infertility; normal-sized uterus.   Treatment: NSAIDs, continuous OCPs, progestins, GnRH agonists, danazol, laparoscopic removal.

## Breast pathology



## Benign breast disease

## Fibrocystic changes

Most common in premenopausal women $<35$ years old. Present with premenstrual breast pain or lumps; often bilateral and multifocal. Nonproliferative lesions include simple cysts (fluid-filled duct dilation, blue dome), papillary apocrine change/metaplasia, stromal fibrosis. Risk of cancer is usually not increased. Subtypes include:

- Sclerosing adenosis-acini and stromal fibrosis, associated with calcifications. Slight (1.5-2 x) $\uparrow$ risk for cancer.
- Epithelial hyperplasia-cells in terminal ductal or lobular epithelium. $\uparrow$ risk of carcinoma with atypical cells.
Inflammatory processes

Fat necrosis - benign, usually painless, lump due to injury to breast tissue. Calcified oil cyst on mammography; necrotic fat and giant cells on biopsy. Up to $50 \%$ of patients may not report trauma. Lactational mastitis-occurs during breastfeeding, $\uparrow$ risk of bacterial infection through cracks in nipple. $S$ aureus is most common pathogen. Treat with antibiotics and continue breastfeeding.
Benign tumors
Fibroadenoma-most common in women $<35$ years old. Small, well-defined, mobile mass A. $\uparrow$ size and tenderness with $\uparrow$ estrogen (eg, pregnancy, prior to menstruation). Risk of cancer is usually not increased.
Intraductal papilloma-small fibroepithelial tumor within lactiferous ducts, typically beneath areola. Most common cause of nipple discharge (serous or bloody). Slight ( $1.5-2 \times$ ) $\uparrow$ risk for cancer. Phyllodes tumor-large mass [B of connective tissue and cysts with "leaf-like" lobulations [C. Most common in 5th decade. Some may become malignant.

## Gynecomastia

in newborn, pubertal, and elderly males, but may persist after puberty. Other causes include cirrhosis, hypogonadism (eg, Klinefelter syndrome), testicular tumors, and drugs (Spironolactone, Hormones, Cimetidine, Finasteride, Ketoconazole: "Some Hormones Create Funny Knockers").



## Malignant breast tumors

Commonly postmenopausal. Usually arise from terminal duct lobular unit. Amplification/ overexpression of estrogen/progesterone receptors or $c$-erbB2 (HER-2, an EGF receptor) is common; triple negative ( $\mathrm{ER} \Theta$, PR $\Theta$, and $\mathrm{Her} 2 / \mathrm{Neu} \Theta$ ) more aggressive; type affects therapy and prognosis. Axillary lymph node involvement indicating metastasis is the most important prognostic factor in early-stage disease. Most often located in upper-outer quadrant of breast.

TYPE	characteristics	Notes
Noninvasive		
Ductal carcinoma in situ	Fills ductal lumen (black arrow in $\boldsymbol{A}$ indicates neoplastic cells in duct; blue arrow shows engorged blood vessel). Arises from ductal atypia. Often seen early as microcalcifications on mammography.	Early malignancy without basement membrane penetration.
Comedocarcinoma	Ductal, central necrosis (arrow in B). Subtype of DCIS.	
Paget disease	Results from underlying DCIS or invasive breast cancer. Eczematous patches on nipple IC.   Paget cells = intraepithelial adenocarcinoma cells.	
Invasive		
Invasive ductal carcinoma	Firm, fibrous, "rock-hard" mass with sharp margins and small, glandular, duct-like cells. Tumor can deform suspensory ligaments $\rightarrow$ dimpling of skin. Classic morphology: "stellate" infiltration.	Most common ( $\sim 75 \%$ of all breast cancers).
Invasive lobular carcinoma	Orderly row of cells ("single file" D), due to $\downarrow$ E-cadherin expression.	Often bilateral with multiple lesions in the same location.   Lines of cells = Lobular.
Medullary carcinoma	Fleshy, cellular, lymphocytic infiltrate.	Good prognosis.
Inflammatory breast cancer	Dermal lymphatic invasion by breast carcinoma. Peau d'orange (skin texture resembles orange peel $\boldsymbol{E}$ due to edema leading to tightening of Cooper's suspensory ligament); neoplastic cells block lymphatic drainage.	Poor prognosis ( $50 \%$ survival at 5 years). Often mistaken for mastitis or Paget disease.



## Penile pathology

Peyronie disease

Ischemic priapism

Squamous cell carcinoma

Abnormal curvature of penis due to fibrous plaque within tunica albuginea. Associated with erectile dysfunction. Can cause pain, anxiety. Consider surgical repair once curvature stabilizes. Distinct from penile fracture (rupture of corpora cavernosa due to forced bending).

Painful sustained erection lasting $>4$ hours. Associated with sickle cell disease (sickled RBCs block venous drainage of corpus cavernosum vascular channels), medications (eg, sildenafil, trazodone). Treat immediately with corporal aspiration, intracavernosal phenylephrine, or surgical decompression to prevent ischemia.

More common in Asia, Africa, South America. Precursor in situ lesions: Bowen disease (in penile shaft, presents as leukoplakia), erythroplasia of Queyrat (carcinoma in situ of the glans, presents as erythroplakia), Bowenoid papulosis (carcinoma in situ of unclear malignant potential, presenting as reddish papules). Associated with uncircumcised males and HPV.

## Cryptorchidism

Undescended testis (one or both); impaired spermatogenesis (since sperm develop best at temperatures $<37^{\circ} \mathrm{C}$ ); can have normal testosterone levels (Leydig cells are mostly unaffected by temperature); associated with $\uparrow$ risk of germ cell tumors. Prematurity $\uparrow$ risk of cryptorchidism. $\downarrow$ inhibin $\mathrm{B}, \uparrow \mathrm{FSH}, \uparrow \mathrm{LH}$; testosterone $\downarrow$ in bilateral cryptorchidism, normal in unilateral.

## Testicular torsion

Rotation of testicle around spermatic cord and vascular pedicle. Commonly presents in males 12-18 years old. Characterized by acute, severe pain, high-riding testis, and absent cremasteric reflex.
Treatment: surgical correction (orchiopexy) within 6 hours, manual detorsion if surgical option unavailable in timeframe. If testis is not viable, orchiectomy. Orchiopexy, when performed, should be bilateral because the contralateral testis is at risk for subsequent torsion.

Varicocele


Dilated veins in pampiniform plexus due to $\uparrow$ venous pressure; most common cause of scrotal enlargement in adult males; most often on left side because of $\uparrow$ resistance to flow from left gonadal vein drainage into left renal vein; can cause infertility because of $\uparrow$ temperature; diagnosed by standing clinical exam/Valsalva maneuver (distension on inspection and "bag of worms" on palpation; augmented by Valsalva) or ultrasound with Doppler A; does not transilluminate.
Treatment: consider surgical ligation or embolization if associated with pain or infertility.

Extragonadal germ cell tumors

Arise in midline locations. In adults, most commonly in retroperitoneum, mediastinum, pineal, and suprasellar regions. In infants and young children, sacrococcygeal teratomas are most common.

Scrotal masses	Benign scrotal lesions present as testicular masses that can be transilluminated (vs solid testicular   tumors).	
Congenital hydrocele	Common cause of scrotal swelling $A$ in infants,   due to incomplete obliteration of processus   vaginalis. Most spontaneously resolve by l year   old.	Transilluminating swelling.
Acquired hydrocele	Scrotal fluid collection usually $2^{\circ}$ to infection,   trauma, tumor. If bloody $\rightarrow$ hematocele.	Paratesticular fluctuant nodule.
Spermatocele	Cyst due to dilated epididymal duct or rete   testis.	

## Testicular germ cell tumors

| Seminoma | Malignant; painless, homogenous testicular enlargement; most common testicular tumor. Does not <br> occur in infancy. Large cells in lobules with watery cytoplasm and "fried egg" appearance. $\uparrow$ placental <br> ALP. Highly radiosensitive. Late metastasis, excellent prognosis. Similar to dysgerminoma in females. |
| :--- | :---: | :--- |
| Yolk sac tumor | Also known as testicular endodermal sinus tumor. Yellow, mucinous. Aggressive malignancy of <br> testes, analogous to ovarian yolk sac tumor. Schiller-Duval bodies resemble primitive glomeruli. <br> $\uparrow$ AFP is highly characteristic. Most common testicular tumor in boys < 3 years old. |
| Choriocarcinoma | Malignant, $\uparrow$ hCG. Disordered syncytiotrophoblastic and cytotrophoblastic elements. <br> Hematogenous metastases to lungs and brain. May produce gynecomastia, symptoms of <br> hyperthyroidism ( $\alpha$-subunit of hCG is structurally similar to LH, FSH, TSH). |
| Teratoma | Unlike in females, mature teratoma in adult males may be malignant. Benign in children. |
| Embryonal carcinomaMalignant, hemorrhagic mass with necrosis; painful; worse prognosis than seminoma. Often <br> glandular/papillary morphology. "Pure" embryonal carcinoma is rare; most commonly mixed <br> with other tumor types. May be associated with $\uparrow$ hCG and normal AFP levels when pure ( $\uparrow$ AFP <br> when mixed). |  |

## Testicular non-germ $5 \%$ of all testicular tumors. Mostly benign.

 cell tumorsLeydig cell tumor

Sertoli cell tumor
Testicular lymphoma Most common testicular cancer in older men. Not a $1^{\circ}$ cancer; arises from metastatic lymphoma to testes. Aggressive.

## Benign prostatic hyperplasia

Common in men $>50$ years old. Characterized by smooth, elastic, firm nodular enlargement (hyperplasia not hypertrophy) of periurethral (lateral and middle) lobes, which compress the urethra into a vertical slit. Not premalignant. Often presents with $\uparrow$ frequency of urination, nocturia, difficulty starting and stopping urine stream, dysuria. May lead to distention and hypertrophy of bladder, hydronephrosis, UTIs. $\uparrow$ free prostate-specific antigen (PSA).
Treatment: $\alpha_{1}$-antagonists (terazosin, tamsulosin), which cause relaxation of smooth muscle; $5 \alpha$-reductase inhibitors (eg, finasteride); PDE-5 inhibitors (eg, tadalafil); surgical resection (eg, TURP, ablation).


Characterized by dysuria, frequency, urgency, low back pain. Warm, tender, enlarged prostate.
Acute bacterial prostatitis-in older men most common bacterium is E coli; in young males consider C trachomatis, N gonorrhoeae.
Chronic prostatitis-either bacterial or nonbacterial (eg, $2^{\circ}$ to previous infection, nerve problems, chemical irritation).

## Prostatic adenocarcinoma

Common in men > 50 years old. Arises most often from posterior lobe (peripheral zone) of prostate gland and is most frequently diagnosed by $\uparrow$ PSA and subsequent needle core biopsies. Prostatic acid phosphatase (PAP) and PSA are useful tumor markers ( $\uparrow$ total PSA, with $\downarrow$ fraction of free PSA). Osteoblastic metastases in bone may develop in late stages, as indicated by lower back pain and $\uparrow$ serum ALP and PSA.

## REPRODUCTIVE—PHARMACOLOGY

## Control of reproductive hormones



## Leuprolide

$\left.\begin{array}{ll}\hline \text { MECHANISM } & \begin{array}{l}\text { GnRH analog with agonist properties } \\ \text { when used in pulsatile fashion; antagonist } \\ \text { properties when used in continuous fashion } \\ \text { (downregulates GnRH receptor in pituitary } \\ \rightarrow \downarrow \text { FSH and } \downarrow \mathrm{LH}) .\end{array} \\ \hline \text { CLINICAL USE } \\ \text { Uterine fibroids, endometriosis, precocious } \\ \text { puberty, prostate cancer, infertility. }\end{array}\right] \quad$ Leuprolide can be used in lieu of GnRH.

## Selective estrogen receptor modulators

ClomipheneAntagonist at estrogen receptors in hypothalamus. Prevents normal feedback inhibition and   $\uparrow$ release of LH and FSH from pituitary, which stimulates ovulation. Used to treat infertility   due to anovulation (eg, PCOS). SERMs may cause hot flashes, ovarian enlargement, multiple   simultaneous pregnancies, visual disturbances.
Tamoxifen
Antagonist at breast; agonist at bone, uterus; $\uparrow$ risk of thromboembolic events and endometrial
cancer. Used to treat and prevent recurrence of ER/PR $\oplus$ breast cancer.

Aromatase inhibitors Anastrozole, letrozole, exemestane.

MECHANISM	Inhibit peripheral conversion of androgens to estrogen.
CLIIICALUSE	ER $\oplus$ breast cancer in postmenopausal women.

[^11]Progestins Levonorgestrel, medroxyprogesterone, etonogestrel, norethindrone, megestrol, and many others when combined with estrogen.

MECHANISM	Bind progesterone receptors, $\downarrow$ growth and $\uparrow$ vascularization of endometrium, thicken cervical   mucus.
CLINCAL USE	Contraception (forms include pill, intrauterine device, implant, depot injection), endometrial   cancer, abnormal uterine bleeding. Progestin challenge: presence of withdrawal bleeding   excludes anatomic defects (eg, Asherman syndrome) and chronic anovulation without estrogen.
Antiprogestins	Mifepristone, ulipristal.
MECHANSM	Competitive inhibitors of progestins at progesterone receptors.
CLINCAL USE	Termination of pregnancy (mifepristone with misoprostol); emergency contraception (ulipristal).

## Combined

 contraceptionProgestins and ethinyl estradiol; forms include pill, patch, vaginal ring.
Estrogen and progestins inhibit LH/FSH and thus prevent estrogen surge. No estrogen surge $\rightarrow$ no LH surge $\rightarrow$ no ovulation.
Progestins cause thickening of cervical mucus, thereby limiting access of sperm to uterus.
Progestins also inhibit endometrial proliferation $\rightarrow$ endometrium is less suitable to the implantation of an embryo.
Contraindications: smokers > 35 years old ( $\uparrow$ risk of cardiovascular events), patients with $\uparrow$ risk of cardiovascular disease (including history of venous thromboembolism, coronary artery disease, stroke), migraine (especially with aura), breast cancer, liver disease.

## Copper intrauterine device

MECHANISM	Produces local inflammatory reaction toxic to sperm and ova, preventing fertilization and   implantation; hormone free.
CIINICAL USE	Long-acting reversible contraception. Most effective emergency contraception.
ADVERSE EFFECTS	Heavier or longer menses, dysmenorrhea. Risk of PID with insertion (contraindicated in active   pelvic infection).

## Tocolytics

Medications that relax the uterus; include terbutaline ( $\beta_{2}$-agonist action), nifedipine ( $\mathrm{Ca}^{2+}$ channel blocker), indomethacin (NSAID). Used to $\downarrow$ contraction frequency in preterm labor and allow time for administration of steroids (to promote fetal lung maturity) or transfer to appropriate medical center with obstetrical care.

## Danazol

MECHANSM	Synthetic androgen that acts as partial agonist at androgen receptors.
cIINCAL USE	Endometriosis, hereditary angioedema.
ADVERSE EFFECTS	Weight gain, edema, acne, hirsutism, masculinization,         cerebri.

## Testosterone, methyltestosterone

mechanism	Agonists at androgen receptors.
clinical use	Treat hypogonadism and promote development of $2^{\circ}$ sex characteristics; stimulate anabolism to promote recovery after burn or injury.
adverse effects	Masculinization in females; $\downarrow$ intratesticular testosterone in males by inhibiting release of LH (via negative feedback) $\rightarrow$ gonadal atrophy. Premature closure of epiphyseal plates. $\uparrow$ LDL, $\downarrow$ HDL.
Antiandrogens	
Finasteride	$5 \alpha$-reductase inhibitor ( $\downarrow$ conversion of testosterone to DHT). Used for BPH and male-pattern baldness. Adverse effects: gynecomastia and sexual dysfunction.
Flutamide	Nonsteroidal competitive inhibitor at androgen receptors. Used for prostate carcinoma.
Ketoconazole	Inhibits steroid synthesis (inhibits 17,20 desmolase/17 $\alpha$-hydroxylase).
Spironolactone	Inhibits steroid binding, 17,20 desmolase/17 $\alpha$ - Both can cause gynecomastia and amenorrhea. hydroxylase.


Tamsulosin	$\alpha_{1}$-antagonist used to treat BPH by inhibiting smooth muscle contraction. Selective for $\alpha_{1 A / D}$
receptors (found on prostate) vs vascular $\alpha_{1 B}$ receptors.	

Phosphodiesterase Sildenafil, vardenafil, tadalafil. type 5 inhibitors

mechanism	Inhibit PDE-5 $\rightarrow \uparrow$ cGMP $\rightarrow$ prolonged smooth muscle relaxation in response to NO $\rightarrow \uparrow$ blood flow in corpus cavernosum of penis, $\downarrow$ pulmonary vascular resistance.	Sildenafil, vardenafil, and tadalafil fill the penis.
CLINICAL USE	Erectile dysfunction, pulmonary hypertension, BPH (tadalafil only).	
ADVERSE Effects	Headache, flushing, dyspepsia, cyanopia (blue-tinted vision). Risk of life-threatening hypotension in patients taking nitrates.	"Hot and sweaty," but then Headache, Heartburn, Hypotension.

## Minoxidil

MECHANSM	Direct arteriolar vasodilator.
CLINCAL USE	Androgenetic alopecia (pattern baldness), severe refractory hypertension.

## HIGH-YIELD SYSTEMS

## Respiratory

"There's so much pollution in the air now that if it weren't for our lungs, there'd be no place to put it all."
"Freedom is the oxygen of the soul."
-Robert Orben
-Moshe Dayan
"Whenever I feel blue, I start breathing again."
-L. Frank Baum
"Life is not the amount of breaths you take; it's the moments that take your breath away."
-Will Smith, Hitch

Group key respiratory, cardiovascular, and renal concepts together for study whenever possible. Know obstructive vs restrictive lung disorders, $\dot{V} / \underline{Q}$ mismatch, lung volumes, mechanics of respiration, and hemoglobin physiology. Lung cancers and other causes of lung masses are high yield. Be comfortable reading basic chest X-rays, CT scans, and PFTs.

Dmbryology	642
Anatomy	644
Physiology	646
Pathology	653
Pharmacology	667

## DESPIRATORY—EMBRYOLOGY

Lung development

	respiratory diverticulum during week 4. Every Pulmonologist Can See Alveoli.	
STAGE	STRUCTURAL DEVELOPMENT	NOTES
Embryonic   (weeks 4-7)	Lung bud $\rightarrow$ trachea $\rightarrow$ bronchial buds   $\rightarrow$ mainstem bronchi $\rightarrow$ secondary (lobar)   bronchi $\rightarrow$ tertiary (segmental) bronchi.	Errors at this stage can lead to   tracheoesophageal fistula.
Pseudoglandular   (weeks 5-17)	Endodermal tubules $\rightarrow$ terminal bronchioles.   Surrounded by modest capillary network.	Respiration impossible, incompatible with life.
Canalicular   (weeks 16-25)	Terminal bronchioles $\rightarrow$ respiratory bronchioles   $\rightarrow$ alveolar ducts. Surrounded by prominent   capillary network.	Airways increase in diameter.   Respiration capable at 25 weeks.   Pneumocytes develop starting at 20 weeks.

Saccular (week 26-birth)

Alveolar
(week 36-8 years)
Alveolar ducts $\rightarrow$ terminal sacs. Terminal sacs
separated by $1^{\circ}$ septae.
Terminal sacs $\rightarrow$ adult alveoli (due to $2^{\circ}$ septation).

In utero, "breathing" occurs via aspiration and expulsion of amniotic fluid $\rightarrow \uparrow$ vascular resistance through gestation.
At birth, fluid gets replaced with air $\rightarrow \downarrow$ in pulmonary vascular resistance.


## Congenital lung malformations

Pulmonary hypoplasia Poorly developed bronchial tree with abnormal histology. Associated with congenital diaphragmatic hernia (usually left-sided), bilateral renal agenesis (Potter sequence).
Bronchogenic cysts Caused by abnormal budding of the foregut and dilation of terminal or large bronchi. Discrete, round, sharply defined, fluid-filled densities on CXR (air-filled if infected). Generally asymptomatic but can drain poorly, causing airway compression and/or recurrent respiratory infections.

Nonciliated; low columnar/cuboidal with secretory granules. Located in bronchioles. Degrade toxins; secrete component of surfactant; act as reserve cells.

## Alveolar cell types



Alveolar macrophages Phagocytose foreign materials; release cytokines and alveolar proteases. Hemosiderin-laden macrophages may be seen in pulmonary hemorrhage.

Neonatal respiratory distress syndrome


Surfactant deficiency $\rightarrow \uparrow$ surface tension $\rightarrow$ alveolar collapse ("ground-glass" appearance of lung fields) A.
Risk factors: prematurity, maternal diabetes (due to $\uparrow$ fetal insulin), C-section delivery ( $\downarrow$ release of fetal glucocorticoids; less stressful than vaginal delivery).
Complications: PDA, necrotizing enterocolitis. Treatment: maternal steroids before birth; exogenous surfactant for infant.
Therapeutic supplemental $\mathrm{O}_{2}$ can result in Retinopathy of prematurity, Intraventricular hemorrhage, Bronchopulmonary dysplasia (RIB).

Screening tests for fetal lung maturity: lecithinsphingomyelin (L/S) ratio in amniotic fluid ( $\geq 2$ is healthy; $<1.5$ predictive of NRDS), foam stability index, surfactant-albumin ratio.
Persistently low $\mathrm{O}_{2}$ tension $\rightarrow$ risk of PDA.


## RESPIRATORY—ANATOMY

## Respiratory tree

## Conducting zone

## Respiratory zone

Large airways consist of nose, pharynx, larynx, trachea, and bronchi. Small airways consist of bronchioles that further divide into terminal bronchioles (large numbers in parallel $\rightarrow$ least airway resistance).
Warms, humidifies, and filters air but does not participate in gas exchange $\rightarrow$ "anatomic dead space."
Cartilage and goblet cells extend to the end of bronchi.
Pseudostratified ciliated columnar cells primarily make up epithelium of bronchus and extend to beginning of terminal bronchioles, then transition to cuboidal cells. Clear mucus and debris from lungs (mucociliary escalator).
Airway smooth muscle cells extend to end of terminal bronchioles (sparse beyond this point).
Lung parenchyma; consists of respiratory bronchioles, alveolar ducts, and alveoli. Participates in gas exchange.
Mostly cuboidal cells in respiratory bronchioles, then simple squamous cells up to alveoli. Cilia terminate in respiratory bronchioles. Alveolar macrophages clear debris and participate in immune response.


## Lung anatomy



Right lung has 3 lobes; Left has Less Lobes (2) and Lingula (homolog of right middle lobe). Instead of a middle lobe, left lung has a space occupied by the heart $\mathbb{A}$.
Relation of the pulmonary artery to the bronchus at each lung hilum is described by RALS-Right Anterior; Left Superior. Carina is posterior to ascending aorta and anteromedial to descending aorta B.
Right lung is a more common site for inhaled foreign bodies because right main stem bronchus is wider, more vertical, and shorter than the left. If you aspirate a peanut:

- While supine-usually enters right lower lobe.
- While lying on right side-usually enters right upper lobe.
- While upright-usually enters right lower lobe.



Structures perforating diaphragm:

- At T8: IVC, right phrenic nerve
- At T10: esophagus, vagus (CN 10; 2 trunks)
- At T12: aorta (red), thoracic duct (white), azygos vein (blue) ("At T-1-2 it's the red, white, and blue")
Diaphragm is innervated by C3, 4 , and 5 (phrenic nerve). Pain from diaphragm irritation (eg, air, blood, or pus in peritoneal cavity) can be referred to shoulder (C5) and trapezius ridge ( $\mathrm{C} 3,4$ ).

Number of letters = T level:
T8: vena cava
T10: "oesophagus"
T12: aortic hiatus
I (IVC) ate (8) ten (10) eggs (esophagus) at (aorta) twelve (12).

C3, 4, 5 keeps the diaphragm alive.
Other bifurcations:

- The common carotid bifourcates at C4.
- The trachea bifourcates at T4.
- The abdominal aorta bifourcates at L4.


## RESPIRATORY—PHYSIOLOGY



## Determination of physiologic dead space

$V_{D}=V_{T} \times \frac{\mathrm{PaCO}_{2}-\mathrm{Peco}_{2}}{\mathrm{PaCO}_{2}}$
$\mathrm{V}_{\mathrm{D}}=$ physiologic dead space $=$ anatomic dead space of conducting airways plus alveolar dead space; apex of healthy lung is largest contributor of alveolar dead space. Volume of inspired air that does not take part in gas exchange.
$\mathrm{V}_{\mathrm{T}}=$ tidal volume.
$\mathrm{PaCO}_{2}=$ arterial $\mathrm{PCO}_{2}$.
$\mathrm{PeCO}_{2}=$ expired air $\mathrm{Pco}_{2}$.

Taco, Paco, Peco, Paco (refers to order of variables in equation)
Physiologic dead space-approximately equivalent to anatomic dead space in normal lungs. May be greater than anatomic dead space in lung diseases with $\dot{V} / \underline{\text { g }}$ defects.

## Ventilation

Minute ventilation	Total volume of gas entering lungs per minute $V_{\mathrm{E}}=\mathrm{V}_{\mathrm{T}} \times R \mathrm{R}$	Normal values:   Respiratory rate $(\mathrm{RR})=12-20$ breaths $/ \mathrm{min}$
Alveolar ventilation	Volume of gas that reaches alveoli each minute $\mathrm{V}_{\mathrm{A}}=\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{D}}\right) \times \mathrm{RR}$	$\mathrm{V}_{\mathrm{T}}=500 \mathrm{~mL} /$ breath   $\mathrm{V}_{\mathrm{D}}=150 \mathrm{~mL} /$ breath

## Lung and chest wall

Elastic recoil-tendency for lungs to collapse inward and chest wall to spring outward. At FRC, inward pull of lung is balanced by outward pull of chest wall, and system pressure is atmospheric.
At FRC, airway and alveolar pressures equal atmospheric pressure (called zero), and intrapleural pressure is negative (prevents atelectasis). The inward pull of the lung is balanced by the outward pull of the chest wall. System pressure is atmospheric. PVR is at a minimum.
Compliance-change in lung volume for a change in pressure; expressed as $\Delta \mathrm{V} / \Delta \mathrm{P}$ and is inversely proportional to wall stiffness. High compliance $=$ lung easier to fill (emphysema, normal aging), lower compliance = lung harder to fill (pulmonary fibrosis, pneumonia, NRDS, pulmonary edema). Surfactant increases compliance.
Hysteresis-lung inflation curve follows a different curve than the lung deflation curve due to need to overcome surface tension forces in inflation.


Compliant lungs comply (cooperate) and fill easily with air.

## Hemoglobin



Hemoglobin ( Hb ) is composed of 4 polypeptide subunits ( $2 \alpha$ and $2 \beta$ ) and exists in 2 forms: - Deoxygenated form has low affinity for $\mathrm{O}_{2}$, thus promoting release/unloading of $\mathrm{O}_{2}$.

- Oxygenated form has high affinity for $\mathrm{O}_{2}$ ( 300 x ). Hb exhibits positive cooperativity and negative allostery.
$\uparrow \mathrm{Cl}^{-}, \mathrm{H}^{+}, \mathrm{CO}_{2}, 2,3-\mathrm{BPG}$, and temperature favor deoxygenated form over oxygenated form (shifts dissociation curve right $\rightarrow \uparrow \mathrm{O}_{2}$ unloading).

Fetal Hb ( $2 \alpha$ and $2 \gamma$ subunits) has a higher affinity for $\mathrm{O}_{2}$ than adult Hb , driving diffusion of oxygen across the placenta from mother to fetus. $\uparrow \mathrm{O}_{2}$ affinity results from $\downarrow$ affinity of HbF for $2,3-\mathrm{BPG}$.
Hemoglobin acts as buffer for $\mathrm{H}^{+}$ions. Myoglobin is composed of a single polypeptide chain associated with one heme moiety. Higher affinity for oxygen than Hb .

## Hemoglobin modifications

Lead to tissue hypoxia from $\downarrow \mathrm{O}_{2}$ saturation and $\downarrow \mathrm{O}_{2}$ content.

## Methemoglobin

Oxidized form of Hb (ferric, $\mathrm{Fe}^{3+}$ ), does not bind $\mathrm{O}_{2}$ as readily as $\mathrm{Fe}^{2+}$, but has $\uparrow$ affinity for cyanide. $\mathrm{Fe}^{2+}$ binds $\mathrm{O}_{2}$.
Iron in Hb is normally in a reduced state (ferrous, $\mathrm{Fe}^{2+}$; "just the 2 of us").
Methemoglobinemia may present with cyanosis and chocolate-colored blood.
Methemoglobinemia can be treated with methylene blue and vitamin C.

## Carboxyhemoglobin

Form of Hb bound to CO in place of $\mathrm{O}_{2}$. Causes $\downarrow$ oxygen-binding capacity with left shift in oxygen-hemoglobin dissociation curve. $\downarrow \mathrm{O}_{2}$ unloading in tissues.
CO binds competitively to Hb and with 200x greater affinity than $\mathrm{O}_{2}$.
CO poisoning can present with headaches, dizziness, and cherry red skin. May be caused by fires, car exhaust, or gas heaters. Treat with $100 \% \mathrm{O}_{2}$ and hyperbaric $\mathrm{O}_{2}$.


Cyanide poisoning

Usually due to inhalation injury (eg, fires). Inhibits aerobic metabolism via complex IV inhibition $\rightarrow$ hypoxia unresponsive to supplemental $\mathrm{O}_{2}$ and $\uparrow$ anaerobic metabolism. Findings: almond breath odor, pink skin, cyanosis. Rapidly fatal if untreated. Treat with induced methemoglobinemia: first give nitrites (oxidize hemoglobin to methemoglobin, which can trap cyanide as cyanmethemoglobin), then thiosulfates (convert cyanide to thiocyanate, which is renally excreted).

## Oxygen-hemoglobin dissociation curve

Sigmoidal shape due to positive cooperativity (ie, tetrameric Hb molecule can bind $4 \mathrm{O}_{2}$ molecules and has higher affinity for each subsequent $\mathrm{O}_{2}$ molecule bound). Myoglobin is monomeric and thus does not show positive cooperativity; curve lacks sigmoidal appearance.
Shifting the curve to the right $\rightarrow \downarrow \mathrm{Hb}$ affinity for $\mathrm{O}_{2}$ (facilitates unloading of $\mathrm{O}_{2}$ to tissue) $\rightarrow \uparrow \mathrm{P}_{50}$ (higher $\mathrm{PO}_{2}$ required to maintain $50 \%$ saturation).
Shifting the curve to the left $\rightarrow \downarrow \mathrm{O}_{2}$ unloading $\rightarrow$ renal hypoxia $\rightarrow \uparrow$ EPO synthesis
$\rightarrow$ compensatory erythrocytosis.
Fetal Hb has higher affinity for $\mathrm{O}_{2}$ than adult
Hb (due to low affinity for 2,3-BPG), so its dissociation curve is shifted left.


## Oxygen content of blood

$\mathrm{O}_{2}$ content $=\left(1.34 \times \mathrm{Hb} \times \mathrm{SaO}_{2}\right)+\left(0.003 \times \mathrm{PaO}_{2}\right)$
$\mathrm{Hb}=$ hemoglobin level
$\mathrm{SaO}_{2}=$ arterial $\mathrm{O}_{2}$ saturation
$\mathrm{PaO}_{2}=$ partial pressure of $\mathrm{O}_{2}$ in arterial blood
Normally lg Hb can bind $1.34 \mathrm{~mL} \mathrm{O}_{2}$; normal Hb amount in blood is $15 \mathrm{~g} / \mathrm{dL}$.
$\mathrm{O}_{2}$ binding capacity $\approx 20.1 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{dL}$ of blood.
With $\downarrow \mathrm{Hb}$ there is $\downarrow \mathrm{O}_{2}$ content of arterial blood, but no change in $\mathrm{O}_{2}$ saturation and $\mathrm{PaO}_{2}$.
$\mathrm{O}_{2}$ delivery to tissues $=$ cardiac output $\times \mathrm{O}_{2}$ content of blood.

	hb CONCENTRATION	$\% \mathrm{O}_{2}$ SAT OF Hb	DISSOLVED $\mathrm{O}_{2}\left(\mathrm{PaO}_{2}\right)$	TOTAL $\mathrm{O}_{2}$ CONTENT
CO poisoning	Normal	$\downarrow$ (CO competes with $\mathrm{O}_{2}$ )	Normal	$\downarrow$
Anemia	$\downarrow$	Normal	Normal	$\downarrow$
Polycythemia	$\uparrow$	Normal	Normal	$\uparrow$

Pulmonary circulation Normally a low-resistance, high-compliance system. $\mathrm{PO}_{2}$ and $\mathrm{PcO}_{2}$ exert opposite effects on pulmonary and systemic circulation. A $\downarrow$ in $\mathrm{PAO}_{2}$ causes a hypoxic vasoconstriction that shifts blood away from poorly ventilated regions of lung to well-ventilated regions of lung.
Perfusion limited $-\mathrm{O}_{2}$ (normal health), $\mathrm{CO}_{2}$, $\mathrm{N}_{2} \mathrm{O}$. Gas equilibrates early along the length of the capillary. Diffusion can be $\uparrow$ only if blood flow $\uparrow$.
Diffusion limited- $\mathrm{O}_{2}$ (emphysema, fibrosis, exercise), CO. Gas does not equilibrate by the time blood reaches the end of the capillary.

A consequence of pulmonary hypertension is cor pulmonale and subsequent right ventricular failure.
Diffusion: $\dot{V}_{\text {gas }}=\mathrm{A} \times \mathrm{D}_{\mathrm{k}} \times \frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\mathrm{~T}}$ where
$\mathrm{A}=$ area, $\mathrm{T}=$ alveolar wall thickness,
$\mathrm{D}_{\mathrm{k}}=$ diffusion coefficient of gas, $\mathrm{P}_{1}-\mathrm{P}_{2}=$ difference in partial pressures.

- A $\downarrow$ in emphysema.
- $\mathrm{T} \uparrow$ in pulmonary fibrosis.
$\mathrm{D}_{\mathrm{LCO}}$ is the extent to which CO, a surrogate for $\mathrm{O}_{2}$, passes from air sacs of lungs into blood.

$\mathrm{Pa}=$ partial pressure of gas in pulmonary capillary blood
$\mathrm{PA}=$ partial pressure of gas in alveolar air


## Pulmonary vascular resistance

$\operatorname{PVR}=\frac{\mathrm{P}_{\text {pulm artery }}-\mathrm{P}_{\text {Latrium }}}{\text { cardiac output }}$

Remember: $\Delta \mathrm{P}=\mathrm{Q} \times \mathrm{R}$, so $\mathrm{R}=\Delta \mathrm{P} / \mathrm{Q}$
$R=8 \eta l / \pi r^{4}$
$\mathrm{P}_{\text {pulm artery }}=$ pressure in pulmonary artery
$\mathrm{P}_{\mathrm{L} \text { atrium }} \approx$ pulmonary capillary wedge pressure
$\mathrm{Q}=$ cardiac output (flow)
$\mathrm{R}=$ resistance
$\eta=$ viscosity of blood
$1=$ vessel length
$\mathrm{r}=$ vessel radius

Alveolar gas equation
$\mathrm{PAO}_{2}=\mathrm{PIO}_{2}-\frac{\mathrm{PaCO}_{2}}{\mathrm{R}}$

$$
\approx 150 \mathrm{~mm} \mathrm{Hg}^{\mathrm{a}}-\frac{\mathrm{PaCO}_{2}}{0.8}
$$

${ }^{a}$ At sea level breathing room air
$\mathrm{PAO}_{2}=$ alveolar $\mathrm{PO}_{2}(\mathrm{~mm} \mathrm{Hg})$
$\mathrm{PIO}_{2}=\mathrm{PO}_{2}$ in inspired air ( mm Hg )
$\mathrm{PaCO}_{2}=$ arterial $\mathrm{Pco}_{2}(\mathrm{~mm} \mathrm{Hg})$
$\mathrm{R}=$ respiratory quotient $=\mathrm{CO}_{2}$ produced $/ \mathrm{O}_{2}$ consumed
A -a gradient $=\mathrm{PAO}_{2}-\mathrm{PaO}_{2}$. Normal range $=$ $10-15 \mathrm{~mm} \mathrm{Hg}$
$\uparrow$ A-a gradient may occur in hypoxemia; causes include shunting, $\bar{V} / \underline{Q}$ mismatch, fibrosis (impairs diffusion)

Oxygen deprivation

Hypoxia $\left(\downarrow \mathrm{O}_{2}\right.$ delivery to tissue)	Hypoxemia $\left(\downarrow \mathrm{PaO}_{2}\right)$	Ischemia (loss of blood flow)
$\downarrow$ cardiac output	Normal A-a gradient	Impeded arterial flow
Hypoxemia	High altitude	$\downarrow$ venous drainage
Anemia	Hypoventilation (eg, opioid use)	
CO poisoning	$\uparrow$ A-a gradient	
	$=$ V/ $\dot{\text { Q }}$ mismatch	
	$=$ Diffusion limitation (eg, fibrosis)	
	$=$ Right-to-left shunt	

Ventilation/perfusion mismatch

Ideally, ventilation is matched to perfusion (ie, $\dot{\mathrm{V}} / \underline{\mathrm{Q}}=1)$ for adequate gas exchange.
Lung zones:

- $\dot{V} / \underline{Q}$ at apex of lung $=3$ (wasted ventilation)
- $\dot{V} / \underline{Q}$ at base of lung $=0.6$ (wasted perfusion)

Both ventilation and perfusion are greater at the base of the lung than at the apex of the lung.
With exercise ( $\uparrow$ cardiac output), there is vasodilation of apical capillaries $\rightarrow \dot{\mathrm{V}} / \underline{\dot{Q}}$ ratio approaches 1 .
Certain organisms that thrive in high $\mathrm{O}_{2}$ (eg, TB) flourish in the apex.
$\dot{\mathrm{V}} / \dot{\mathrm{Q}}=0=$ "oirway" obstruction (shunt). In shunt, $100 \% \mathrm{O}_{2}$ does not improve $\mathrm{PaO}_{2}$ (eg, foreign body aspiration).
$\dot{\text { V/ }} / \underline{\underline{Q}}=\infty=$ blood flow obstruction (physiologic dead space). Assuming < $100 \%$ dead space, $100 \% \mathrm{O}_{2}$ improves $\mathrm{PaO}_{2}$ (eg, pulmonary embolus).


## Carbon dioxide transport

$\mathrm{CO}_{2}$ is transported from tissues to lungs in 3 forms:
(1) $\mathrm{HCO}_{3}^{-}(70 \%)$.
(2) Carbaminohemoglobin or $\mathrm{HbCO}_{2}$ (21-25\%). $\mathrm{CO}_{2}$ bound to Hb at N-terminus of globin (not heme). $\mathrm{CO}_{2}$ favors deoxygenated form ( $\mathrm{O}_{2}$ unloaded).
(3) Dissolved $\mathrm{CO}_{2}(5-9 \%)$.

In lungs, oxygenation of Hb promotes dissociation of $\mathrm{H}^{+}$from Hb . This shifts equilibrium toward $\mathrm{CO}_{2}$ formation; therefore, $\mathrm{CO}_{2}$ is released from RBCs (Haldane effect).
In peripheral tissue, $\uparrow \mathrm{H}^{+}$from tissue metabolism shifts curve to right, unloading $\mathrm{O}_{2}$ (Bohr effect).
Majority of blood $\mathrm{CO}_{2}$ is carried as $\mathrm{HCO}_{3}{ }^{-}$in the plasma.


## Response to high altitude

$\downarrow$ atmospheric oxygen $\left(\mathrm{PO}_{2}\right) \rightarrow \downarrow \mathrm{PaO}_{2} \rightarrow \uparrow$ ventilation $\rightarrow \downarrow \mathrm{PaCO}_{2} \rightarrow$ respiratory alkalosis $\rightarrow$ altitude sickness.
Chronic $\uparrow$ in ventilation.
$\uparrow$ erythropoietin $\rightarrow \uparrow$ Hct and Hb (due to chronic hypoxia).
$\uparrow$ 2,3-BPG (binds to Hb causing left shift so that Hb releases more $\mathrm{O}_{2}$ ).
Cellular changes ( $\uparrow$ mitochondria).
$\uparrow$ renal excretion of $\mathrm{HCO}_{3}^{-}$to compensate for respiratory alkalosis (can augment with acetazolamide).
Chronic hypoxic pulmonary vasoconstriction results in pulmonary hypertension and RVH.

Response to exercise $\uparrow \mathrm{CO}_{2}$ production.
$\uparrow \mathrm{O}_{2}$ consumption.
$\uparrow$ ventilation rate to meet $\mathrm{O}_{2}$ demand.
$\dot{V} / \underline{Q}$ ratio from apex to base becomes more uniform.
$\uparrow$ pulmonary blood flow due to $\uparrow$ cardiac output.
$\downarrow \mathrm{pH}$ during strenuous exercise ( $2^{\circ}$ to lactic acidosis).
No change in $\mathrm{PaO}_{2}$ and $\mathrm{PaCO}_{2}$, but $\uparrow$ in venous $\mathrm{CO}_{2}$ content and $\downarrow$ in venous $\mathrm{O}_{2}$ content.

## RESPIRATORY—PATHOLOGY

## Rhinosinusitis



Obstruction of sinus drainage into nasal cavity $\rightarrow$ inflammation and pain over affected area. Typically affects maxillary sinuses, which drain against gravity due to ostia located superomedially (red arrow points to fluid-filled right maxillary sinus in (A).
Most common acute cause is viral URI; may lead to superimposed bacterial infection, most commonly S pneumoniae, H influenzae, M catarrhalis.
Infections in sphenoid or ethmoid sinuses may extend to cavernous sinus and cause complications (eg, cavernous sinus syndrome).

Nose bleed. Most commonly occurs in anterior segment of nostril (Kiesselbach plexus). Lifethreatening hemorrhages occur in posterior segment (sphenopalatine artery, a branch of maxillary artery). Common causes include foreign body, trauma, allergic rhinitis, and nasal angiofibromas (common in adolescent males).
Kiesselbach drives his Lexus with his LEGS: superior Labial artery, anterior and posterior Ethmoidal arteries, Greater palatine artery, Sphenopalatine artery.

Head and neck cancer Mostly squamous cell carcinoma. Risk factors include tobacco, alcohol, HPV-16 (oropharyngeal), EBV (nasopharyngeal). Field cancerization: carcinogen damages wide mucosal area $\rightarrow$ multiple tumors that develop independently after exposure.

Deep venous thrombosis


Blood clot within a deep vein $\rightarrow$ swelling, redness $\boldsymbol{A}$, warmth, pain. Predisposed by Virchow triad (SHE):

- Stasis (eg, post-op, long drive/flight)
- Hypercoagulability (eg, defect in coagulation cascade proteins, such as factor V Leiden; oral contraceptive use)
- Endothelial damage (exposed collagen triggers clotting cascade)
D-dimer lab test used clinically to rule out DVT (high sensitivity, low specificity).

Most pulmonary emboli arise from proximal deep veins of lower extremity.
Use unfractionated heparin or low-molecularweight heparins (eg, enoxaparin) for prophylaxis and acute management.
Use oral anticoagulants (eg, warfarin, rivaroxaban) for treatment (long-term prevention).
Imaging test of choice is compression ultrasound with Doppler.

## Pulmonary emboli

$\dot{V} / \underline{Q}$ mismatch, hypoxemia, respiratory alkalosis. Sudden-onset dyspnea, pleuritic chest pain, tachypnea, tachycardia. Large emboli or saddle embolus $\boldsymbol{A}$ may cause sudden death due to electromechanical dissociation.
Lines of Zahn are interdigitating areas of pink (platelets, fibrin) and red (RBCs) found only in thrombi formed before death; help distinguish pre- and postmortem thrombi $\mathbb{B}$.
Types: Fat, Air, Thrombus, Bacteria, Amniotic fluid, Tumor.
Fat emboli-associated with long bone fractures and liposuction; classic triad of hypoxemia, neurologic abnormalities, petechial rash.
Air emboli-nitrogen bubbles precipitate in ascending divers (caisson disease/ decompression sickness); treat with hyperbaric $\mathrm{O}_{2}$; or, can be iatrogenic $2^{\circ}$ to invasive procedures (eg, central line placement).
Amniotic fluid emboli-can lead to DIC, especially postpartum.


## Flow-volume loops



## Obstructive lung diseases

Obstruction of air flow $\rightarrow$ air trapping in lungs. Airways close prematurely at high lung volumes $\rightarrow \uparrow$ FRC, $\uparrow$ RV, $\uparrow$ TLC. PFTs: $\downarrow \downarrow \mathrm{FEV}_{1}, \downarrow \mathrm{FVC} \rightarrow \downarrow \mathrm{FEV}_{1} /$ FVC ratio (hallmark), $\dot{V} / \dot{Q}$ mismatch. Chronic, hypoxic pulmonary vasoconstriction can lead to cor pulmonale. Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis and emphysema. "FRiCkin' RV needs some increased TLC, but it’s hard with COPD!"

TYPE	PReSentation	Pathology	OTHER
Chronic bronchitis ("blue bloater")	Findings: wheezing, crackles, cyanosis (hypoxemia due to shunting), dyspnea, $\mathrm{CO}_{2}$ retention, $2^{\circ}$ polycythemia.	Hypertrophy and hyperplasia of mucus-secreting glands in bronchi $\rightarrow$ Reid index (thickness of mucosal gland layer to thickness of wall between epithelium and cartilage) $>50 \%$. $\mathrm{D}_{\mathrm{LCO}}$ usually normal.	Diagnostic criteria: productive cough for $>3$ months in a year for $>2$ consecutive years.
Emphysema ("pink puffer")	Findings: barrel-shaped chest D, exhalation through pursed lips (increases airway pressure and prevents airway collapse).	Centriacinar-associated with smoking $\operatorname{A} \mid \boldsymbol{B}$. Frequently in upper lobes (smoke rises up). Panacinar-associated with $\alpha_{1}$-antitrypsin deficiency. Frequently in lower lobes. Enlargement of air spaces $\downarrow$ recoil, $\uparrow$ compliance, $\downarrow \mathrm{D}_{\mathrm{LCO}}$ from destruction of alveolar walls (arrow in C). Imbalance of proteases and antiproteases $\rightarrow \uparrow$ elastase activity $\rightarrow \uparrow$ loss of elastic fibers $\rightarrow \uparrow$ lung compliance.	CXR: $\uparrow$ AP diameter, flattened diaphragm, $\uparrow$ lung field lucency.
Asthma	Findings: cough, wheezing, tachypnea, dyspnea, hypoxemia, $\downarrow$ inspiratory/ expiratory ratio, pulsus paradoxus, mucus plugging 国.   Triggers: viral URIs, allergens, stress. Diagnosis supported by spirometry and methacholine challenge.	Hyperresponsive bronchi $\rightarrow$ reversible bronchoconstriction. Smooth muscle hypertrophy and hyperplasia, Curschmann spirals [F (shed epithelium forms whorled mucous plugs), and Charcot-Leyden crystals [] (eosinophilic, hexagonal, double-pointed crystals formed from breakdown of eosinophils in sputum). $\mathrm{D}_{\mathrm{LCO}}$ normal or $\uparrow$.	Type I hypersensitivity reaction.   Aspirin-induced asthma is a combination of COX inhibition (leukotriene overproduction $\rightarrow$ airway constriction), chronic sinusitis with nasal polyps, and asthma symptoms.

## Obstructive lung diseases (continued)

TYPE	PRESENTATION	PATHOLOGY	OTHER
Bronchiectasis	Findings: purulent sputum, recurrent infections, hemoptysis, digital clubbing.	Chronic necrotizing infection of bronchi or obstruction $\rightarrow$ permanently dilated airways.	Associated with bronchial obstruction, poor ciliary motility (eg, smoking, Kartagener syndrome), cystic fibrosis $\boldsymbol{H}$, allergic bronchopulmonary aspergillosis.



## Restrictive lung diseases



Restricted lung expansion causes $\downarrow$ lung volumes ( $\downarrow$ FVC and TLC). PFTs: $\uparrow$ FEV $/$ /FVC ratio. Patient presents with short, shallow breaths.
Types:

- Poor breathing mechanics (extrapulmonary, peripheral hypoventilation, normal A-a gradient):
- Poor muscular effort-polio, myasthenia gravis, Guillain-Barré syndrome
- Poor structural apparatus-scoliosis, morbid obesity
- Interstitial lung diseases (pulmonary $\downarrow$ diffusing capacity, $\uparrow$ A-a gradient):
- Pneumoconioses (eg, coal workers' pneumoconiosis, silicosis, asbestosis)
- Sarcoidosis: bilateral hilar lymphadenopathy, noncaseating granuloma; $\uparrow$ ACE and $\mathrm{Ca}^{2+}$
- Idiopathic pulmonary fibrosis A (repeated cycles of lung injury and wound healing with $\uparrow$ collagen deposition, "honeycomb" lung appearance and digital clubbing)
- Goodpasture syndrome
- Granulomatosis with polyangiitis (Wegener)
- Pulmonary Langerhans cell histiocytosis (eosinophilic granuloma)
- Hypersensitivity pneumonitis
- Drug toxicity (bleomycin, busulfan, amiodarone, methotrexate)

Hypersensitivity pneumonitis-mixed type III/IV hypersensitivity reaction to environmental antigen. Causes dyspnea, cough, chest tightness, headache. Often seen in farmers and those exposed to birds. Reversible in early stages if stimulus is avoided.

## Sarcoidosis

Characterized by immune-mediated, widespread noncaseating granulomas $\boldsymbol{A}$, elevated serum ACE levels, and elevated CD4+/CD8+ ratio in bronchoalveolar lavage fluid. More common in African-American females. Often asymptomatic except for enlarged lymph nodes. Findings on CXR of bilateral adenopathy and coarse reticular opacities B; CT of the chest better demonstrates the extensive hilar and mediastinal adenopathy IC.
Associated with Bell palsy, Uveitis, Granulomas (epithelioid, containing microscopic Schaumann and asteroid bodies), Lupus pernio (skin lesions on face resembling lupus), Interstitial fibrosis (restrictive lung disease), Erythema nodosum, Rheumatoid arthritis-like arthropathy, hypercalcemia (due to $\uparrow l \alpha$-hydroxylase-mediated vitamin D activation in macrophages). A facial droop is UGLIER.
Treatment: steroids (if symptomatic).


Inhalation injury and sequelae

Complication of smoke inhalation from fires or other noxious substances. Caused by heat, particulates ( $<1 \mu \mathrm{~m}$ diameter), or irritants (eg, $\left.\mathrm{NH}_{3}\right) \rightarrow$ chemical tracheobronchitis, edema, pneumonia, ARDS. Many patients present $2^{\circ}$ to burns, CO inhalation, cyanide poisoning, or arsenic poisoning. Singed nasal hairs common on exam.
Bronchoscopy shows severe edema, congestion of bronchus, and soot deposition (A, 18 hours after inhalation injury; B, resolution at 11 days
 after injury).

Pneumoconioses

Asbestosis	Associated with shipbuilding, roofing,   plumbing. "Ivory white," calcified,   supradiaphragmatic $\boldsymbol{A}$ and pleural B plaques   are pathognomonic of asbestosis.   Risk of bronchogenic carcinoma $>$   mesothelioma. risk of
Berylliosis	Associated with exposure to beryllium in   aerospace and manufacturing industries.   Granulomatous (noncaseating) $\boldsymbol{D}$ on histology   and therefore occasionally responsive to   steroids. $\uparrow$ risk of cancer and cor pulmonale.
Coal workers'	
pneumoconiosis	Prolonged coal dust exposure $\rightarrow$ macrophages   laden with carbon $\rightarrow$ inflammation and
fibrosis.	

Affects lower lobes.
Asbestos (ferruginous) bodies are golden-brown fusiform rods resembling dumbbells [C, found in alveolar sputum sample, visualized using Prussian blue stain, often obtained by bronchoalveolar lavage.
$\uparrow$ risk of pleural effusions.
Affects upper lobes.

Affects upper lobes.
Small, rounded nodular opacities seen on imaging.
Anthracosis-asymptomatic condition found in many urban dwellers exposed to sooty air.

Affects upper lobes.
"Eggshell" calcification of hilar lymph nodes on CXR.
The silly egg sandwich I found is mine!


## Mesothelioma



Malignancy of the pleura associated with asbestosis. May result in hemorrhagic pleural effusion (exudative), pleural thickening $\boldsymbol{A}$.

Psammoma bodies seen on histology.
Calretinin $\oplus$ in almost all mesotheliomas, $\Theta$ in most carcinomas.
Smoking not a risk factor.

## Acute respiratory distress syndrome



Sleep apnea	Repeated cessation of breathing $>10$ seconds during sleep $\rightarrow$ disrupted sleep $\rightarrow$ daytime somnolence. Diagnosis confirmed by sleep study. Normal $\mathrm{PaO}_{2}$ during the day.   Nocturnal hypoxia $\rightarrow$ systemic/pulmonary hypertension, arrhythmias (atrial fibrillation/flutter), sudden death.   Hypoxia $\rightarrow \uparrow$ EPO release $\rightarrow \uparrow$ erythropoiesis.
Obstructive sleep apnea	Respiratory effort against airway obstruction. Associated with obesity, loud snoring, daytime sleepiness. Caused by excess parapharyngeal tissue in adults, adenotonsillar hypertrophy in children. Treatment: weight loss, CPAP, surgery.
Central sleep apnea	Impaired respiratory effort due to CNS injury/toxicity, HF, opioids. May be associated with Cheyne-Stokes respirations (oscillations between apnea and hyperpnea). Treat with positive airway pressure.
Obesity hypoventilation syndrome	Obesity $\left(\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m}^{2}\right) \rightarrow$ hypoventilation $\rightarrow \uparrow \mathrm{PaCO}_{2}$ during waking hours (retention); $\downarrow \mathrm{PaO}_{2}$ and $\uparrow \mathrm{PaCO}_{2}$ during sleep. Also known as Pickwickian syndrome.
Pulmonary hypertension	Normal mean pulmonary artery pressure $=10-14 \mathrm{~mm}$ Hg; pulmonary hypertension $\geq 25 \mathrm{~mm} \mathrm{Hg}$ at rest. Results in arteriosclerosis, medial hypertrophy, intimal fibrosis of pulmonary arteries, plexiform lesions. Course: severe respiratory distress $\rightarrow$ cyanosis and RVH $\rightarrow$ death from decompensated cor pulmonale.
ETIOLOGIES	
Pulmonary arterial hypertension	Often idiopathic. Heritable PAH can be due to an inactivating mutation in BMPR2 gene (normally inhibits vascular smooth muscle proliferation); poor prognosis. Pulmonary vasculature endothelial dysfunction results in $\uparrow$ vasoconstrictors (eg, endothelin) and $\downarrow$ vasodilators (eg, NO and prostacyclins).   Other causes include drugs (eg, amphetamines, cocaine), connective tissue disease, HIV infection, portal hypertension, congenital heart disease, schistosomiasis.
Left heart disease	Causes include systolic/diastolic dysfunction and valvular disease.
Lung diseases or hypoxia	Destruction of lung parenchyma (eg, COPD), lung inflammation/fibrosis (eg, interstitial lung diseases), hypoxemic vasoconstriction (eg, obstructive sleep apnea, living in high altitude).
Chronic thromboembolic	Recurrent microthrombi $\rightarrow \downarrow$ cross-sectional area of pulmonary vascular bed.
Multifactorial	Causes include hematologic, systemic, and metabolic disorders, along with compression of the pulmonary vasculature by a tumor.

## Lung—physical findings

| ABNORMALTY | BREATH SOUNDS | PERCUSSION | FREMTUS | TRACHEAL DEVIATION |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Pleural effusion | $\downarrow$ | Dull | $\downarrow$ | None if small <br> Away from side of lesion <br> if large |
| Atelectasis (bronchial <br> obstruction) | $\downarrow$ | Dull | $\downarrow$ | Toward side of lesion |
| Simple pneumothorax | $\downarrow$ | Hyperresonant | $\downarrow$ | None |
| Tension <br> pneumothorax | $\downarrow$ | Hyperresonant | $\downarrow$ | Away from side of lesion |
| Consolidation <br> (lobar pneumonia, <br> pulmonary edema) | Bronchial breath sounds; <br> late inspiratory crackles, <br> egophony, whispered | Dull | $\uparrow$ | None |
| pectoriloquy |  |  |  |  |


Pleural effusions	Excess accumulation of fluid $\mathbb{A}$ between pleural layers $\rightarrow$ restricted lung expansion during   inspiration. Can be treated with thoracentesis to remove/reduce fluid $B$.
Transudate	$\downarrow$ protein content. Due to $\uparrow$ hydrostatic pressure (eg, HF) or $\downarrow$ oncotic pressure (eg, nephrotic   syndrome, cirrhosis).
$\uparrow$ protein content, cloudy. Due to malignancy, pneumonia, collagen vascular disease, trauma   (occurs in states of $\uparrow$ vascular permeability). Must be drained due to risk of infection.	
Lymphatic	Also known as chylothorax. Due to thoracic duct injury from trauma or malignancy. Milky-   appearing fluid; $\uparrow$ triglycerides.



## Pneumonia

TYPE	TYPICAL ORGANSMS	Characteristics
Lobar pneumonia	S pneumoniae most frequently, also Legionella, Klebsiella	Intra-alveolar exudate $\rightarrow$ consolidation (A; may involve entire lobe $B$ or the whole lung.
Bronchopneumonia	S pneumoniae, S aureus, H influenzae, Klebsiella	Acute inflammatory infiltrates $\mathbf{C C}$ from bronchioles into adjacent alveoli; patchy distribution involving $\geq 1$ lobe $\mathbf{D}$.
Interstitial (atypical) pneumonia	Mycoplasma, Chlamydophila pneumoniae, Chlamydophila psittaci, Legionella, viruses (RSV, CMV, influenza, adenovirus)	Diffuse patchy inflammation localized to interstitial areas at alveolar walls; diffuse distribution involving $\geq 1$ lobe E. Generally follows a more indolent course ("walking" pneumonia).
Cryptogenic organizing pneumonia	Etiology unknown. Secondary organizing pneumonia caused by chronic inflammatory diseases (eg, rheumatoid arthritis) or medication side effects (eg, amiodarone).	Formerly known as bronchiolitis obliterans organizing pneumonia (BOOP). Noninfectious pneumonia characterized by inflammation of bronchioles and surrounding structure.



Natural history of lobar pneumonia

	Congestion	Red hepatization	Gray hepatization	Resolution
DAYS	$1-2$	$3-4$	$5-7$	$8+$
FINDINGS	Red-purple, partial	Red-brown,	Uniformly gray	Enzymes digest
	consolidation of	consolidated	Exudate full of	components of exudate
	parenchyma	Exudate with	WBCs, lysed	
	Exudate with mostly	fibrin, bacteria,	RBCs, and fibrin	
	bacteria	RBCs, and WBCs		

## Lung cancer

Leading cause of cancer death.
Presentation: cough, hemoptysis, bronchial obstruction, wheezing, pneumonic "coin" lesion on CXR or noncalcified nodule on CT.
Sites of metastases from lung cancer: adrenals, brain, bone (pathologic fracture), liver (jaundice, hepatomegaly).
In the lung, metastases (usually multiple lesions) are more common than $1^{\circ}$ neoplasms. Most often from breast, colon, prostate, and bladder cancer.

SPHERE of complications:
Superior vena cava/thoracic outlet syndromes Pancoast tumor
Horner syndrome
Endocrine (paraneoplastic)
Recurrent laryngeal nerve compression (hoarseness)
Effusions (pleural or pericardial)
Risk factors include smoking, secondhand smoke, radon, asbestos, family history.
Squamous and Small cell carcinomas are Sentral (central) and often caused by Smoking.

TYPE	Location	Characteristics	HISTOLOGY
Small cell			
Small cell (oat cell) carcinoma	Central	Undifferentiated $\rightarrow$ very aggressive.   May produce ACTH (Cushing syndrome), SIADH, or Antibodies against presynaptic $\mathrm{Ca}^{2+}$ channels (LambertEaton myasthenic syndrome) or neurons (paraneoplastic myelitis, encephalitis, subacute cerebellar degeneration). Amplification of myc oncogenes common. Managed with chemotherapy $+/$ - radiation.	Neoplasm of neuroendocrine Kulchitsky cells $\rightarrow$ small dark blue cells $\boldsymbol{A}$.   Chromogranin $\mathbf{A} \oplus$, neuron-specific enolase $\oplus$, synaptophysin $\oplus$.
Non-small cell			
Adenocarcinoma	Peripheral	Most common $1^{\circ}$ lung cancer. More common in women than men, most likely to arise in nonsmokers. Activating mutations include KRAS, EGFR, and ALK. Associated with hypertrophic osteoarthropathy (clubbing).   Bronchioloalveolar subtype (adenocarcinoma in situ): CXR often shows hazy infiltrates similar to pneumonia; better prognosis.   Bronchial carcinoid and bronchioloalveolar cell carcinoma have lesser association with smoking.	Glandular pattern on histology, often stains mucin $\oplus$ B.   Bronchioloalveolar subtype: grows along alveolar septa $\rightarrow$ apparent "thickening" of alveolar walls. Tall, columnar cells containing mucus.
Squamous cell carcinoma	Central	Hilar mass $\mathbf{C}$ arising from bronchus; Cavitation; Cigarettes; hyperCalcemia (produces PTHrP).	Keratin pearls [D] and intercellular bridges.
Large cell carcinoma	Peripheral	Highly anaplastic undifferentiated tumor; poor prognosis. Less responsive to chemotherapy; removed surgically. Strong association with smoking.	Pleomorphic giant cells E.
Bronchial carcinoid tumor	Central or peripheral	Excellent prognosis; metastasis rare.   Symptoms due to mass effect or carcinoid syndrome (flushing, diarrhea, wheezing).	Nests of neuroendocrine cells; chromogranin A $\oplus$.



Lung abscess


Localized collection of pus within parenchyma $\boldsymbol{A}$. Caused by aspiration of oropharyngeal contents (especially in patients predisposed to loss of consciousness [eg, alcoholics, epileptics]) or bronchial obstruction (eg, cancer).
Treatment: antibiotics.

Air-fluid levels B often seen on CXR. Fluid levels common in cavities; presence suggests cavitation. Due to anaerobes (eg, Bacteroides, Fusobacterium, Peptostreptococcus) or $S$ aureus. Lung abscess $2^{\circ}$ to aspiration is most often found in right lung. Location depends on patient's position during aspiration.

## Pancoast tumor



Also known as superior sulcus tumor. Carcinoma that occurs in the apex of lung A may cause Pancoast syndrome by invading cervical sympathetic chain.
Compression of locoregional structures may cause array of findings:

- Recurrent laryngeal nerve $\rightarrow$ hoarseness
- Stellate ganglion $\rightarrow$ Horner syndrome (ipsilateral ptosis, miosis, anhidrosis)
- Superior vena cava $\rightarrow$ SVC syndrome
- Brachiocephalic vein $\rightarrow$ brachiocephalic syndrome (unilateral symptoms)
- Brachial plexus $\rightarrow$ sensorimotor deficits

Superior vena cava syndrome


An obstruction of the SVC that impairs blood drainage from the head ("facial plethora"; note blanching after fingertip pressure in A), neck (jugular venous distention), and upper extremities (edema). Commonly caused by malignancy (eg, mediastinal mass, Pancoast tumor) and thrombosis from indwelling catheters B. Medical emergency. Can raise intracranial pressure (if obstruction is severe) $\rightarrow$ headaches, dizziness, $\uparrow$ risk of aneurysm/ rupture of intracranial arteries.


## - RESPIRATORY-PHARMACOLOGY

Histamine-1 blockers	Reversible inhibitors of $\mathrm{H}_{1}$ histamine receptors.	
First generation	Diphenhydramine, dimenhydrinate, chlorpheniramine.	Names contain "-en/-ine" or "-en/-ate."
clinical use	Allergy, motion sickness, sleep aid.	
adverse effects	Sedation, antimuscarinic, anti- $\alpha$-adrenergic.	
Second generation	Loratadine, fexofenadine, desloratadine, cetirizine.	Names usually end in "-adine."
Cunical use	Allergy.	
adverse effects	Far less sedating than lst generation because of $\downarrow$ entry into CNS.	

Guaifenesin Expectorant-thins respiratory secretions; does not suppress cough reflex.
$N$-acetylcysteine Mucolytic-liquifies mucus in chronic bronchopulmonary diseases (eg, COPD, CF) by disrupting disulfide bonds. Also used as an antidote for acetaminophen overdose.

Dextromethorphan Antitussive (antagonizes NMDA glutamate receptors). Synthetic codeine analog. Has mild opioid effect when used in excess. Naloxone can be given for overdose. Mild abuse potential. May cause serotonin syndrome if combined with other serotonergic agents.

## Pseudoephedrine, phenylephrine

MECHANISM $\alpha$-adrenergic agonists, used as nasal decongestants.

CLINICALUSE Reduce hyperemia, edema, nasal congestion; open obstructed eustachian tubes.
ADVERSE EFFECTS Hypertension. Rebound congestion if used more than 4-6 days. Can also cause CNS stimulation/ anxiety (pseudoephedrine).

## Pulmonary hypertension drugs

DRUG	MECHANSM	CLINCAL Notes
Endothelin receptor   antagonists	Competitively antagonizes endothelin-l   receptors $\rightarrow \downarrow$ pulmonary vascular resistance.	Hepatotoxic (monitor LFTs).   Example: bosentan.
PDE-5 inhibitors	Inhibits PDE-5 $\rightarrow \uparrow$ cGMP $\rightarrow$ prolonged   vasodilatory effect of NO.	Also used to treat erectile dysfunction.   Contraindicated when taking nitroglycerin or   other nitrates.
Example: sildenafil.		



## Methacholine

Nonselective muscarinic receptor $\left(\mathrm{M}_{3}\right)$ agonist. Used in bronchial challenge test to help diagnose asthma.

## HIGH-YIELD SYSTEMS

## Rapid Review

"Study without thought is vain: thought without study is dangerous."
-Confucius
"It is better, of course, to know useless things than to know nothing."
-Lucius Annaeus Seneca
"For every complex problem there is an answer that is clear, simple, and wrong."

- H. L. Mencken

The following tables represent a collection of high-yield associations of diseases with their clinical findings, treatments, and pathophysiology. They can be quickly reviewed in the days before the exam.

Classic
Presentations
670

- Classic Labs/

Findings

- CLASSIC PRESENTATIONS

CLINICAL PRESENTATION	DIAGNOSIS/DISEASE	PAGE
Gout, intellectual disability, self-mutilating behavior in a boy	Lesch-Nyhan syndrome (HGPRT deficiency, X-linked recessive)	37
Situs inversus, chronic sinusitis, bronchiectasis, infertility	Kartagener syndrome (dynein arm defect affecting cilia)	49
Blue sclera	Osteogenesis imperfecta (type I collagen defect)	51
Elastic skin, hypermobility of joints, $\uparrow$ bleeding tendency	Ehlers-Danlos syndrome (type V collagen defect, type III collagen defect seen in vascular subtype of ED)	51
Arachnodactyly, lens dislocation (upward), aortic dissection, hyperflexible joints	Marfan syndrome (fibrillin defect)	52
Café-au-lait spots (unilateral), polyostotic fibrous dysplasia, precocious puberty, multiple endocrine abnormalities	McCune-Albright syndrome (mosaic G-protein signaling mutation)	57
Calf pseudohypertrophy	Muscular dystrophy (most commonly Duchenne, due to X-linked recessive frameshift mutation of dystrophin gene)	61
Child uses arms to stand up from squat	Duchenne muscular dystrophy (Gowers sign)	61
Slow, progressive muscle weakness in boys	Becker muscular dystrophy (X-linked missense mutation in dystrophin; less severe than Duchenne)	61
Infant with cleft lip/palate, microcephaly or holoprosencephaly, polydactyly, cutis aplasia	Patau syndrome (trisomy 13)	63
Infant with microcephaly, rocker-bottom feet, clenched hands, and structural heart defect	Edwards syndrome (trisomy 18)	63
Single palmar crease	Down syndrome	63
Dilated cardiomyopathy, edema, alcoholism or malnutrition	Wet beriberi (thiamine [vitamin $\mathrm{B}_{1}$ ] deficiency)	66
Dermatitis, dementia, diarrhea	Pellagra (niacin [vitamin $\mathrm{B}_{3}$ ] deficiency)	67
Swollen gums, mucosal bleeding, poor wound healing, petechiae	Scurvy (vitamin C deficiency: can't hydroxylate proline/ lysine for collagen synthesis)	69
Chronic exercise intolerance with myalgia, fatigue, painful cramps, myoglobinuria	McArdle disease (skeletal muscle glycogen phosphorylase deficiency)	87
Infant with hypoglycemia, hepatomegaly	Cori disease (debranching enzyme deficiency) or Von Gierke disease (glucose-6-phosphatase deficiency, more severe)	87
Myopathy (infantile hypertrophic cardiomyopathy), exercise intolerance	Pompe disease (lysosomal $\alpha$-1,4-glucosidase deficiency)	87
"Cherry-red spots" on macula	Tay-Sachs (ganglioside accumulation) or Niemann-Pick (sphingomyelin accumulation), central retinal artery occlusion	88
Hepatosplenomegaly, pancytopenia, osteoporosis, aseptic necrosis of femoral head, bone crises	Gaucher disease (glucocerebrosidase deficiency)	88
Achilles tendon xanthoma	Familial hypercholesterolemia ( $\downarrow$ LDL receptor signaling)	94
Anaphylaxis following blood transfusion	IgA deficiency	116
Male child, recurrent infections, no mature B cells	Bruton disease (X-linked agammaglobulinemia)	116


CLINICAL PRESENTATION	DIAGNOSIS/DISEASE	PAGE
Recurrent cold (noninflamed) abscesses, unusual eczema, high serum IgE	Hyper-IgE syndrome (Job syndrome: neutrophil chemotaxis abnormality)	116
"Strawberry tongue"	Scarlet fever   Kawasaki disease	$\begin{gathered} 136 \\ 308 \end{gathered}$
Adrenal hemorrhage, hypotension, DIC	Waterhouse-Friderichsen syndrome (meningococcemia)	$\begin{gathered} 142 \\ 332 \end{gathered}$
Red "currant jelly" sputum in alcoholic or diabetic patients	Klebsiella pneumoniae pneumonia	145
Large rash with bull's-eye appearance	Erythema chronicum migrans from Ixodes tick bite (Lyme disease: Borrelia)	146
Indurated, ulcerated genital lesion	Nonpainful: chancre ( $1^{\circ}$ syphilis, Treponema pallidum) Painful, with exudate: chancroid (Haemophilus ducreyi)	$\begin{aligned} & 147, \\ & 184 \end{aligned}$
Pupil accommodates but doesn't react	Neurosyphilis (Argyll Robertson pupil)	147
Smooth, moist, painless, wart-like white lesions on genitals	Condylomata lata ( $2^{\circ}$ syphilis)	147
Fever, chills, headache, myalgia following antibiotic treatment for syphilis	Jarisch-Herxheimer reaction (rapid lysis of spirochetes results in endotoxin-like release)	148
Dog or cat bite resulting in infection	Pasteurella multocida (cellulitis at inoculation site)	149
Rash on palms and soles	Coxsackie A, $2^{\circ}$ syphilis, Rocky Mountain spotted fever	150
Black eschar on face of patient with diabetic ketoacidosis	Mucor or Rhizopus fungal infection	153
Chorioretinitis, hydrocephalus, intracranial calcifications	Congenital toxoplasmosis	156
Fever, cough, conjunctivitis, coryza, diffuse rash	Measles	170
Small, irregular red spots on buccal/lingual mucosa with blue-white centers	Koplik spots (measles [rubeola] virus)	170
Back pain, fever, night sweats	Pott disease (vertebral TB)	180
Child with fever later develops red rash on face that spreads to body	Erythema infectiosum/fifth disease ("slapped cheeks" appearance, caused by parvovirus B19)	183
Abdominal pain, diarrhea, leukocytosis, recent antibiotic use	Clostridium difficile infection	185
Bounding pulses, wide pulse pressure, diastolic heart murmur, head bobbing	Aortic regurgitation	285
Systolic ejection murmur (crescendo-decrescendo)	Aortic stenosis	285
Continuous "machine-like" heart murmur	PDA (close with indomethacin; keep open with PGE analogs)	285
Chest pain on exertion	Angina (stable: with moderate exertion; unstable: with minimal exertion or at rest)	299
Chest pain with ST depressions on ECG	Angina ( $\odot$ troponins) or NSTEMI ( $\oplus$ troponins)	299
Chest pain, pericardial effusion/friction rub, persistent fever following MI	Dressler syndrome (autoimmune-mediated post-MI fibrinous pericarditis, 2 weeks to several months after acute episode)	302
Painful, raised red lesions on pads of fingers/toes	Osler nodes (infective endocarditis, immune complex deposition)	305
Painless erythematous lesions on palms and soles	Janeway lesions (infective endocarditis, septic emboli/ microabscesses)	305


Clinical presentation	DIAGNOSII/DISEASE	PAGE
Splinter hemorrhages in fingernails	Bacterial endocarditis	305
Retinal hemorrhages with pale centers	Roth spots (bacterial endocarditis)	305
Distant heart sounds, distended neck veins, hypotension	Beck triad of cardiac tamponade	307
Cervical lymphadenopathy, desquamating rash, coronary aneurysms, red conjunctivae and tongue, hand-foot changes	Kawasaki disease (treat with IVIG and aspirin)	308
Palpable purpura on buttocks/legs, joint pain, abdominal pain (child), hematuria	Henoch-Schönlein purpura (IgA vasculitis affecting skin and kidneys)	309
Telangiectasias, recurrent epistaxis, skin discoloration, arteriovenous malformations, GI bleeding, hematuria	Hereditary hemorrhagic telangiectasia (Osler-WeberRendu syndrome)	310
Skin hyperpigmentation, hypotension, fatigue	$1^{\circ}$ adrenocortical insufficiency (eg, Addison disease) causes $\uparrow$ ACTH and $\uparrow \alpha$-MSH production)	332
Cold intolerance	Hypothyroidism	335
Cutaneous/dermal edema due to deposition of mucopolysaccharides in connective tissue	Myxedema (caused by hypothyroidism, Graves disease [pretibial])	335
Facial muscle spasm upon tapping	Chvostek sign (hypocalcemia)	339
No lactation postpartum, absent menstruation, cold intolerance	Sheehan syndrome (postpartum hemorrhage leading to pituitary infarction)	343
Deep, labored breathing/hyperventilation	Diabetic ketoacidosis (Kussmaul respirations)	345
Cutaneous flushing, diarrhea, bronchospasm	Carcinoid syndrome (right-sided cardiac valvular lesions, $\uparrow$ 5-HIAA)	346
Pancreatic, pituitary, parathyroid tumors	MEN 1 (autosomal dominant)	347
Thyroid tumors, pheochromocytoma, ganglioneuromatosis, Marfanoid habitus	MEN 2B (autosomal dominant RET mutation)	347
Thyroid and parathyroid tumors, pheochromocytoma	MEN 2A (autosomal dominant RET mutation)	347
Jaundice, palpable distended non-tender gallbladder	Courvoisier sign (distal malignant obstruction of biliary tree)	362
Painless jaundice	Cancer of the pancreatic head obstructing bile duct	362
Vomiting blood following gastroesophageal lacerations	Mallory-Weiss syndrome (alcoholic and bulimic patients)	371
Dysphagia (esophageal webs), glossitis, iron deficiency anemia	Plummer-Vinson syndrome (may progress to esophageal squamous cell carcinoma)	371
Enlarged, hard left supraclavicular node	Virchow node (abdominal metastasis)	373
Weight loss, diarrhea, arthritis, fever, adenopathy	Whipple disease (Tropheryma whipplei)	375
Severe RLQ pain with palpation of LLQ	Rovsing sign (acute appendicitis)	377
Severe RLQ pain with deep tenderness	McBurney sign (acute appendicitis)	377
Hamartomatous GI polyps, hyperpigmentation of mouth/feet/hands/genitalia	Peutz-Jeghers syndrome (inherited, benign polyposis can cause bowel obstruction; $\uparrow$ cancer risk, mainly GI)	381
Multiple colon polyps, osteomas/soft tissue tumors, impacted/supernumerary teeth	Gardner syndrome (subtype of FAP)	381
Abdominal pain, ascites, hepatomegaly	Budd-Chiari syndrome (posthepatic venous thrombosis)	386
Severe jaundice in neonate	Crigler-Najjar syndrome (congenital unconjugated hyperbilirubinemia)	388


CLINICAL PRESENTATION	DIAGNOSII/DISEASE	PAGE
Golden brown rings around peripheral cornea	Wilson disease (Kayser-Fleischer rings due to copper accumulation)	389
Fat, female, forty, fertile, familial	Cholelithiasis (gallstones)	390
Short stature, café-au-lait spots, thumb/radial defects, $\uparrow$ incidence of tumors/leukemia, aplastic anemia	Fanconi anemia (genetic loss of DNA crosslink repair; often progresses to AML)	409
Red urine in the morning, fragile RBCs	Paroxysmal nocturnal hemoglobinuria	410
Painful blue fingers/toes, hemolytic anemia	Cold agglutinin disease (autoimmune hemolytic anemia caused by Mycoplasma pneumoniae, infectious mononucleosis, CLL)	411
Mucosal bleeding and prolonged bleeding time	Glanzmann thrombasthenia (defect in platelet aggregation due to lack of GpIIb/IIIa)	415
Fever, night sweats, weight loss	B symptoms of lymphoma	417
Erythroderma, lymphadenopathy, hepatosplenomegaly, atypical T cells	Mycosis fungoides (cutaneous T-cell lymphoma) or Sézary syndrome (mycosis fungoides + malignant T cells in blood)	418
WBCs that look "smudged"	CLL	420
Athlete with polycythemia	$2^{\circ}$ to erythropoietin injection	421
Neonate with arm paralysis following difficult birth, arm in "waiter's tip" position	Erb-Duchenne palsy (superior trunk [C5-C6] brachial plexus injury	438
Anterior "drawer sign" $\oplus$	Anterior cruciate ligament injury	440
Bone pain, bone enlargement, arthritis	Paget disease of bone ( $\uparrow$ osteoblastic and osteoclastic activity)	450
Swollen, hard, painful finger joints in an elderly individual, pain worse with activity	Osteoarthritis (osteophytes on PIP [Bouchard nodes], DIP [Heberden nodes])	454
Sudden swollen/painful big toe joint, tophi	Gout/podagra (hyperuricemia)	455
Dry eyes, dry mouth, arthritis	Sjögren syndrome (autoimmune destruction of exocrine glands)	456
Urethritis, conjunctivitis, arthritis in a male	Reactive arthritis associated with HLA-B27	457
"Butterfly" facial rash and Raynaud phenomenon in a young female	Systemic lupus erythematosus	458
Painful fingers/toes changing color from white to blue to red with cold or stress	Raynaud phenomenon (vasospasm in extremities)	459
Anticentromere antibodies	Scleroderma (CREST)	460
Dark purple skin/mouth nodules in a patient with AIDS	Kaposi sarcoma, associated with HHV-8	465
Anti-desmoglein (anti-desmosome) antibodies	Pemphigus vulgaris (blistering)	467
Pruritic, purple, polygonal planar papules and plaques (6 P’s)	Lichen planus	468
$\uparrow$ AFP in amniotic fluid/maternal serum	Dating error, anencephaly, spina bifida (open neural tube defects)	475
Toe extension/fanning upon plantar scrape	Babinski sign (UMN lesion)	494
Hyperphagia, hypersexuality, hyperorality, hyperdocility	Klüver-Bucy syndrome (bilateral amygdala lesion)	495


Clinical presentation	DIAGNOSII/DISEASE	PAGE
Lucid interval after traumatic brain injury	Epidural hematoma (middle meningeal artery rupture)	497
"Worst headache of my life"	Subarachnoid hemorrhage	497
Resting tremor, rigidity, akinesia, postural instability, shuffling gait	Parkinson disease (loss of dopaminergic neurons in substantia nigra pars compacta)	504
Chorea, dementia, caudate degeneration	Huntington disease (autosomal dominant CAG repeat expansion)	504
Nystagmus, intention tremor, scanning speech, bilateral internuclear ophthalmoplegia	Multiple sclerosis	507
Rapidly progressive limb weakness that ascends following GI/upper respiratory infection	Guillain-Barré syndrome (acute inflammatory demyelinating polyradiculopathy subtype)	508
Café-au-lait spots, Lisch nodules (iris hamartoma), cutaneous neurofibromas, pheochromocytomas, optic gliomas	Neurofibromatosis type I	509
Vascular birthmark (port-wine stain) of the face	Nevus flammeus (benign, but associated with SturgeWeber syndrome)	509
Renal cell carcinoma (bilateral), hemangioblastomas, angiomatosis, pheochromocytoma	von Hippel-Lindau disease (dominant tumor suppressor gene mutation)	509
Bilateral acoustic schwannomas	Neurofibromatosis type 2	509
Hyperreflexia, hypertonia, Babinski sign present	UMN damage	513
Hyporeflexia, hypotonia, atrophy, fasciculations	LMN damage	513
Unilateral facial drooping involving forehead	LMN facial nerve (CN VII) palsy; UMN lesions spare the forehead	516
Episodic vertigo, tinnitus, hearing loss	Meniere disease	518
Ptosis, miosis, anhidrosis	Horner syndrome (sympathetic chain lesion)	524
Conjugate horizontal gaze palsy, horizontal diplopia	Internuclear ophthalmoplegia (damage to MLF; may be unilateral or bilateral)	527
Polyuria, renal tubular acidosis type II, growth failure, electrolyte imbalances, hypophosphatemic rickets	Fanconi syndrome (multiple combined dysfunction of the proximal convoluted tubule)	570
Bluish line on gingiva	Burton line (lead poisoning)	576
Periorbital and/or peripheral edema, proteinuria ( $>3.5 \mathrm{~g}$ / day), hypoalbuminemia, hypercholesterolemia	Nephrotic syndrome	580
Hereditary nephritis, sensorineural hearing loss, cataracts	Alport syndrome (mutation in collagen IV)	581
Streak ovaries, congenital heart disease, horseshoe kidney, cystic hygroma at birth, short stature, webbed neck, lymphedema	Turner syndrome (45,XO)	620
Red, itchy, swollen rash of nipple/areola	Paget disease of the breast (sign of underlying neoplasm)	632
Fibrous plaques in soft tissue of penis with abnormal curvature	Peyronie disease (connective tissue disorder)	633
Hypoxemia, polycythemia, hypercapnia	Chronic bronchitis (hyperplasia of mucous cells, "blue bloater")	656


CLINICALPRESENTATION	DIAGNOSIS/DISEASE	PAGE
Pink complexion, dyspnea, hyperventilation	Emphysema ("pink puffer," centriacinar [smoking] or   panacinar [ $\alpha_{1}$-antitrypsin deficiency $\left.]\right)$	656
Bilateral hilar adenopathy, uveitis	Sarcoidosis (noncaseating granulomas)	658

## - CLASSIC LABS/FINDINGS

LAB/DIAGN OSTIC FINDING	DIAGN OSIS/DIS EASE	PAGE
$\downarrow$ AFP in amniotic fluid/maternal serum	Down syndrome or other chromosomal abnormalities	63
Large granules in phagocytes, immunodeficiency	Chédiak-Higashi disease (congenital failure of phagolysosome formation)	117
Recurrent infections, eczema, thrombocytopenia	Wiskott-Aldrich syndrome	117
Branching gram $\oplus$ rods with sulfur granules	Actinomyces israelii	129
Optochin sensitivity	Sensitive: S pneumoniae; resistant: viridans streptococci (S mutans, $S$ sanguis)	135
Novobiocin response	Sensitive: S epidermidis; resistant: S saprophyticus	135
Bacitracin response	Sensitive: $S$ pyogenes (group A); resistant: $S$ agalactiae (group B)	135
Streptococcus bovis bacteremia	Colon cancer	137
Hilar lymphadenopathy, peripheral granulomatous lesion in middle or lower lung lobes (can calcify)	Ghon complex (1TB: Mycobacterium bacilli)	140
Bacteria-covered vaginal epithelial cells	"Clue cells" (Gardnerella vaginalis)	148
Ring-enhancing brain lesion on CT/MRI in AIDS	Toxoplasma gondii, CNS lymphoma	156
Cardiomegaly with apical atrophy	Chagas disease (Trypanosoma cruzi)	158
Heterophile antibodies	Infectious mononucleosis (EBV)	165
Intranuclear eosinophilic droplet-like bodies	Cowdry type A bodies (HSV or VZV)	166
Eosinophilic globule in liver	Councilman body (viral hepatitis, yellow fever), represents hepatocyte undergoing apoptosis	168
"Steeple" sign on frontal CXR	Croup (parainfluenza virus)	170
Eosinophilic inclusion bodies in cytoplasm of hippocampal and cerebellar neurons	Negri bodies of rabies	171
Atypical lymphocytes	EBV	177
Enlarged cells with intranuclear inclusion bodies	"Owl eye" appearance of CMV	177
"Thumb sign" on lateral neck x-ray	Epiglottitis (Haemophilus influenzae)	186
"Delta wave" on ECG, short PR interval, supraventricular tachycardia	Wolff-Parkinson-White syndrome (Bundle of Kent bypasses AV node)	289
"Boot-shaped" heart on x-ray	Tetralogy of Fallot (due to RVH)	294
Rib notching (inferior surface, on x-ray)	Coarctation of the aorta	295
Heart nodules (granulomatous)	Aschoff bodies (rheumatic fever)	306
Electrical alternans (alternating amplitude on ECG)	Pericardial tamponade	307
Hypertension, hypokalemia, metabolic alkalosis	$1^{\circ}$ hyperaldosteronism (Conn syndrome)	332


LAB/DIAGNOSTICFFDING	DIAGNOSISDIISEASE	PAGE
Enlarged thyroid cells with ground-glass nuclei with   central clearing	"Orphan Annie" eyes nuclei (papillary carcinoma of the   thyroid)	338
Antineutrophil cytoplasmic antibodies (ANCAs)	Microscopic polyangiitis and eosinophilic granulomatosis   with polyangitis (MPO-ANCA/p-ANCA);   granulomatosis with polyangiitis (Wegener; PR3-	340
ANCA/c-ANCA); primary sclerosing cholangitis (MPO-   ANCA/p-ANCA)		
Mucin-filled cell with peripheral nucleus	"Signet ring" (gastric carcinoma)	


LAB/DIAGN OSTIC FINDING	DIAGNOSIS/DIS EASE	PAGE
Monoclonal antibody spike	- Multiple myeloma (usually IgG or IgA)   - Monoclonal gammopathy of undetermined significance (MGUS consequence of aging)   - Waldenström ( M protein $=\mathrm{IgM}$ ) macroglobulinemia   - Primary amyloidosis	419
Stacks of RBCs	Rouleaux formation (high ESR, multiple myeloma)	419
Azurophilic peroxidase $\oplus$ granular inclusions in granulocytes and myeloblasts	Auer rods (AML, especially the promyelocytic [M3] type)	420
WBCs that look "smudged"	CLL (almost always B cell)	420
"Tennis racket"-shaped cytoplasmic organelles (EM) in Langerhans cells	Birbeck granules (Langerhans cell histiocytosis)	422
"Brown" tumor of bone	Hyperparathyroidism or osteitis fibrosa cystica (deposited hemosiderin from hemorrhage gives brown color)	451
Raised periosteum (creating a "Codman triangle")	Aggressive bone lesion (eg, osteosarcoma, Ewing sarcoma, osteomyelitis)	452
"Soap bubble" in femur or tibia on x-ray	Giant cell tumor of bone (generally benign)	452
"Onion skin" periosteal reaction	Ewing sarcoma (malignant small blue cell tumor)	453
Anti-IgG antibodies	Rheumatoid arthritis (systemic inflammation, joint pannus, boutonniere and swan neck deformities)	454
Rhomboid crystals, $\oplus$ birefringent	Pseudogout (calcium pyrophosphate dihydrate crystals)	455
Needle-shaped, $\Theta$ birefringent crystals	Gout (monosodium urate crystals)	455
$\uparrow$ uric acid levels	Gout, Lesch-Nyhan syndrome, tumor lysis syndrome, loop and thiazide diuretics	455
"Bamboo spine" on x-ray	Ankylosing spondylitis (chronic inflammatory arthritis: HLA-B27)	457
Antinuclear antibodies (ANAs: anti-Smith and antidsDNA)	SLE (type III hypersensitivity)	458
Anti-topoisomerase antibodies	Diffuse systemic scleroderma	460
Keratin pearls on a skin biopsy	Squamous cell carcinoma	469
Antihistone antibodies	Drug-induced SLE (eg, hydralazine, isoniazid, phenytoin, procainamide)	472
Bloody or yellow tap on lumbar puncture	Subarachnoid hemorrhage	497
Yellowish CSF	Xanthochromia (eg, due to subarachnoid hemorrhage)	497
Eosinophilic cytoplasmic inclusion in neuron	Lewy body (Parkinson disease and Lewy body dementia)	504
Extracellular amyloid deposition in gray matter of brain	Senile plaques (Alzheimer disease)	504
Depigmentation of neurons in substantia nigra	Parkinson disease (basal ganglia disorder: rigidity, resting tremor, bradykinesia)	504
Protein aggregates in neurons from hyperphosphorylation of tau protein	Neurofibrillary tangles (Alzheimer disease) and Pick bodies (Pick disease)	504
Silver-staining spherical aggregation of tau proteins in neurons	Pick bodies (Pick disease: progressive dementia, changes in personality)	504
Pseudopalisading tumor cells on brain biopsy	Glioblastoma multiforme	510


LAB/DIAGN OSTIC FINDING	DIAGN OSIS/DISEASE	PAGE
Circular grouping of dark tumor cells surrounding pale neurofibrils	Homer-Wright rosettes (neuroblastoma, medulloblastoma)	512
"Waxy" casts with very low urine flow	Chronic end-stage renal disease	578
RBC casts in urine	Glomerulonephritis	578
"Tram-track" appearance of capillary loops of glomerular basement membranes on light microscopy	Membranoproliferative glomerulonephritis	578
Nodular hyaline deposits in glomeruli	Kimmelstiel-Wilson nodules (diabetic nephropathy)	578
Podocyte fusion or "effacement" on electron microscopy	Minimal change disease (child with nephrotic syndrome)	580
"Spikes" on basement membrane, "dome-like" subepithelial deposits	Membranous nephropathy (nephrotic syndrome)	580
Anti-glomerular basement membrane antibodies	Goodpasture syndrome (glomerulonephritis and hemoptysis)	581
Cellular crescents in Bowman capsule	Rapidly progressive crescentic glomerulonephritis	581
"Wire loop" glomerular capillary appearance on light microscopy	Diffuse proliferative glomerulonephritis (usually seen with lupus)	581
Linear appearance of $\operatorname{IgG}$ deposition on glomerular and alveolar basement membranes	Goodpasture syndrome	581
"Lumpy bumpy" appearance of glomeruli on immunofluorescence	Poststreptococcal glomerulonephritis (due to deposition of $\operatorname{IgG}, \operatorname{IgM}$, and C3)	581
Necrotizing vasculitis (lungs) and necrotizing glomerulonephritis	Granulomatosis with polyangiitis (Wegener; PR3-ANCA/ c-ANCA) and Goodpasture syndrome (anti-basement membrane antibodies)	581
Thyroid-like appearance of kidney	Chronic pyelonephritis (usually due to recurrent infections)	585
WBC casts in urine	Acute pyelonephritis	585
Renal epithelial casts in urine	Intrinsic renal failure (eg, ischemia or toxic injury)	586
hCG elevated	Choriocarcinoma, hydatidiform mole (occurs with and without embryo, and multiple pregnancy)	622
Dysplastic squamous cervical cells with "raisinoid" nuclei and hyperchromasia	Koilocytes (HPV: predisposes to cervical cancer)	627
Psammoma bodies	Meningiomas, papillary thyroid carcinoma, mesothelioma, papillary serous carcinoma of the endometrium and ovary	629
Disarrayed granulosa cells arranged around collections of eosinophilic fluid	Call-Exner bodies (granulosa cell tumor of the ovary)	629
"Chocolate cyst" of ovary	Endometriosis (frequently involves both ovaries)	630
Mammary gland ("blue domed") cyst	Fibrocystic change of the breast	631
Glomerulus-like structure surrounding vessel in germ cells	Schiller-Duval bodies (yolk sac tumor)	634
Rectangular, crystal-like, cytoplasmic inclusions in Leydig cells	Reinke crystals (Leydig cell tumor)	634
Thrombi made of white/red layers	Lines of Zahn (arterial thrombus, layers of platelets/ RBCs)	654


| LAB/DIAGN OSTICFINDING | DIAGNOSIS/DISEASE | PAGE |
| :--- | :--- | :--- | :--- |
| Hexagonal, double-pointed, needle-like crystals in <br> bronchial secretions | Bronchial asthma (Charcot-Leyden crystals: eosinophilic <br> granules) | 656 |
| Desquamated epithelium casts in sputum | Curschmann spirals (bronchial asthma; can result in <br> whorled mucous plugs) | 656 |
| "Honeycomb lung" on x-ray or CT | Interstitial pulmonary fibrosis | 657 |
| Colonies of mucoid Pseudomonas in lungs | Cystic fibrosis (autosomal recessive mutation in CFTR <br> gene $\rightarrow$ fat-soluble vitamin deficiency and mucous plugs) | 657 |
| Iron-containing nodules in alveolar septum | Ferruginous bodies (asbestosis: $\uparrow$ chance of lung cancer) | 659 |
| Bronchogenic apical lung tumor on imaging | Pancoast tumor (can compress cervical sympathetic chain <br> and cause Horner syndrome) | 666 |

- CLASSIC/RELEVANT TREATMENTS

CONDITION	COMMON TREATMENT(S)	PAGE
Ethylene glycol/methanol intoxication	Fomepizole (alcohol dehydrogenase inhibitor)	72
Neisseria meningitidis	Penicillin/ceftriaxone, rifampin (prophylaxis)	128
Clostridium botulinum	Antitoxin	132
Clostridium tetani	Antitoxin	132
Staphylococcus aureus	MSSA: nafcillin, oxacillin, dicloxacillin (antistaphylococcal penicillins); MRSA: vancomycin, daptomycin, linezolid, ceftaroline	133
Streptococcus pyogenes	Penicillin prophylaxis	135
Streptococcus pneumoniae	Penicillin/cephalosporin (systemic infection, pneumonia), vancomycin (meningitis)	136
Streptococcus bovis	Penicillin prophylaxis; evaluation for colon cancer if linked to endocarditis	137
Enterococci	Vancomycin, aminopenicillins/cephalosporins	137
Haemophilus influenzae (B)	Amoxicillin $\pm$ clavulanate (mucosal infections), ceftriaxone (meningitis), rifampin (prophylaxis)	142
Legionella pneumophila	Macrolides (eg, azithromycin)	143
Pseudomonas aeruginosa	Piperacillin/tazobactam, aminoglycosides, carbapenems	143
Treponema pallidum	Penicillin G	147
Chlamydia trachomatis	Doxycycline (+ ceftriaxone for gonorrhea coinfection), oral erythromycin to treat chlamydial conjunctivitis in infants	149
Rickettsia rickettsii	Doxycycline, chloramphenicol	150
Candida albicans	Topical azoles (vaginitis); nystatin, fluconazole, caspofungin (oral/esophageal); fluconazole, caspofungin, amphotericin B (systemic)	153
Cryptococcus neoformans	Induction with amphotericin B and flucytosine, maintenance with fluconazole (in AIDS patients)	153


CONDITION	COMMON TREATMENT(S)	PAGE
Sporothrix schenckii	Itraconazole, oral potassium iodide	154
Pneumocystis jirovecii	TMP-SMX (prophylaxis and treatment in immunosuppressed patients, CD4 $<200 / \mathrm{mm}^{3}$ )	154
Toxoplasma gondii	Sulfadiazine + pyrimethamine	156
Malaria	Chloroquine, mefloquine, atovaquone/proguanil (for blood schizont), primaquine (for liver hypnozoite)	157
Trichomonas vaginalis	Metronidazole (patient and partner)	158
Influenza	Oseltamivir, zanamivir	169
CMV	Ganciclovir, foscarnet, cidofovir	177
Neisseria gonorrhoeae	Ceftriaxone (add doxycycline to cover likely concurrent C trachomatis)	184
Clostridium difficile	Oral metronidazole; if refractory, oral vancomycin	185
Mycobacterium tuberculosis	RIPE (rifampin, isoniazid, pyrazinamide, ethambutol)	196
UTI prophylaxis	TMP-SMX	198
Chronic hepatitis B or C	IFN- $\alpha$ (HBV and HCV); ribavirin, simeprevir, sofosbuvir (HCV)	202
Patent ductus arteriosus	Close with indomethacin; keep open with PGE analogs	285
Stable angina	Sublingual nitroglycerin	299
Hypercholesterolemia	Statin (first-line)	299
Buerger disease	Smoking cessation	308
Granulomatosis with polyangiitis (Wegener)	Cyclophosphamide, corticosteroids	308
Kawasaki disease	IVIG, high-dose aspirin	308
Temporal arteritis	High-dose steroids	308
Arrhythmia in damaged cardiac tissue	Class IB antiarrhythmic (lidocaine, mexiletine)	315
Pheochromocytoma	$\alpha$-antagonists (eg, phenoxybenzamine)	316
Prolactinoma	Cabergoline/bromocriptine (dopamine agonists)	324
Diabetes insipidus	Desmopressin (central); hydrochlorothiazide, indomethacin, amiloride (nephrogenic)	342
SIADH	Fluid restriction, IV hypertonic saline, conivaptan/ tolvaptan, demeclocycline	342
Diabetes mellitus type 1	Dietary intervention (low carbohydrate) + insulin replacement	345
Diabetes mellitus type 2	Dietary intervention, oral hypoglycemics, and insulin (if refractory)	345
Diabetic ketoacidosis	Fluids, insulin, $\mathrm{K}^{+}$	345
Carcinoid syndrome	Octreotide	365
Crohn disease	Corticosteroids, infliximab, azathioprine	376
Ulcerative colitis	5-ASA preparations (eg, mesalamine), 6-mercaptopurine, infliximab, colectomy	376
Hypertriglyceridemia	Fibrate	391


CONDITION	COMMON TREATMENT(S)	PAGE
Sickle cell disease	Hydroxyurea ( $\uparrow$ fetal hemoglobin)	410
Chronic myelogenous leukemia	Imatinib	420
Acute promyelocytic leukemia (M3)	All-trans retinoic acid	422
Drug of choice for anticoagulation during pregnancy	Heparin	423
Heparin reversal	Protamine sulfate	423
Immediate anticoagulation	Heparin	423
Long-term anticoagulation	Warfarin, dabigatran, rivaroxaban and apixaban	424
Warfarin reversal	Fresh frozen plasma (acute), vitamin K (non-acute)	424
Cyclophosphamide-induced hemorrhagic cystitis	Mesna	428
HER2/neu $\oplus$ breast cancer	Trastuzumab	431
Osteoporosis	Calcium/vitamin D supplementation (prophylaxis); bisphosphonates, PTH analogs, SERMs, calcitonin, denosumab (treatment)	449
Osteomalacia/rickets	Vitamin D supplementation	450
Chronic gout	Xanthine oxidase inhibitors (eg, allopurinol, febuxostat); pegloticase; probenecid	472
Acute gout attack	NSAIDs, colchicine, glucocorticoids	472
Neural tube defect prevention	Prenatal folic acid	475
Migraine	Abortive therapies (eg, sumatriptan, NSAIDs); prophylaxis (eg, propranolol, topiramate, CCB , amitriptyline)	502
Trigeminal neuralgia (tic douloureux)z	Carbamazepine	502
Multiple sclerosis	Disease-modifying therapies (eg, $\beta$-interferon, natalizumab); for acute flares, use IV steroids	507
Degeneration of dorsal column fibers	Tabes dorsalis ( $3^{\circ}$ syphilis), subacute combined degeneration (dorsal columns, lateral corticospinal, spinocerebellar tracts affected)	514
Tonic-clonic seizures	Levetiracetam, phenytoin, valproate, carbamazepine	528
Absence seizures	Ethosuximide	528
Malignant hyperthermia	Dantrolene	533
Anorexia	Nutrition, psychotherapy, mirtazapine	550
Bulimia nervosa	SSRIs	550
Alcoholism	Disulfiram, acamprosate, naltrexone, supportive care	555
ADHD	Methylphenidate, amphetamines, CBT, atomoxetine, guanfacine, clonidine	556
Alcohol withdrawal	Long-acting benzodiazepines	556
Bipolar disorder	Mood stabilizers (eg, lithium, valproic acid, carbamazepine), atypical antipsychotics	556
Depression	SSRIs (first-line)	556
Generalized anxiety disorder	SSRIs, SNRIs (first line); buspirone (second line)	556
Schizophrenia (positive symptoms)	Typical and atypical antipsychotics	556


CONDITION	COMMON TREATMENT(S)	
Schizophrenia (negative symptoms)	Atypical antipsychotics	
Hyperaldosteronism	Spironolactone	557
Benign prostatic hyperplasia	$\alpha_{1}$-antagonists, $5 \alpha$-reductase inhibitors, PDE-5 inhibitors	631
Infertility	Leuprolide, GnRH (pulsatile), clomiphene	591
Breast cancer in postmenopausal woman	Aromatase inhibitor (anastrozole)	637
ER $\oplus$ breast cancer	Tamoxifen	637
Prostate adenocarcinoma/uterine fibroids	Leuprolide, GnRH (continuous)	637
Medical abortion	Mifepristone	637
Prostate adenocarcinoma	Flutamide	638
Erectile dysfunction	Sildenafil, tadalafil, vardenafil	639
Pulmonary arterial hypertension (idiopathic)	Sildenafil, bosentan, epoprostenol	639

## KEY ASSOCIATIONS

DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS	PAGE
Mitochondrial inheritance	Disease occurs in both males and females, inherited through females only	59
Intellectual disability	Down syndrome, fragile X syndrome	62
Vitamin deficiency (USA)	Folate (pregnant women are at high risk; body stores only 3- to 4-month supply; prevents neural tube defects)	68
Lysosomal storage disease	Gaucher disease	88
Food poisoning (exotoxin mediated)	$S$ aureus, B cereus	133
Osteomyelitis	$S$ aureus (most common overall)	135
Bacterial meningitis (adults and elderly)	$S$ pneumoniae	136
Bacterial meningitis (newborns and kids)	Group B streptococcus/E coli/Listeria monocytogenes (newborns), $S$ pneumoniae/N meningitidis (kids/teens)	137
Bacteria associated with gastritis, peptic ulcer disease, and gastric malignancies (eg, adenocarcinoma, MALToma)	H pylori	146
Opportunistic infection in AIDS	Pneumocystis jirovecii pneumonia	154
Helminth infection (US)	Ascaris lumbricoides	159
Myocarditis	Coxsackie B	167
Infection $2^{\circ}$ to blood transfusion	Hepatitis C	173
Osteomyelitis in sickle cell disease	Salmonella	180
Osteomyelitis with IV drug use	Pseudomonas, Candida, S aureus	180
UTI	E coli, Staphylococcus saprophyticus (young women)	181
Sexually transmitted disease	C trachomatis (usually coinfected with N gonorrhoeae)	184
Nosocomial pneumonia	$S$ aureus, Pseudomonas, other enteric gram $\Theta$ rods	185
Pelvic inflammatory disease	C trachomatis, N gonorrhoeae	185


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS	PAGE
Infections in chronic granulomatous disease	S aureus, E coli, Aspergillus (catalase $\oplus$ )	186
Metastases to bone	Prostate, breast > lung, thyroid, kidney	226
Metastases to brain	Lung $>$ breast $>$ prostate $>$ melanoma $>$ GI	226
Metastases to liver	Colon >> stomach > pancreas	226
S3 heart sound	$\uparrow$ ventricular filling pressure (eg, mitral regurgitation, HF ), common in dilated ventricles	282
S4 heart sound	Stiff/hypertrophic ventricle (aortic stenosis, restrictive cardiomyopathy)	282
Constrictive pericarditis	TB (developing world); idiopathic, viral illness (developed world)	282
Holosystolic murmur	VSD, tricuspid regurgitation, mitral regurgitation	285
Ejection click	Aortic stenosis	285
Mitral valve stenosis	Rheumatic heart disease	285
Opening snap	Mitral stenosis	285
Heart murmur, congenital	Mitral valve prolapse	285
Chronic arrhythmia	Atrial fibrillation (associated with high risk of emboli)	290
Cyanosis (early; less common)	Tetralogy of Fallot, transposition of great vessels, truncus arteriosus, total anomalous pulmonary venous return	294
Late cyanotic shunt (uncorrected left to right becomes right to left)	Eisenmenger syndrome (caused by ASD, VSD, PDA; results in pulmonary hypertension/polycythemia)	295
Congenital cardiac anomaly	VSD	295
Hypertension, $2^{\circ}$	Renal artery stenosis, chronic kidney disease (eg, polycystic kidney disease, diabetic nephropathy), hyperaldosteronism	296
Aortic aneurysm, thoracic	Marfan syndrome (idiopathic cystic medial degeneration)	296
Aortic dissection	Hypertension	296
Aortic aneurysm, abdominal	Atherosclerosis, smoking is major risk factor	298
Aortic aneurysm, ascending or arch	$3^{\circ}$ syphilis (syphilitic aortitis), vasa vasorum destruction	298
Sites of atherosclerosis	```Abdominal aorta > coronary artery > popliteal artery > carotid artery```	298
Cardiac manifestation of lupus	Marantic/thrombotic endocarditis (nonbacterial)	305
Heart valve in bacterial endocarditis	Mitral > aortic (rheumatic fever), tricuspid (IV drug abuse)	305
Endocarditis presentation associated with bacterium	$S$ aureus (acute, IVDA, tricuspid valve), viridans stretococci (subacute, dental procedure), S bovis (colon cancer), culture negative (Coxiella, Bartonella, HACEK)	305
Temporal arteritis	Risk of ipsilateral blindness due to occlusion of ophthalmic artery; polymyalgia rheumatica	308
Recurrent inflammation/thrombosis of small/medium vessels in extremities	Buerger disease (strongly associated with tobacco)	308
Cardiac $1^{\circ}$ tumor (kids)	Rhabdomyoma, often seen in tuberous sclerosis	309
Cardiac tumor (adults)	Metastasis, myxoma ( $90 \%$ in left atrium; "ball valve")	309


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS	PAGE
Congenital adrenal hyperplasia, hypotension	21-hydroxylase deficiency	326
Cushing syndrome	- Iatrogenic (from corticosteroid therapy)   - Adrenocortical adenoma (secretes excess cortisol)   - ACTH-secreting pituitary adenoma (Cushing disease)   - Paraneoplastic (due to ACTH secretion by tumors)	331
Tumor of the adrenal medulla (kids)	Neuroblastoma (malignant)	333
Tumor of the adrenal medulla (adults)	Pheochromocytoma (usually benign)	334
Cretinism	Iodine deficit/congenital hypothyroidism	336
HLA-DR3	Diabetes mellitus type l, SLE, Graves disease, Hashimoto thyroiditis (also associated with HLA-DR5), Addison disease	337
Thyroid cancer	Papillary carcinoma (childhood irradiation)	338
Hypoparathyroidism	Accidental excision during thyroidectomy	339
$1^{\circ}$ hyperparathyroidism	Adenomas, hyperplasia, carcinoma	340
$2^{\circ}$ hyperparathyroidism	Hypocalcemia of chronic kidney disease	340
Hypopituitarism	Pituitary adenoma (usually benign tumor)	343
HLA-DR4	Diabetes mellitus type 1, rheumatoid arthritis, Addison disease	345
Refractory peptic ulcers and high gastrin levels	Zollinger-Ellison syndrome (gastrinoma of duodenum or pancreas), associated with MEN1	347
Esophageal cancer	Squamous cell carcinoma (worldwide); adenocarcinoma (US)	372
Acute gastric ulcer associated with CNS injury	Cushing ulcer ( $\uparrow$ intracranial pressure stimulates vagal gastric $\mathrm{H}^{+}$secretion)	373
Acute gastric ulcer associated with severe burns	Curling ulcer (greatly reduced plasma volume results in sloughing of gastric mucosa)	373
Bilateral ovarian metastases from gastric carcinoma	Krukenberg tumor (mucin-secreting signet ring cells)	373
Chronic atrophic gastritis (autoimmune)	Predisposition to gastric carcinoma (can also cause pernicious anemia)	373
Gastric cancer	Adenocarcinoma	373
Alternating areas of transmural inflammation and normal colon	Skip lesions (Crohn disease)	376
Diverticulum in pharynx	Zenker diverticulum (diagnosed by barium swallow)	378
Site of diverticula	Sigmoid colon	379
Hepatocellular carcinoma	Cirrhotic liver (associated with hepatitis B and C, alcoholism, and hemochromatosis)	383
Liver disease	Alcoholic cirrhosis	385
$1^{\circ}$ liver cancer	Hepatocellular carcinoma (chronic hepatitis, cirrhosis, hemochromatosis, $\alpha_{1}$-antitrypsin deficiency, Wilson disease)	386
Congenital conjugated hyperbilirubinemia (black liver)	Dubin-Johnson syndrome (inability of hepatocytes to secrete conjugated bilirubin into bile)	388


DIIEASE/FINDING	MOSt COMMON/IMPORTANT ASSOCIATIONS	PAGE
Hereditary harmless jaundice	Gilbert syndrome (benign congenital unconjugated hyperbilirubinemia)	388
Hemochromatosis	Multiple blood transfusions or hereditary HFE mutation (can result in heart failure, "bronze diabetes," and $\uparrow$ risk of hepatocellular carcinoma)	389
Pancreatitis (acute)	Gallstones, alcohol	391
Pancreatitis (chronic)	Alcohol (adults), cystic fibrosis (kids)	391
Autosplenectomy (fibrosis and shrinkage)	Sickle cell disease (hemoglobin S)	410
Microcytic anemia	Iron deficiency	413
Bleeding disorder with GpIb deficiency	Bernard-Soulier syndrome (defect in platelet adhesion to von Willebrand factor)	415
Hereditary bleeding disorder	von Willebrand disease	416
DIC	Severe sepsis, obstetric complications, cancer, burns, trauma, major surgery, acute pancreatitis, APL	416
Malignancy associated with noninfectious fever	Hodgkin lymphoma	417
Type of Hodgkin lymphoma	Nodular sclerosing (vs mixed cellularity, lymphocytic predominance, lymphocytic depletion)	417
t(14;18)	Follicular lymphomas (BCL-2 activation, anti-apoptotic oncogene)	418
$\mathrm{t}(8 ; 14)$	Burkitt lymphoma (c-myc fusion, transcription factor oncogene)	418
Type of non-Hodgkin lymphoma	Diffuse large B-cell lymphoma	418
$1^{\circ}$ bone tumor (adults)	Multiple myeloma	419
Age ranges for patient with ALL/CLL/AML/CML	ALL: child, CLL: adult > 60, AML: adult ~ 65, CML: adult 45-85	420
Malignancy (kids)	Leukemia, brain tumors	$\begin{gathered} 420, \\ 512 \end{gathered}$
Death in CML	Blast crisis	420
$\mathrm{t}(9 ; 22)$	Philadelphia chromosome, CML (BCR-ABL oncogene, tyrosine kinase activation), more rarely associated with ALL	422
Vertebral compression fracture	Osteoporosis (type I: postmenopausal woman; type II: elderly man or woman)	449
HLA-B27	Psoriatic arthritis, ankylosing spondylitis, IBD-associated arthritis, reactive arthritis (formerly Reiter syndrome)	457
Death in SLE	Lupus nephropathy	458
Tumor of infancy	Strawberry hemangioma (grows rapidly and regresses spontaneously by childhood)	465
Actinic (solar) keratosis	Precursor to squamous cell carcinoma	469
Cerebellar tonsillar herniation	Chiari I malformation	476
Atrophy of the mammillary bodies	Wernicke encephalopathy (thiamine deficiency causing ataxia, ophthalmoplegia, and confusion)	495


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS	PAGE
Viral encephalitis affecting temporal lobe	HSV-1	495
Hematoma-epidural	Rupture of middle meningeal artery (trauma; lentiform shaped)	497
Hematoma-subdural	Rupture of bridging veins (crescent shaped)	497
Dementia	Alzheimer disease, multiple infarcts (vascular dementia)	504
Demyelinating disease in young women	Multiple sclerosis	507
Brain tumor (adults)	Supratentorial: metastasis, astrocytoma (including glioblastoma multiforme), meningioma, schwannoma	510
Pituitary tumor	Prolactinoma, somatotropic adenoma	510
Brain tumor (kids)	Infratentorial: medulloblastoma (cerebellum) or supratentorial: craniopharyngioma	512
Mixed (UMN and LMN) motor neuron disease	Amyotrophic lateral sclerosis	514
$1{ }^{\circ}$ hyperaldosteronism	Adrenal hyperplasia or adenoma	575
Nephrotic syndrome (adults)	Membranous nephropathy	580
Nephrotic syndrome (kids)	Minimal change disease	580
Glomerulonephritis (adults)	Berger disease (IgA nephropathy)	581
Kidney stones	- Calcium = radiopaque   - Struvite (ammonium) = radiopaque (formed by urease $\oplus$ organisms such as Klebsiella, Proteus species, and S saprophyticus)   - Uric acid = radiolucent   - Cystine = faintly radiopaque	582
Obstruction of male urinary tract	BPH	583
Renal tumor	Renal cell carcinoma: associated with von Hippel-Lindau and cigarette smoking; paraneoplastic syndromes (EPO, renin, PTHrP, ACTH)	583
$1^{\circ}$ amenorrhea	Turner syndrome (45, XO or $45, \mathrm{XO} / 46, \mathrm{XX}$ mosaic)	620
Neuron migration failure	Kallmann syndrome (hypogonadotropic hypogonadism and anosmia)	621
Clear cell adenocarcinoma of the vagina	DES exposure in utero	626
Ovarian tumor (benign, bilateral)	Serous cystadenoma	628
Ovarian tumor (malignant)	Serous cystadenocarcinoma	628
Tumor in women	Leiomyoma (estrogen dependent, not precancerous)	630
Gynecologic malignancy	Endometrial carcinoma (most common in US); cervical carcinoma (most common worldwide)	630
Breast mass	Fibrocystic change, carcinoma (in postmenopausal women)	631
Breast tumor (benign, young woman)	Fibroadenoma	631
Breast cancer	Invasive ductal carcinoma	632
Testicular tumor	Seminoma (malignant, radiosensitive), $\uparrow$ placental ALP	634
Right heart failure due to a pulmonary cause	Cor pulmonale	650
Hypercoagulability, endothelial damage, blood stasis	Virchow triad ( $\uparrow$ risk of thrombosis)	653


DISEASE/FINDING	MOST COMMON/IMPORTANT ASSOCIATIONS	PAGE
Pulmonary hypertension	Idiopathic, heritable, left heart disease (eg, HF), lung   disease (eg, COPD), hypoxemic vasoconstriction (eg,   OSA), thromboembolic (eg, PE)	661
SIADH	Small cell carcinoma of the lung	665

## EQUATION REVIEW

TOPIC	Eouation	Page
Volume of distribution	$\mathrm{V}_{\mathrm{d}}=\frac{\text { amount of drug in the body }}{\text { plasma drug concentration }}$	229
Half-life	$\mathrm{t}_{1 / 2}=\frac{0.7 \times \mathrm{V}_{\mathrm{d}}}{\mathrm{CL}}$	229
Drug clearance	$\left.\mathrm{CL}=\frac{\text { rate of elimination of drug }}{\text { plasma drug concentration }}=\mathrm{V}_{\mathrm{d}} \times \mathrm{K}_{\mathrm{e}} \text { (elimination constant }\right)$	229
Loading dose	$\mathrm{LD}=\frac{\mathrm{C}_{\mathrm{p}} \times \mathrm{V}_{\mathrm{d}}}{\mathrm{~F}}$	229
Maintenance dose	$\mathrm{D}=\frac{\mathrm{C}_{\mathrm{p}} \times \mathrm{CL} \times \tau}{\mathrm{F}}$	229
Sensitivity	Sensitivity $=$ TP / (TP + FN)	253
Specificity	Specificity $=$ TN $/(\mathrm{TN}+\mathrm{FP})$	253
Positive predictive value	$\mathrm{PPV}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP})$	253
Negative predictive value	$\mathrm{NPV}=\mathrm{TN} /(\mathrm{FN}+\mathrm{TN})$	253
Odds ratio (for case-control studies)	$\mathrm{OR}=\frac{\mathrm{a} / \mathrm{c}}{\mathrm{b} / \mathrm{d}}=\frac{\mathrm{ad}}{\mathrm{bc}}$	254
Relative risk	$R \mathrm{R}=\frac{\mathrm{a} /(\mathrm{a}+\mathrm{b})}{\mathrm{c} /(\mathrm{c}+\mathrm{d})}$	254
Attributable risk	$A R=\frac{a}{a+b}-\frac{c}{c+d}$	254
Relative risk reduction	RRR $=1-\mathrm{RR}$	254
Absolute risk reduction	$A R R=\frac{c}{c+d}-\frac{a}{a+b}$	254
Number needed to treat	NNT $=1 /$ ARR	254
Number needed to harm	NNH $=1 /$ AR	254
Cardiac output	$\begin{aligned} & \mathrm{CO}=\frac{\text { rate of } \mathrm{O}_{2} \text { consumption }}{\text { arterial } \mathrm{O}_{2} \text { content }- \text { venous } \mathrm{O}_{2} \text { content }} \\ & \mathrm{CO}=\text { stroke volume } \times \text { heart rate } \end{aligned}$	278 278


TOPIC	EQuation	PAGE
Mean arterial pressure	MAP $=$ cardiac output $\times$ total peripheral resistance	278
	MAP $=2 / 3$ diastolic $+1 / 3$ systolic	278
Ejection fraction	$\mathrm{EF}=\frac{\mathrm{SV}}{\mathrm{EDV}}=\frac{\mathrm{EDV}-\mathrm{ESV}}{\mathrm{EDV}}$	279
Resistance	$\text { Resistance }=\frac{\text { driving pressure }(\Delta \mathrm{P})}{\text { flow }(\mathrm{Q})}=\frac{8 \eta(\text { viscosity }) \times \text { length }}{\pi \mathrm{r}^{4}}$	280
Stroke volume	SV = EDV - ESV	282
Capillary fluid exchange	$\mathrm{J}_{\mathrm{v}}=$ net fluid flow $\left.=\mathrm{K}_{\mathrm{f}}\left(\mathrm{P}_{\mathrm{c}}-\mathrm{P}_{\mathrm{i}}\right)-\varsigma\left(\pi_{\mathrm{c}}-\pi_{\mathrm{i}}\right)\right]$	293
Renal clearance	$\mathrm{C}_{\mathrm{x}}=\mathrm{U}_{\mathrm{x}} \mathrm{V} / \mathrm{P}_{\mathrm{x}}$	566
Glomerular filtration rate	$\begin{aligned} & \mathrm{GFR}=\mathrm{U}_{\text {inulin }} \times \mathrm{V} / \mathrm{P}_{\text {inulin }}=\mathrm{C}_{\text {inulin }} \\ & \mathrm{GFR}=\mathrm{K}_{\mathrm{f}}\left[\left(\mathrm{P}_{\mathrm{GC}}-\mathrm{P}_{\mathrm{BS}}\right)-\left(\pi_{\mathrm{GC}}-\pi_{\mathrm{BS}}\right)\right] \end{aligned}$	566
Effective renal plasma flow	$\mathrm{eRPF}=\mathrm{U}_{\mathrm{PAH}} \times \frac{\mathrm{V}}{\mathrm{P}_{\mathrm{PAH}}}=\mathrm{C}_{\mathrm{PAH}}$	566
Renal blood flow	$\mathrm{RBF}=\frac{\mathrm{RPF}}{1-\mathrm{Hct}}$	566
Filtration fraction	$\mathrm{FF}=\frac{\mathrm{GFR}}{\mathrm{RPF}}$	567
Henderson-Hasselbalch equation (for extracellular pH )	$\mathrm{pH}=6.1+\log \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{0.03 \mathrm{PCO}_{2}}$	576
Winters formula	$\mathrm{Pco}_{2}=1.5\left[\mathrm{HCO}_{3}{ }^{-}\right]+8 \pm 2$	576
Physiologic dead space	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{T}} \times \frac{\mathrm{PaCO}_{2}-\mathrm{PECO}_{2}}{\mathrm{PaCO}_{2}}$	646
Pulmonary vascular resistance	$\text { PVR }=\frac{P_{\text {pulm artery }}-P_{\text {Latrium }}}{\text { cardiac output }}$	650
Alveolar gas equation	$\mathrm{PAO}_{2}=\mathrm{PiO}_{2}-\frac{\mathrm{PaCO}_{2}}{\mathrm{R}}$	650

## SECTION IV

## Top-Rated Review Resources

"Some books are to be tasted, others to be swallowed, and some few to be chewed and digested."
-Sir Francis Bacon
"Always read something that will make you look good if you die in the middle of it."
-P.J. O'Rourke
"So many books, so little time."
-Frank Zappa
"If one cannot enjoy reading a book over and over again, there is no use in reading it at all."

- Oscar Wilde

How to Use the
Database 690

Duestion Banks 692
> Question Books 692
Web and Mobile Apps 692
Comprehensive 693
Anatomy, Embryology,
and Neuroscience 693
> Behavioral Science 694
Biochemistry ..... 694
> Cell Biology and
Histology ..... 694
> Microbiology and Immunology ..... 695
> Pathology ..... 695
> Pharmacology ..... 696
Physiology ..... 696

## HOW TO USE THE DATABASE

This section is a database of top-rated basic science review books, sample examination books, software, websites, and apps that have been marketed to medical students studying for the USMLE Step l. For each recommended resource, we list (where applicable) the Title, the First Author (or editor), the Current Publisher, the Copyright Year, the Number of Pages, the Approximate List Price, the Format of the resource, and the Number of Test Questions. Finally, each recommended resource receives a Rating. Within each section, resources are arranged first by Rating and then alphabetically by the first author within each Rating group.

For a complete list of resources, including summaries that describe their overall style and utility, go to www.firstaidteam.com/bonus.

A letter rating scale with six different grades reflects the detailed student evaluations for Rated Resources. Each rated resource receives a rating as follows:

A+ Excellent for boards review.
$\begin{array}{ll}\text { A } & \text { Very good for boards review; choose among the group. }\end{array}$
B+
B Good, but use only after exhausting better resources.
B- Fair, but there are many better resources in the discipline; or lowyield subject material.

The Rating is meant to reflect the overall usefulness of the resource in helping medical students prepare for the USMLE Step 1. This is based on a number of factors, including:

- The cost
- The readability of the text or usability of the app
- The appropriateness and accuracy of the material
- The quality and number of sample questions
- The quality of written answers to sample questions
- The quality and appropriateness of the illustrations (eg, graphs, diagrams, photographs)
- The length of the text (longer is not necessarily better)
- The quality and number of other resources available in the same discipline
- The importance of the discipline for the USMLE Step 1

Please note that ratings do not reflect the quality of the resources for purposes other than reviewing for the USMLE Step 1. Many books with lower ratings are well written and informative but are not ideal for boards
preparation. We have not listed or commented on general textbooks available in the basic sciences.

Evaluations are based on the cumulative results of formal and informal surveys of thousands of medical students at many medical schools across the country. The ratings represent a consensus opinion, but there may have been a broad range of opinion or limited student feedback on any particular resource.

Please note that the data listed are subject to change in that:

- Publishers' prices change frequently.
- Bookstores often charge an additional markup.
- New editions come out frequently, and the quality of updating varies.
- The same book may be reissued through another publisher.

We actively encourage medical students and faculty to submit their opinions and ratings of these basic science review materials so that we may update our database. (See p. xvii, How to Contribute.) In addition, we ask that publishers and authors submit for evaluation review copies of basic science review books, including new editions and books not included in our database. We also solicit reviews of new books or suggestions for alternate modes of study that may be useful in preparing for the examination, such as flash cards, computer software, commercial review courses, apps, and websites.

## Disclaimer/Conflict of Interest Statement

No material in this book, including the ratings, reflects the opinion or influence of the publisher. All errors and omissions will gladly be corrected if brought to the attention of the authors through our blog at www.firstaidteam.com. Please note that USMLE-Rx and the entire First Aid for the USMLE series are publications by the senior authors of this book; the following ratings are based solely on recommendations from the student authors of this book as well as data from the student survey and feedback forms.

## TOP-RATED REVIEW RESOURCES

## Question Banks

		AUTHOR	PUBLISHER	TYPE
$\mathbf{A}^{+}$	UWorld Qbank	UWorld	Www.uworld.com	Test/2400 q
$\mathbf{A}$	NBME Practice Exams	National Board   of Medical   Examiners	https://nsas.nbme.org/home	Test/200 q
$\mathbf{A}^{-}$	USMLE-Rx Qmax	USMLE-Rx	www.usmle-rx.com	
$\mathbf{B}^{+}$	Kaplan Qbank	Kaplan	www.kaptest.com	Test/2300 q

Question Books

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{B}^{+}$	First Aid Q\&A for the USMLE Step 1	Le	McGraw-Hill, 2012, 784 pages	Test/1000 q	$\$ 46.00$
B	Kaplan USMLE Step 1 Qbook	Kaplan	Kaplan, 2015, 456 pages	Test/850 q	$\$ 49.99$

## Web and Mobile Apps

		AUTHOR	PUBLISHER	TYPE	PRICE
A	SketchyMedical		www.SketchyMedical.com	Review	\$169-\$249
$\mathrm{A}^{-}$	Anki		www.ankisrs.net	Flash cards	Free/\$24.99
$\mathrm{A}^{-}$	Boards and Beyond		https://www.boardsbeyond.com	Review	\$89-\$149
$\mathrm{A}^{-}$	Cram Fighter		www.cramfighter.com	Study plan	\$29-\$99
$\mathrm{A}^{-}$	First Aid Step 1 Express		www.usmle-rx.com	Review/Test	\$99-\$299
$\mathrm{A}^{-}$	First Aid Step 1 Flash Facts		https://www.usmle-rx.com	Flash cards	\$49-\$149
$\mathrm{A}^{-}$	Physeo		www.physeo.com	Review	\$87-\$110
$\mathrm{A}^{-}$	WebPath: The Internet Pathology Laboratory		http://library.med.utah.edu/WebPath/ webpath.html	Review/   Test/1300 q	Free
$\mathrm{B}^{+}$	Dr. Najeeb Lectures		www.drnajeeblectures.com	Review	\$49-\$199
$\mathrm{B}^{+}$	Firecracker	Firecracker Inc.	www.firecracker.me	Review/ Test/1500 q	\$100-\$400
$\mathrm{B}^{+}$	Medical School Pathology		www.medicalschoolpathology.com	Review	Free
$\mathrm{B}^{+}$	Osmosis		www.osmosis.org	Test	\$31-\$599
B ${ }^{+}$	The Whole Brain Atlas	Johnson	www.med.harvard.edu/aanlib/	Review	Free
$\mathrm{B}^{+}$	USMLE Step 1 Mastery		usmle.usmlemastery.com	Test/1400 q	\$49
B	Blue Histology		www.lab.anhb.uwa.edu.au/mb140	Review/Test	Free
B	Digital Anatomist Project: Interactive Atlases	University of Washington	www9.biostr.washington.edu/da.html	Review	Free
B	Memorang	Memorang Inc.	www.memorangapp.com	Flash cards	Free/\$99
B	The Pathology Guy	Friedlander	www.pathguy.com	Review	Free
B	Picmonic		www.picmonic.com	Review	\$24-\$480
B	Radiopaedia.org		www.radiopaedia.org	Cases/Test	Free

## Comprehensive

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{A}^{-}$	First Aid for the Basic Sciences: General Principles	Le	McGraw-Hill, 2011, 576 pages	Review	\$75.00
$\mathbf{A}^{-}$	First Aid for the Basic Sciences: Organ Systems	Le	McGraw-Hill, 2011, 880 pages	Review	\$99.00
$\mathrm{A}^{-}$	First Aid Cases for the USMLE Step 1	Le	McGraw-Hill, 2012, 448 pages	Cases	\$50.00
$\mathrm{A}^{-}$	Crush Step 1: The Ultimate USMLE Step 1 Review	O'Connell	Elsevier, 2013, 680 pages	Review	\$41.95
$\mathrm{B}^{+}$	USMLE Step 1 Secrets in Color	Brown	Elsevier, 2016, 800 pages	Review	\$42.99
$\mathrm{B}^{+}$	Step-Up to USMLE Step 12015	Jenkins	Lippincott Williams \& Wilkins, 2014, 528 pages	Review	\$54.99
$\mathrm{B}^{+}$	medEssentials for the USMLE Step 1	Manley	Kaplan, 2012, 588 pages	Review	\$54.99
$\mathrm{B}^{+}$	Cracking the USMLE Step 1	Princeton Review	Princeton Review, 2013, 832 pages	Review	\$44.99
$\mathrm{B}^{+}$	USMLE Images for the Boards: A Comprehensive Image-Based Review	Tully	Elsevier, 2012, 296 pages	Review	\$42.95
B	Déjà Review: USMLE Step 1	Naheedy	McGraw-Hill, 2010, 416 pages	Review	\$25.00
$\mathrm{B}^{-}$	USMLE Step 1 Made Ridiculously Simple	Carl	MedMaster, 2015, 416 pages	$\begin{aligned} & \text { Review/Test } \\ & 100 \mathrm{q} \end{aligned}$	\$29.95

Anatomy, Embryology, and Neuroscience

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{A}^{-}$	Clinical Anatomy Made Ridiculously Simple	Goldberg	MedMaster, 2012, 175 pages	Review	\$29.95
$\mathrm{B}^{+}$	BRS Embryology	Dudek	Lippincott Williams \& Wilkins, 2014, 336 pages	Review/ Test/220 q	\$52.99
$\mathrm{B}^{+}$	High-Yield Embryology	Dudek	Lippincott Williams \& Wilkins, 2013, 176 pages	Review	\$39.99
$\mathrm{B}^{+}$	High-Yield Gross Anatomy	Dudek	Lippincott Williams \& Wilkins, 2014, 320 pages	Review	\$39.99
$\mathrm{B}^{+}$	High-Yield Neuroanatomy	Fix	Lippincott Williams \& Wilkins, 2015, 208 pages	Review/ Test/50 q	\$37.99
$\mathrm{B}^{+}$	Anatomy-An Essential Textbook	Gilroy	Thieme, 2013, 504 pages	Text/   Test/400 q	\$44.99
$\mathrm{B}^{+}$	Atlas of Anatomy	Gilroy	Thieme, 2016, 760 pages	Text	\$82.99
$\mathrm{B}^{+}$	Clinical Neuroanatomy Made Ridiculously Simple	Goldberg	$\begin{aligned} & \text { MedMaster, 2014, } 90 \text { pages + CD- } \\ & \text { ROM } \end{aligned}$	Review/Test/   Few q	\$25.95
$\mathrm{B}^{+}$	Crash Course: Anatomy	Stenhouse	Elsevier, 2015, 288 pages	Review	\$44.99
B	Anatomy Flash Cards: Anatomy on the Go	Gilroy	Thieme, 2013, 565 flash cards	Flash cards	\$59.99
B	PreTest Neuroscience	Siegel	McGraw-Hill, 2013, 412 pages	Test/500 q	\$39.00

Anatomy, Embryology, and Neuroscience (continued)

		AUTHOR	PUBLSHER	TYPE	PRICE
$\mathbf{B}^{-}$	Netter's Anatomy Flash Cards	Hansen	Saunders, 2014, 674 flash cards	Flash cards	$\$ 39.95$
B $^{-}$	Case Files: Anatomy	Toy	McGraw-Hill, 2014, 416 pages	Cases	$\$ 35.00$
B $^{-}$	Case Files: Neuroscience	Toy	McGraw-Hill, 2014, 432 pages	Cases	$\$ 35.00$

## Behavioral Science

|  |  | AUTHOR | PUBLISHER | TYPE | PRICE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A $^{-}$ | BRS Behavioral Science | Fadem | Lippincott Williams \& Wilkins, 2016, <br> 384 pages | Review/ <br> Test/700 q | \$51.99 |

## Biochemistry

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathrm{B}^{+}$	Lippincott's Illustrated Reviews: Biochemistry	Ferrier	Lippincott Williams \& Wilkins, 2013, 560 pages	Review/   Test/500 q	\$75.99
$\mathrm{B}^{+}$	Medical Biochemistry-An Illustrated Review	Panini	Thieme, 2013, 441 pages	Review/ Test/400 q	\$39.99
$\mathrm{B}^{+}$	Rapid Review: Biochemistry	Pelley	Elsevier, 2010, 208 pages	Review/   Test/350 q	\$42.95
$\mathrm{B}^{+}$	PreTest Biochemistry and Genetics	Wilson	McGraw-Hill, 2013, 592 pages	Test/500 q	\$38.00
B	Lange Flash Cards Biochemistry and Genetics	Baron	McGraw-Hill, 2013, 184 flash cards	Flash cards	\$40.00
B	Clinical Biochemistry Made Ridiculously Simple	Goldberg	MedMaster, 2010, 95 pages + foldout	Review	\$24.95
B	BRS Biochemistry, Molecular Biology, and Genetics	Lieberman	Lippincott Williams \& Wilkins, 2013, 432 pages	Review/Test	\$52.99
B	Case Files: Biochemistry	Toy	McGraw-Hill, 2014, 480 pages	Cases	\$35.00

Cell Biology and Histology

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{B}^{+}$	BRS Cell Biology and Histology	Gartner	Lippincott Williams \& Wilkins, 2014,   432 pages	Review/   Test/320 q	\$51.99

## Cell Biology and Histology (continued)

		AUTHOR	PUBLISHER	TYPE	PRICE
B	Elsevier's Integrated Review: Genetics	Adkison	Elsevier, 2011, 272 pages	Review	$\$ 42.95$
B $^{-}$	Wheater's Functional Histology	Young	Elsevier, 2013, 464 pages	Text	$\$ 82.95$

Microbiology and Immunology

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathbf{A}^{-}$	Clinical Microbiology Made Ridiculously Simple	Gladwin	MedMaster, 2016, 400 pages	Review	\$36.95
$\mathbf{A}^{-}$	Medical Microbiology and Immunology Flash Cards	Rosenthal	Elsevier, 2016, 192 flash cards	Flash cards	\$39.99
$\mathrm{B}^{+}$	Basic Immunology	Abbas	Elsevier, 2015, 352 pages	Review	\$69.99
$\mathrm{B}^{+}$	Elsevier's Integrated Review: Immunology and Microbiology	Actor	Elsevier, 2011, 192 pages	Review	\$42.95
$\mathrm{B}^{+}$	Déjà Review: Microbiology \& Immunology	Chen	McGraw-Hill, 2010, 432 pages	Review	\$25.00
$\mathrm{B}^{+}$	Lippincott's Illustrated Reviews: Immunology	Doan	Lippincott Williams \& Wilkins, 2012, 384 pages	Reference/   Test/Few q	\$69.99
$\mathrm{B}^{+}$	Microcards: Microbiology Flash Cards	Harpavat	Lippincott Williams \& Wilkins, 2015, 312 flash cards	Flash cards	\$51.99
$\mathrm{B}^{+}$	Case Files: Microbiology	Toy	McGraw-Hill, 2014, 416 pages	Cases	\$36.00
B	Case Studies in Immunology: Clinical Companion	Geha	Garland Science, 2016, 384 pages	Cases	\$61.95
B	Lippincott's Illustrated Reviews: Microbiology	Harvey	Lippincott Williams \& Wilkins, 2012, 448 pages	Review/Test/ Few q	\$67.99
B	Pretest: Microbiology	Kettering	McGraw-Hill, 2013, 480 pages	Test/500 q	\$38.00
B	Review of Medical Microbiology and Immunology	Levinson	McGraw-Hill, 2016, 832 pages	Review/   Test/654 q	\$64.00
$B^{-}$	Rapid Review: Microbiology and Immunology	Rosenthal	Elsevier, 2010, 240 pages	Review/ Test/400 q	\$42.95

## Pathology

		AUTHOR	PUBLISHER	TYPE	PRICE
A $^{+}$	Pathoma: Fundamentals of Pathology	Sattar	Pathoma, 2016, 218 pages	Review/   Lecture	$\$ 84.95-$   $\$ 119.95$
A $^{-}$	Lange Pathology Flash Cards	Baron	McGraw-Hill, 2013, 300 flash cards	Flash cards	$\$ 41.00$
A $^{-}$	Rapid Review: Pathology	Goljan	Elsevier, 2013, 784 pages	Review/	$\$ 55.95$
A $^{-}$	Crash Course: Pathology	Xiu	Elsevier, 2015, 356 pages	Review	$\$ 44.99$
$\mathbf{B}^{+}$	Déjà Review: Pathology	Davis	McGraw-Hill, 2010, 474 pages	Review	$\$ 25.00$
$\mathbf{B}^{+}$	Lippincott's Illustrated Q\&A Review of   Rubin's Pathology	Fenderson	Lippincott Williams \& Wilkins, 2010,	Test/1000 q	$\$ 61.99$

## Pathology (continued)

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathrm{B}^{+}$	Robbins and Cotran Review of Pathology	Klatt	Elsevier, 2014, 504 pages	Test/1100 q	\$54.99
$\mathrm{B}^{+}$	Pocket Companion to Robbins and Cotran Pathologic Basis of Disease	Mitchell	Elsevier, 2016, 896 pages	Review	\$39.99
$\mathrm{B}^{+}$	BRS Pathology	Schneider	Lippincott Williams \& Wilkins, 2013, 480 pages	Review/ Test/450 q	\$52.99
B	PreTest Pathology	Brown	McGraw-Hill, 2010, 612 pages	Test/500 q	\$39.00
B	High-Yield Histopathology	Dudek	Lippincott Williams \& Wilkins, 2016, 350 pages	Review	\$35.99
B	Pathophysiology of Disease: Introduction to Clinical Medicine	McPhee	McGraw-Hill, 2014, 784 pages	Text	\$80.00
B	Haematology at a Glance	Mehta	Blackwell Science, 2014, 136 pages	Review	\$48.95

## Pharmacology

		AUTHOR	PUBLISHER	TYPE	PRICE
$\mathrm{A}^{-}$	Lippincott's Illustrated Reviews: Pharmacology	Harvey	Lippincott Williams \& Wilkins, 2014, 680 pages	Review/ Test/380 q	\$72.99
$\mathrm{B}^{+}$	Lange Pharmacology Flash Cards	Baron	McGraw-Hill, 2013, 230 flash cards	Flash cards	\$41.00
$\mathrm{B}^{+}$	Crash Course: Pharmacology	Battista	Elsevier, 2015, 236 pages	Review	\$44.99
$\mathrm{B}^{+}$	Pharmacology Flash Cards	Brenner	Elsevier, 2012, 200 flash cards	Flash cards	\$39.95
$\mathrm{B}^{+}$	Master the Boards USMLE Step 1 Pharmacology Flashcards	Fischer	Kaplan, 2015, 200 flash cards	Flash cards	\$54.99
$\mathrm{B}^{+}$	Elsevier's Integrated Pharmacology	Kester	Elsevier, 2011, 264 pages	Review	\$42.95
$\mathrm{B}^{+}$	Rapid Review: Pharmacology	Pazdernik	Elsevier, 2010, 360 pages	Review/   Test/450 q	\$42.95
$\mathrm{B}^{+}$	BRS Pharmacology	Rosenfeld	Lippincott Williams \& Wilkins, 2013, 384 pages	Review/   Test/200 q	\$52.99
$\mathrm{B}^{+}$	Case Files: Pharmacology	Toy	McGraw-Hill, 2013, 464 pages	Cases	\$35.00
$\mathrm{B}^{+}$	Katzung \& Trevor's Pharmacology: Examination and Board Review	Trevor	McGraw-Hill, 2015, 592 pages	Review/   Test/1000 q	\$54.00
B	PreTest Pharmacology	Shlafer	McGraw-Hill, 2013, 624 pages	Test/500 q	\$38.00

Physiology

		AUTHOR	PUBLISHER	TYPE	PRICE
A	BRS Physiology	Costanzo	Lippincott Williams \& Wilkins, 2014,   328 pages	Review/   Test/350 q	$\$ 53.99$
A $^{-}$	Physiology	Costanzo	Saunders, 2013, 520 pages	Text	$\$ 62.95$
A $^{-}$	Acid-Base, Fluids, and Electrolytes Made   Ridiculously Simple	Preston	MedMaster, 2011, 156 pages	Review	$\$ 22.95$
A $^{-}$	Color Atlas of Physiology	Silbernagl	Thieme, 2015, 472 pages	Review	$\$ 49.99$


| Physiology (continued) |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | AUTHOR | PUBLISHER | TYPE | PRICE |
| A $^{-}$ | Pulmonary Pathophysiology: The <br> Essentials | West | Lippincott Williams \& Wilkins, 2012, <br> 208 pages | Review/ <br> Test/50 q | $\$ 52.99$ |
| $\mathbf{B}^{+}$ | BRS Physiology Cases and Problems | Costanzo | Lippincott Williams \& Wilkins, 2012, <br> 368 pages | Cases | $\$ 53.99$ |
| B $^{+}$ | Déjà Review: Physiology | Gould | McGraw-Hill, 2010, 298 pages | Review | $\$ 25.00$ |
| B $^{+}$ | PreTest Physiology | Metting | McGraw-Hill, 2013, 528 pages | Test/500 q | $\$ 38.00$ |
| B | Rapid Review: Physiology | Brown | Elsevier, 2011, 288 pages | Test/350 q | $\$ 42.95$ |
| B | Vander's Renal Physiology | Eaton | McGraw-Hill, 2013, 224 pages | Text | $\$ 47.00$ |
| B | Endocrine Physiology | Molina | McGraw-Hill, 2013, 320 pages | Review | $\$ 50.00$ |
| B | Netter's Physiology Flash Cards | Mulroney | Saunders, 2015, 200+ flash cards | Flash cards | $\$ 39.99$ |

## Abbreviations and Symbols

ABBREVIATION	MEANING
1st MC**	1st metacarpal
A-a	alveolar-arterial [gradient]
AA	Alcoholics Anonymous, amyloid A
AAMC	Association of American Medical Colleges
Aao*	ascending aorta
Ab	antibody
AC	adenylyl cyclase
ACA	anterior cerebral artery
Acetyl-CoA	acetyl coenzyme A
ACD	anemia of chronic disease
ACE	angiotensin-converting enzyme
ACh	acetylcholine
AChE	acetylcholinesterase
ACL	anterior cruciate ligament
ACom	anterior communicating [artery]
ACTH	adrenocorticotropic hormone
AD*	Alzheimer disease
ADA	adenosine deaminase, Americans with Disabilities Act
ADH	antidiuretic hormone
ADHD	attention-deficit hyperactivity disorder
ADP	adenosine diphosphate
ADPKD	autosomal-dominant polycystic kidney disease
AFP	$\alpha$-fetoprotein
Ag	antigen, silver
AICA	anterior inferior cerebellar artery
AIDS	acquired immunodeficiency syndrome
AIHA	autoimmune hemolytic anemia
AKT	protein kinase B
AL	amyloid light [chain]
ALA	aminolevulinate
ALL	acute lymphoblastic (lymphocytic) leukemia
ALP	alkaline phosphatase
$\alpha_{1}, \alpha_{2}$	sympathetic receptors
ALS	amyotrophic lateral sclerosis
ALT	alanine transaminase
AMA	American Medical Association, antimitochondrial antibody
AML	acute myelogenous (myeloid) leukemia
AMP	adenosine monophosphate
ANA	antinuclear antibody
ANCA	antineutrophil cytoplasmic antibody
ANOVA	analysis of variance
ANP	atrial natriuretic peptide
ANS	autonomic nervous system


ABBREVIATION	MEANING
Ant*	anterior
anti-CCP	anti-cyclic citrullinated peptide
Ao*	aorta
AOA	American Osteopathic Association
AP	action potential, A \& P [ribosomal binding sites]
APAF-1	apoptotic protease activating factor 1
APC	antigen-presenting cell, activated protein C
Apo	apolipoprotein
APP	amyloid precursor protein
APRT	adenine phosphoribosyltransferase
APSAC	anistreplase
aPTT	activated partial thromboplastin time
APUD	amine precursor uptake decarboxylase
AR	attributable risk, autosomal recessive, aortic regurgitation
ara-C	arabinofuranosyl cytidine (cytarabine)
ARB	angiotensin receptor blocker
ARDS	acute respiratory distress syndrome
Arg	arginine
ARPKD	autosomal-recessive polycystic kidney disease
AS	aortic stenosis
ASA	anterior spinal artery
ASD	atrial septal defect
ASO	anti-streptolysin O
AST	aspartate transaminase
AT	angiotensin, antithrombin
ATCase	aspartate transcarbamoylase
ATN	acute tubular necrosis
ATP	adenosine triphosphate
ATPase	adenosine triphosphatase
ATTR	transthyretin-mediated amyloidosis
AUB	Abnormal uterine bleeding
AV	atrioventricular
AZT	azidothymidine
$\beta_{1}, \beta_{2}$	sympathetic receptors
BAL	British anti-Lewisite [dimercaprol]
BCG	bacille Calmette-Guérin
$\mathrm{BH}_{4}$	tetrahydrobiopterin
BIMS	Biometric Identity Management System
BM	basement membrane
BMR	basal metabolic rate
BOOP	bronchiolitis obliterans organizing pneumonia
BP	bisphosphate, blood pressure
BPG	bisphosphoglycerate
BPH	benign prostatic hyperplasia

*Image abbreviation only

AbBreviation	MEANING
BT	bleeding time
BUN	blood urea nitrogen
Ca*	capillary
$\mathrm{Ca}^{2+}$	calcium ion
CAD	coronary artery disease
CAF	common application form
CALLA	common acute lymphoblastic leukemia antigen
cAMP	cyclic adenosine monophosphate
CBG	corticosteroid-binding globulin
Cbl	cobalamin
Cbm**	cerebellum
CBSE	Comprehensive Basic Science Examination
CBSSA	Comprehensive Basic Science Self-Assessment
CBT	computer-based test, cognitive behavioral therapy
CC**	corpus callosum
CCA*	common carotid artery
CCK	cholecystokinin
CCS	computer-based case simulation
CD	cluster of differentiation
CDK	cyclin-dependent kinase
cDNA	complementary deoxyribonucleic acid
CEA	carcinoembryonic antigen
CETP	cholesteryl-ester transfer protein
CF	cystic fibrosis
CFTR	cystic fibrosis transmembrane conductance regulator
CFX	circumflex [artery]
CGD	chronic granulomatous disease
cGMP	cyclic guanosine monophosphate
CGN	cis-Golgi network
$\mathrm{C}_{\mathrm{H}} 1-\mathrm{C}_{\mathrm{H}}{ }^{3}$	constant regions, heavy chain [antibody]
Chat	choline acetyltransferase
CHD**	common hepatic duct
$\chi^{2}$	chi-squared
CI	confidence interval
CIN	candidate identification number, carcinoma in situ, cervical intraepithelial neoplasia
CIS	Communication and Interpersonal Skills
CK	clinical knowledge, creatine kinase
CK-MB	creatine kinase, MB fraction
$\mathrm{C}_{\mathrm{L}}$	constant region, light chain [antibody]
CL	clearance
$\mathrm{Cl}^{-}$	chloride ion
CLL	chronic lymphocytic leukemia
CMC	carpometacarpal (joint)
CML	chronic myelogenous (myeloid) leukemia
CMV	cytomegalovirus
CN	cranial nerve
$\mathrm{CN}^{-}$	cyanide ion
CNS	central nervous system
CNV	copy number variation
CO	carbon monoxide, cardiac output
$\mathrm{CO}_{2}$	carbon dioxide
CoA	coenzyme A
COLlAl	collagen, type I, alpha 1


Abbreviation	meaning
COL1A2	collagen, type I, alpha 2
COMT	catechol-O-methyltransferase
COOH	carboxyl group
COP	coat protein
COPD	chronic obstructive pulmonary disease
CoQ	coenzyme Q
COX	cyclooxygenase
$\mathrm{C}_{\mathrm{p}}$	plasma concentration
CPAP	continuous positive airway pressure
CPK	creatine phosphokinase
CPR	cardiopulmonary resuscitation
Cr	creatinine
CRC	colorectal cancer
CREST	calcinosis, Raynaud phenomenon, esophageal dysfunction, sclerosis, and telangiectasias [syndrome]
CRH	corticotropin-releasing hormone
CRP	C-reactive protein
CS	clinical skills
C-section	cesarean section
CSF	cerebrospinal fluid
CT	computed tomography
CTP	cytidine triphosphate
CVA	cerebrovascular accident
CVID	common variable immunodeficiency
CXR	chest x-ray
Cys	cysteine
DA	dopamine
DAF	decay-accelerating factor
DAG	diacylglycerol
dATP	deoxyadenosine triphosphate
DCIS	ductal carcinoma in situ
DCT	distal convoluted tubule
ddC	dideoxycytidine [zalcitabine]
ddI	didanosine
DES	diethylstilbestrol
DHAP	dihydroxyacetone phosphate
DHB	dihydrobiopterin
DHEA	dehydroepiandrosterone
DHF	dihydrofolic acid
DHS	Department of Homeland Security
DHT	dihydrotestosterone
DI	diabetes insipidus
DIC	disseminated intravascular coagulation
DIP	distal interphalangeal [joint]
DKA	diabetic ketoacidosis
Dlco	diffusing capacity for carbon monoxide
DM	diabetes mellitus
DNA	deoxyribonucleic acid
DNR	do not resuscitate
dNTP	deoxynucleotide triphosphate
DO	doctor of osteopathy
DPGN	diffuse proliferative glomerulonephritis
DPM	doctor of podiatric medicine
DPP-4	dipeptidyl peptidase-4
DPPC	dipalmitoylphosphatidylcholine

*Image abbreviation only

ABBREVIATION	MEANING
DS	double stranded
dsDNA	double-stranded deoxyribonucleic acid
dsRNA	double-stranded ribonucleic acid
d4T	didehydrodeoxythymidine [stavudine]
dTMP	deoxythymidine monophosphate
DTR	deep tendon reflex
DTs	delirium tremens
dUDP	deoxyuridine diphosphate
dUMP	deoxyuridine monophosphate
DVT	deep venous thrombosis
E*	euthromatin, esophagus
EBV	Epstein-Barr virus
EC	ejection click
ECA*	external carotid artery
ECF	extracellular fluid
ECFMG	Educational Commission for Foreign Medical Graduates
ECG	electrocardiogram
ECL	enterochromaffin-like [cell]
ECM	extracellular matrix
ECT	electroconvulsive therapy
$\mathrm{ED}_{50}$	median effective dose
EDRF	endothelium-derived relaxing factor
EDTA	ethylenediamine tetra-acetic acid
EDV	end-diastolic volume
EEG	electroencephalogram
EF	ejection fraction
EGF	epidermal growth factor
EHEC	enterohemorrhagic E coli
EIEC	enteroinvasive E coli
ELISA	enzyme-linked immunosorbent assay
EM	electron micrograph/microscopy
EMB	eosin-methylene blue
EPEC	eneteropathogenic E coli
Epi	epinephrine
EPO	erythropoietin
EPS	extrapyramidal system
ER	endoplasmic reticulum, estrogen receptor
ERAS	Electronic Residency Application Service
ERCP	endoscopic retrograde cholangiopancreatography
ERP	effective refractory period
eRPF	effective renal plasma flow
ERT	estrogen replacement therapy
ERV	expiratory reserve volume
ESR	erythrocyte sedimentation rate
ESRD	end-stage renal disease
ESV	end-systolic volume
ETEC	enterotoxigenic E coli
EtOH	ethyl alcohol
EV	esophageal vein
F	bioavailability
FA	fatty acid
Fab	fragment, antigen-binding
FAD	flavin adenine dinucleotide
$\mathrm{FAD}^{+}$	oxidized flavin adenine dinucleotide


ABBREVIATION	MEANING
$\mathrm{FADH}_{2}$	reduced flavin adenine dinucleotide
FAP	familial adenomatous polyposis
F1,6BP	fructose-1,6-bisphosphate
F2,6BP	fructose-2,6-bisphosphate
FBPase	fructose bisphosphatase
Fc	fragment, crystallizable
FcR	Fc receptor
5f-dUMP	5-fluorodeoxyuridine monophosphate
$\mathrm{Fe}^{2+}$	ferrous ion
$\mathrm{Fe}^{3+}$	ferric ion
Fem*	femur
FENa	excreted fraction of filtered sodium
$\mathrm{FEV}_{1}$	forced expiratory volume in 1 second
FF	filtration fraction
FFA	free fatty acid
FGF	fibroblast growth factor
FGFR	fibroblast growth factor receptor
FISH	fluorescence in situ hybridization
FKBP	FK506 binding protein
FLAIR	fluid-attenuated inversion recovery
f-met	formylmethionine
FMG	foreign medical graduate
FMN	flavin mononucleotide
FN	false negative
FNHTR	febrile nonhemolytic transfusion reaction
FP, FP*	false positive, foot process
F1P	fructose-l-phosphate
F6P	fructose-6-phosphate
FRC	functional residual capacity
FSH	follicle-stimulating hormone
FSMB	Federation of State Medical Boards
FTA-ABS	fluorescent treponemal antibody-absorbed
FTD*	frontotemporal dementia
5-FU	5-fluorouracil
FVC	forced vital capacity
GABA	$\gamma$-aminobutyric acid
GAG	glycosaminoglycan
Gal	galactose
GBM	glomerular basement membrane
GC	glomerular capillary
G-CSF	granulocyte colony-stimulating factor
GERD	gastroesophageal reflux disease
GFAP	glial fibrillary acid protein
GFR	glomerular filtration rate
GGT	$\gamma$-glutamyl transpeptidase
GH	growth hormone
GHB	$\gamma$-hydroxybutyrate
GHRH	growth hormone-releasing hormone
$\mathrm{G}_{\text {I }}$	G protein, I polypeptide
GI	gastrointestinal
GIP	gastric inhibitory peptide
GIST	gastrointestinal stromal tumor
GLUT	glucose transporter
GM	granulocyte macrophage

*Image abbreviation only

ABBREVIATION	MEANING
GM-CSF	granulocyte-macrophage colony stimulating factor
GMP	guanosine monophosphate
GnRH	gonadotropin-releasing hormone
GP	glycoprotein
G3P	glucose-3-phosphate
G6P	glucose-6-phosphate
G6PD	glucose-6-phosphate dehydrogenase
GPe	globus pallidus externa
GPi	globus pallidus interna
GPI	glycosyl phosphatidylinositol
GRP	gastrin-releasing peptide
$\mathrm{G}_{\text {S }}$	G protein, S polypeptide
GS	glycogen synthase
GSH	reduced glutathione
GSSG	oxidized glutathione
GTP	guanosine triphosphate
GTPase	guanosine triphosphatase
GU	genitourinary
$\mathrm{H}^{*}$	heterochromatin
$\mathrm{H}^{+}$	hydrogen ion
$\mathrm{H}_{1}, \mathrm{H}_{2}$	histamine receptors
$\mathrm{H}_{2} \mathrm{~S}$	hydrogen sulfide
HAART	highly active antiretroviral therapy
HAV	hepatitis A virus
HAVAb	hepatitis A antibody
Hb	hemoglobin
$\mathrm{Hb}^{+}$	oxidized hemoglobin
$\mathrm{Hb}^{-}$	ionized hemoglobin
$\mathrm{HBcAb} / \mathrm{HBcAg}$	hepatitis B core antibody/antigen
HBeAb/HBeAg	hepatitis B early antibody/antigen
HBsAb/HBsAg	hepatitis $B$ surface antibody/antigen
$\mathrm{HbCO}_{2}$	carbaminohemoglobin
HBV	hepatitis B virus
HCC	hepatocellular carcinoma
hCG	human chorionic gonadotropin
$\mathrm{HCO}_{3}^{-}$	bicarbonate
Het	hematocrit
HCTZ	hydrochlorothiazide
HCV	hepatitis C virus
HDL	high-density lipoprotein
HDN	hemolytic disease of the newborn
HDV	hepatitis D virus
H\&E	hematoxylin and eosin
HEV	hepatitis Evirus
HF	heart failure
Hfr	high-frequency recombination [cell]
HGPRT	hypoxanthine-guanine phosphoribosyltransferase
ННb	human hemoglobin
HHV	human herpesvirus
5-HIAA	5-hydroxyindoleacetic acid
HIE	hypoxic ischemic encephalopathy
His	histidine
HIT	heparin-induced thrombocytopenia
HIV	human immunodeficiency virus


ABBREVIATION	MEANING
HL	hepatic lipase
HLA	human leukocyte antigen
HMG-CoA	hydroxymethylglutaryl-coenzyme A
HMP	hexose monophosphate
HMWK	high-molecular-weight kininogen
HNPCC	hereditary nonpolyposis colorectal cancer
hnRNA	heterogeneous nuclear ribonucleic acid
$\mathrm{H}_{2} \mathrm{O}_{2}$	hydrogen peroxide
HOCM	hypertrophic obstructive cardiomyopathy
HPA	hypothalamic-pituitary-adrenal [axis]
HPL	human placental lactogen
HPO	hypothalamic-pituitary-ovarian [axis]
HPV	human papillomavirus
HR	heart rate
HRE	hormone receptor element
HSV	herpes simplex virus
5-HT	5-hydroxytryptamine (serotonin)
HTLV	human T-cell leukemia virus
HTN	hypertension
HTR	hemolytic transfusion reaction
HUS	hemolytic-uremic syndrome
HVA	homovanillic acid
HZV	herpes zoster virus
IBD	inflammatory bowel disease
IBS	irritable bowel syndrome
IC	inspiratory capacity, immune complex
$\mathrm{I}_{\mathrm{Ca}}$	calcium current [heart]
$\mathrm{I}_{\mathrm{f}}$	funny current [heart]
ICA	internal carotid artery
ICAM	intercellular adhesion molecule
ICD	implantable cardioverter defibrillator
ICE	Integrated Clinical Encounter
ICF	intracellular fluid
ICP	intracranial pressure
ID	identification
$\mathrm{ID}_{50}$	median infective dose
IDL	intermediate-density lipoprotein
I/E	inspiratory/expiratory [ratio]
IF	immunofluorescence, initiation factor
IFN	interferon
Ig	immunoglobulin
IGF	insulin-like growth factor
$\mathrm{I}_{\mathrm{K}}$	potassium current [heart]
IL	interleukin
IM	intramuscular
IMA	inferior mesenteric artery
IMED	International Medical Education Directory
IMG	international medical graduate
IMP	inosine monophosphate
IMV	inferior mesenteric vein
$\mathrm{I}_{\mathrm{Na}}$	sodium current [heart]
INH	isoniazid
INO	internuclear ophthalmoplegia
INR	International Normalized Ratio

*Image abbreviation only

ABBREVIATION	MEANING
IO	inferior oblique [muscle]
IOP	intraocular pressure
$\mathrm{IP}_{3}$	inositol triphosphate
IPV	inactivated polio vaccine
IR	current $\times$ resistance [Ohm's law], inferior rectus [muscle]
IRV	inspiratory reserve volume
ITP	idiopathic thrombocytopenic purpura
IUD	intrauterine device
IUGR	intrauterine growth restriction
IV	intravenous
IVC	inferior vena cava
IVDU	intravenous drug use
IVIG	intravenous immunoglobulin
JAK/STAT	Janus kinase/signal transducer and activator of transcription [pathway]
JGA	juxtaglomerular apparatus
JVD	jugular venous distention
JVP	jugular venous pulse
$\mathrm{K}^{+}$	potassium ion
KatG	catalase-peroxidase produced by M tuberculosis
$\mathrm{K}_{\mathrm{e}}$	elimination constant
$\mathrm{K}_{\mathrm{f}}$	filtration constant
KG	ketoglutarate
$\mathrm{K}_{\mathrm{m}}$	Michaelis-Menten constant
KOH	potassium hydroxide
L	left, liver
LA	left atrial, left atrium
LAD	left anterior descending coronary artery
LAF	left anterior fascicle
LAP	leukocyte alkaline phosphatase
Lat cond*	lateral condyle
Lb*	lamellar body
LCA	left coronary artery
LCAT	lecithin-cholesterol acyltransferase
LCC**	left common carotid artery
LCFA	long-chain fatty acid
LCL	lateral collateral ligament
LCME	Liaison Committee on Medical Education
LCMV	lymphocytic choriomeningitis virus
LCX	left circumflex coronary artery
LD	loading dose
$\mathrm{LD}_{50}$	median lethal dose
LDH	lactate dehydrogenase
LDL	low-density lipoprotein
LES	lower esophageal sphincter
LFA	leukocyte function-associated antigen
LFT	liver function test
LGN	lateral geniculate nucleus
LGV	left gastric vein
LH	luteinizing hormone
LLL*	left lower lobe (of lung)
LLQ	left lower quadrant
LM	light microscopy, left main coronary artery
LMN	lower motor neuron


ABBREVIATION	MEANING
LOS	lipooligosaccharide
LP	lumbar puncture
LPA*	left pulmonary artery
LPL	lipoprotein lipase
LPS	lipopolysaccharide
LR	lateral rectus [muscle]
LT	labile toxin leukotriene
LUL**	left upper lobe (of lung)
LV	left ventricle, left ventricular
Lys	lysine
$\mathrm{M}_{1}-\mathrm{M}_{5}$	muscarinic (parasympathetic) ACh receptors
MAC	membrane attack complex, minimal alveolar concentration
MALT	mucosa-associated lymphoid tissue
MAO	monoamine oxidase
MAOI	monoamine oxidase inhibitor
MAP	mean arterial pressure, mitogen-activated protein
MASP	mannose-binding lectin-associated serine protease
Max*	maxillary sinus
MBL	mannose-binding lectin
MC	midsystolic click
MCA	middle cerebral artery
MCAT	Medical College Admissions Test
MCHC	mean corpuscular hemoglobin concentration
MCL	medial collateral ligament
MCP	metacarpophalangeal [joint]
MCV	mean corpuscular volume
MD	maintenance dose
MDD	major depressive disorder
Med cond**	medial condyle
MELAS syndrome	mitochondrial encephalopathy, lactic acidosis, and strokelike episodes
MEN	multiple endocrine neoplasia
$\mathrm{Mg}^{2+}$	magnesium ion
MGN	medial geniculate nucleus
$\mathrm{MgSO}_{4}$	magnesium sulfate
MGUS	monoclonal gammopathy of undetermined significance
MHC	major histocompatibility complex
MI	myocardial infarction
MIF	müllerian inhibiting factor
MIRL	membrane inhibitor of reactive lysis
MLCK	myosin light-chain kinase
MLF	medial longitudinal fasciculus
MMC	migrating motor complex
MMR	measles, mumps, rubella [vaccine]
6-MP	6-mercaptopurine
MPGN	membranoproliferative glomerulonephritis
MPO	myeloperoxidase
MPO-ANCA/ p-ANCA	perinuclear antineutrophil cytoplasmic antibody
MR	medial rectus [muscle], mitral regurgitation
MRI	magnetic resonance imaging
miRNA	microribonucleic acid
mRNA	messenger ribonucleic acid
MRSA	methicillin-resistant $S$ aureus

*Image abbreviation only

ABBREVIATION	MEANING
MS	mitral stenosis, multiple sclerosis
MSH	melanocyte-stimulating hormone
MSM	men who have sex with men
mtDNA	mitochondrial DNA
mtRNA	mitochondrial RNA
mTOR	mammalian target of rapamycin
MTP	metatarsophalangeal [joint]
MTX	methotrexate
MUA/P	Medically Underserved Area and Population
$\mathrm{MVO}_{2}$	myocardial oxygen consumption
MVP	mitral valve prolapse
N*	nucleus
$\mathrm{Na}^{+}$	sodium ion
NAD	nicotinamide adenine dinucleotide
$\mathrm{NAD}^{+}$	oxidized nicotinamide adenine dinucleotide
NADH	reduced nicotinamide adenine dinucleotide
NADP ${ }^{+}$	oxidized nicotinamide adenine dinucleotide phosphate
NADPH	reduced nicotinamide adenine dinucleotide phosphate
NBME	National Board of Medical Examiners
NBOME	National Board of Osteopathic Medical Examiners
NBPME	National Board of Podiatric Medical Examiners
NE	norepinephrine
NF	neurofibromatosis
NFAT	nuclear factor of activated T-cell
$\mathrm{NH}_{3}$	ammonia
$\mathrm{NH}_{4}^{+}$	ammonium
NIDDM	non-insulin-dependent diabetes mellitus
NK	natural killer [cells]
$\mathrm{N}_{\mathrm{M}}$	muscarinic ACh receptor in neuromuscular junction
NMDA	N -methyl-d-aspartate
NMJ	neuromuscular junction
NMS	neuroleptic malignant syndrome
$\mathrm{N}_{\mathrm{N}}$	nicotinic ACh receptor in autonomic ganglia
NRMP	National Residency Matching Program
NNRTI	non-nucleoside reverse transcriptase inhibitor
NO	nitric oxide
$\mathrm{N}_{2} \mathrm{O}$	nitrous oxide
NPH	neutral protamine Hagedorn, normal pressure hydrocephalus
NPV	negative predictive value
NRI	norepinephrine receptor inhibitor
NRTI	nucleoside reverse transcriptase inhibitor
NSAID	nonsteroidal anti-inflammatory drug
NSE	neuron-specific enolase
NSTEMI	non-ST-segment elevation myocardial infarction
$\mathrm{Nu*}$	nucleolus
OAA	oxaloacetic acid
OCD	obsessive-compulsive disorder
OCP	oral contraceptive pill
OH	hydroxy
$\mathrm{OH}_{2}$	dihydroxy
$1,25-\mathrm{OH} \mathrm{D} 3$	calcitriol (active form of vitamin D)
$25-\mathrm{OH} \mathrm{D} 3$	storage form of vitamin D
$3^{\prime} \mathrm{OH}$	hydroxyl


ABBREVIATION	MEANING
OMT	osteopathic manipulative technique
OPV	oral polio vaccine
OR	odds ratio
OS	opening snap
OTC	ornithine transcarbamoylase
OVLT	organum vasculosum of the lamina terminalis
P-body	processing body (cytoplasmic)
P-450	cytochrome P-450 family of enzymes
PA	posteroanterior, pulmonary artery
PABA	para-aminobenzoic acid
$\mathrm{PaCO}_{2}$	arterial $\mathrm{PcO}_{2}$
$\mathrm{PaCO}_{2}$	alveolar $\mathrm{PCO}_{2}$
PAH	para-aminohippuric acid
PAN	polyarteritis nodosa
$\mathrm{PaO}_{2}$	partial pressure of oxygen in arterial blood
$\mathrm{PAO}_{2}$	partial pressure of oxygen in alveolar blood
PAP	Papanicolaou [smear], prostatic acid phosphatase
PAPPA	pregnancy-associated plasma protein A
PAS	periodic acid-Schiff
Pat*	patella
PBP	penicillin-binding protein
PC	plasma colloid osmotic pressure, platelet count, pyruvate carboxylase
PCA	posterior cerebral artery
PCC	prothrombin complex concentrate
PCL	posterior cruciate ligament
$\mathrm{PcO}_{2}$	partial pressure of carbon dioxide
PCom	posterior communicating [artery]
PCOS	polycystic ovarian syndrome
PCP	phencyclidine hydrochloride, Pneumocystis jirovecii pneumonia
PCR	polymerase chain reaction
PCT	proximal convoluted tubule
PCWP	pulmonary capillary wedge pressure
PD	posterior descending [artery]
PDA	patent ductus arteriosus, posterior descending artery
PDC	pyruvate dehydrogenase complex
PDE	phosphodiesterase
PDGF	platelet-derived growth factor
PDH	pyruvate dehydrogenase
PE	pulmonary embolism
PECAM	platelet-endothelial cell adhesion molecule
$\mathrm{Pecor}_{2}$	expired air $\mathrm{PcO}_{2}$
PEP	phosphoenolpyruvate
PF	platelet factor
PFK	phosphofructokinase
PFT	pulmonary function test
PG	phosphoglycerate
$\mathrm{P}_{\mathrm{i}}$	plasma interstitial osmotic pressure, inorganic phosphate
PICA	posterior inferior cerebellar artery
PID	pelvic inflammatory disease
$\mathrm{PiO}_{2}$	$\mathrm{Po}_{2}$ in inspired air
PIP	proximal interphalangeal [joint]
$\mathrm{PIP}_{2}$	phosphatidylinositol 4,5-bisphosphate

## *Image abbreviation only

AbBreviation	MEANING
$\mathrm{PIP}_{3}$	phosphatidylinositol 3,4,-bisphosphate
PKD	polycystic kidney disease
PKR	interferon- $\alpha$-induced protein kinase
PKU	phenylketonuria
PLP	pyridoxal phosphate
PLS	Personalized Learning System
PML	progressive multifocal leukoencephalopathy
PMN	polymorphonuclear [leukocyte]
$\mathrm{P}_{\text {net }}$	net filtration pressure
PNET	primitive neuroectodermal tumor
PNS	peripheral nervous system
$\mathrm{Po}_{2}$	partial pressure of oxygen
$\mathrm{PO}_{4}$	salt of phosphoric acid
$\mathrm{PO}_{4}{ }^{3-}$	phosphate
Pop*	popliteal artery
Pop a*	popliteal artery
Post*	posterior
PPAR	peroxisome proliferator-activated receptor
PPD	purified protein derivative
PPI	proton pump inhibitor
PPV	positive predictive value
$\begin{gathered} \text { PR3-ANCA/ } \\ \text { c-ANCA } \end{gathered}$	cytoplasmic antineutrophil cytoplasmic antibody
PrP	prion protein
PRPP	phosphoribosylpyrophosphate
PSA	prostate-specific antigen
PSS	progressive systemic sclerosis
PT	prothrombin time
PTH	parathyroid hormone
PTHrP	parathyroid hormone-related protein
PTSD	post-traumatic stress disorder
PTT	partial thromboplastin time
PV	plasma volume, venous pressure
$\mathrm{Pv}^{*}$	pulmonary vein
PVC	polyvinyl chloride
PVR	pulmonary vascular resistance
R	correlation coefficient, right, R variable [group]
$\mathrm{R}_{3}$	Registration, Ranking, \& Results [system]
RA	right atrium
RAAS	renin-angiotensin-aldosterone system
RANK-L	receptor activator of nuclear factor-к B ligand
RAS	reticular activating system
RBF	renal blood flow
RCA	right coronary artery
REM	rapid eye movement
RER	rough endoplasmic reticulum
Rh	rhesus antigen
RLL**	right lower lobe (of lungs)
RLQ	right lower quadrant
RML**	right middle lobe (of lung)
RNA	ribonucleic acid
RNP	ribonucleoprotein
ROS	reactive oxygen species
RPF	renal plasma flow


Abbreviation	MEANING
RPGN	rapidly progressive glomerulonephritis
RPR	rapid plasma reagin
RR	relative risk, respiratory rate
rRNA	ribosomal ribonucleic acid
RS	Reed-Sternberg [cells]
RSC**	right subclavian artery
RSV	respiratory syncytial virus
RTA	renal tubular acidosis
RUL**	right upper lobe (of lung)
RUQ	right upper quadrant
RV	residual volume, right ventricle, right ventricular
RVH	right ventricular hypertrophy
[S]	substrate concentration
SA	sinoatrial
SAA	serum amyloid-associated [protein]
SAM	S-adenosylmethionine
SARS	severe acute respiratory syndrome
SC	subcutaneous
SCC	squamous cell carcinoma
SCD	sudden cardiac death
SCID	severe combined immunodeficiency disease
SCJ	squamocolumnar junction
SCM	sternocleidomastoid muscle
SCN	suprachiasmatic nucleus
SD	standard deviation
SE	standard error of the mean
SEP	Spoken English Proficiency
SER	smooth endoplasmic reticulum
SERM	selective estrogen receptor modulator
SGLT	sodium-glucose transporter
SHBG	sex hormone-binding globulin
SIADH	syndrome of inappropriate [secretion of] antidiuretic hormone
SIDS	sudden infant death syndrome
SLE	systemic lupus erythematosus
SLL	small lymphocytic lymphoma
SLT	Shiga-like toxin
SMA	superior mesenteric artery
SMX	sulfamethoxazole
SNARE	soluble NSF attachment protein receptor
SNc	substantia nigra pars compacta
SNP	single nucleotide polymorphism
SNr	substantia nigra pars reticulata
SNRI	serotonin and norepinephrine receptor inhibitor
snRNP	small nuclear ribonucleoprotein
SO	superior oblique [muscle]
SOAP	Supplemental Offer and Acceptance Program
$\mathrm{SP}^{*}$ *	spleen
spp	species
SR	superior rectus [muscle]
SS	single stranded
ssDNA	single-stranded deoxyribonucleic acid
SSPE	subacute sclerosing panencephalitis
SSRI	selective serotonin reuptake inhibitor

*Image abbreviation only

ABBREVIATION	MEANING
ssRNA	single-stranded ribonucleic acid
St*	stomach
ST	Shiga toxin
StAR	steroidogenic acute regulatory protein
STEMI	ST-segment elevation myocardial infarction
STI	sexually transmitted infection
STN	subthalamic nucleus
SV	splenic vein, stroke volume
SVC	superior vena cava
SVT	supraventricular tachycardia
T*	trachea
$\mathrm{t}_{1 / 2}$	half-life
$\mathrm{T}_{3}$	triiodothyronine
$\mathrm{T}_{4}$	thyroxine
TAPVR	total anomalous pulmonary venous return
TB	tuberculosis
TBG	thyroxine-binding globulin
3TC	dideoxythiacytidine [lamivudine]
TCA	tricarboxylic acid [cycle], tricyclic antidepressant
Tc cell	cytotoxic T cell
TCR	T-cell receptor
TDF	tenofovir disoproxil fumarate
TdT	terminal deoxynucleotidyl transferase
TE	tracheoesophageal
TFT	thyroid function test
TG	triglyceride
TGA	trans-Golgi apparatus
TGF	transforming growth factor
TGN	trans-Golgi network
Th cell	helper T cell
THF	tetrahydrofolic acid
TI	therapeutic index
TIA	transient ischemic attack
Tib*	tibia
TIBC	total iron-binding capacity
TIPS	transjugular intrahepatic portosystemic shunt
TLC	total lung capacity
Tm	maximum rate of transport
TMP	trimethoprim
TN	true negative
TNF	tumor necrosis factor
TNM	tumor, node, metastases [staging]
TOP	topoisomerase
ToRCHeS	Toxoplasma gondii, rubella, CMV, HIV, HSV-2, syphilis
TP	true positive
tPA	tissue plasminogen activator
TPO	thyroid peroxidase, thrombopoietin
TPP	thiamine pyrophosphate
TPR	total peripheral resistance
TR	tricuspid regurgitation
TRAP	tartrate-resistant acid phosphatase


ABBREVIATION	MEANING
TRH	thyrotropin-releasing hormone
tRNA	transfer ribonucleic acid
TSH	thyroid-stimulating hormone
TSI	triple sugar iron
TSS	toxic shock syndrome
TSST	toxic shock syndrome toxin
TTP	thrombotic thrombocytopenic purpura
TTR	transthyretin
TV	tidal volume
Tx	translation [factor]
$\mathrm{TXA}_{2}$	thromboxane $\mathrm{A}_{2}$
UDP	uridine diphosphate
UMN	upper motor neuron
UMP	uridine monophosphate
UPD	uniparental disomy
URI	upper respiratory infection
USMLE	United States Medical Licensing Examination
UTI	urinary tract infection
UTP	uridine triphosphate
UV	ultraviolet
$\dot{V}_{1}, \dot{V}_{2}$	Vasopressin receptors
VC	vital capacity
$\mathrm{V}_{\mathrm{d}}$	volume of distribution
VD	physiologic dead space
V(D)J	heavy-chain hypervariable region [antibody]
VDRL	Venereal Disease Research Laboratory
VEGF	vascular endothelial growth factor
$\mathrm{V}_{\mathrm{H}}$	variable region, heavy chain [antibody]
VHL	von Hippel-Lindau [disease]
VIP	vasoactive intestinal peptide
VIPoma	vasoactive intestinal polypeptide-secreting tumor
VJ	light-chain hypervariable region [antibody]
VL	ventral lateral [nucleus]; variable region, light chain [antibody]
VLDL	very low density lipoprotein
VMA	vanillylmandelic acid
VMAT	vesicular monoamine transporter
$\mathrm{V}_{\text {max }}$	maximum velocity
VPL	ventral posterior nucleus, lateral
VPM	ventral posterior nucleus, medial
VPN	vancomycin, polymyxin, nystatin [media]
$\dot{V} / \underline{Q}$	ventilation/perfusion [ratio]
VRE	vancomycin-resistant enterococcus
VSD	ventricular septal defect
$\mathrm{V}_{\mathrm{T}}$	tidal volume
vWF	von Willebrand factor
VZV	varicella-zoster virus
VMAT	vesicular monoamine transporter
XR	X-linked recessive
XX/XY	normal complement of sex chromosomes for female/male
ZDV	zidovudine [formerly AZT]

*Image abbreviation only

## Image Acknowledgments

In this edition，in collaboration with MedIQ Learning，LLC，and a variety of other partners，we are pleased to include the following clinical images and diagrams for the benefit of integrative student learning．
國 Portions of this book identified with the symbol ${ }^{2}$ are copyright © USMLE－Rx．com（MedIQ Learning，LLC）．
则 Portions of this book identified with the symbol 四 are copyright © Dr．Richard Usatine and are provided under license through MedIQ Learning，LLC．
$\boldsymbol{*}$ Portions of this book identified with the symbol 鹵 are listed below by page number．
This symbol refers to material that is available in the public domain．The image may have been modified by cropping，labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．
This symbol refers to the Creative Commons Attribution license，full text at http：／／creativecommons．org／licenses／by／4．0／legalcode．The image may have been modified by cropping，labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．
This symbol＠๑๐ refers to the Creative Commons Attribution－Share Alike license，full text at：http：／／creativecommons．org／licenses／by－sa／4．0／ legalcode．

## Biochemistry

34 Chromatin structure．Electron micrograph showing heterochromatin，euchromatin，and nucleolus．This image is a derivative work，adapted from the following source，available under ©．Courtesy of Roller RA，Rickett JD，Stickle WB． The hypobranchial gland of the estuarine snail Stramonita haemastoma canaliculata（Gray）（Prosobranchia：Muricidae）： a light and electron microscopical study．Am Malac Bull． 1995；11（2）：177－190．Available at https：／／archive．org／details／ americanm101119931994amer．

49 Cilia structure：Image A．Courtesy of Louisa Howard and Michael Binder．The image may have been modified by cropping，labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．

49 Cilia structure：Image B．Cilia structure of basal body．This image is a derivative work，adapted from the following source， available under Riparbelli MG，Cabrera OA，Callaini G， et al．Unique properties of Drosophila spermatocyte primary cilia．Biol Open． 2013 Nov；15；2（11）：1137－1147．DOI：10．1242／ bio． 20135355.

49 Cilia structure：Image C．Dextrocardia．This image is a derivative work，adapted from the following source，available under ＠ــ：Oluwadare O，Ayoka AO，Akomolafe RO，et al．The role of electrocardiogram in the diagnosis of dextrocardia with mirror image atrial arrangement and ventricular position in a young adult Nigerian in Ile－Ife：a case report．J Med Case Rep． 2015；9：222．DOI：10．1186／s13256－015－0695－4．

51 Osteogenesis imperfecta：Image A．Skeletal deformities in lower body of child．This image is a derivative work，adapted from the following source，available under ©o：Vanakker OM， Hemelsoet D，De Paepe．Hereditary connective tissue diseases in young adult stroke：a comprehensive synthesis．Stroke Res Treat．2011；712903．DOI：10．4061／2011／712903．The image may have been modified by cropping，labeling，and／or captions． All rights to this adaptation by MedIQ Learning，LLC are reserved．

51 Osteogenesis imperfecta：Image B．Skeletal deformities in upper extremity of child．This image is a derivative work，adapted from the following source，available under Vanakker OM， Hemelsoet D，De Paepe．Hereditary connective tissue diseases in young adult stroke：a comprehensive synthesis．Stroke Res Treat．2011；712903．DOI：10．4061／2011／712903．The image may have been modified by cropping，labeling，and／or captions． All rights to this adaptation by MedIQ Learning，LLC are reserved．

51 Osteogenesis imperfects：Image C．Blue sclera．This image is a derivative work，adapted from the following source，available under Wheatley K et al．J Clin Med Res．2010；2（4）：198－ 200．DOI： $10.4021 /$ jocmr 369 w ．

51 Ehlers－Danlos syndrome：Images A and B．Hyperextensibility of skin and DIP joint hyperextensibility．This image is a derivative work，adapted from the following source，available under
®oـ：Whitaker JK et al．BMC Ophthalmol．2012；2：47．DOI： 10．1186／1471－2415－12－47．

55 Karyotyping．This image is a derivative work，adapted from the following source，available under 뜬：Paar C，Herber G， Voskova，et al．A case of acute myeloid leukemia（AML）with an unreported combination of chromosomal abnormalities：gain of isochromosome 5p，tetrasomy 8 and unbalanced translocation $\operatorname{der}(19) t(17 ; 19)(q 23 ; p 13)$ ．Mol Cytogenet．2013；6：40．DOI： 10．1186／1755－8166－6－40．

55 Fluorescence in situ hybridization．This image is a derivative work， adapted from the following source，available under ■oㄹ：Paar C，Herber G，Voskova，et al．A case of acute myeloid leukemia （AML）with an unreported combination of chromosomal abnormalities：gain of isochromosome 5 p，tetrasomy 8 and unbalanced translocation $\operatorname{der}(19) t(17 ; 19)(q 23 ; p 13)$ ．Mol Cytogenet．2013；6：40．DOI：10．1186／1755－8166－6－40．

57 Genetic terms．Café－au－lait spots．This image is a derivative work，adapted from the following source，available under ـo：Dumitrescu CE and Collins MT．Orphanet J Rare Dis． 2008；3：12．DOI：10．1186／1750－1172－3－12．

61 Muscular dystrophies. Fibrofatty replacement of muscle. 주 Courtesy of the US Department of Health and Human Services and Dr. Edwin P. Ewing, Jr. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

66 Vitamin A. Bitot sponts on conjunctiva. This image is a derivative work, adapted from the following source, available under ـــ: Baiyeroju A, Bowman R, Gilbert C, et al. Managing eye health in young children. Comm Eye Health. 2010;23(72):4-11. Available at https://www.ncbi.nlm.nih.gov/pme/articles/ PMC2873666/.

67 Vitamin $\mathrm{B}_{3}$. Pellagra.This image is a derivative work, adapted from the following source, available under © : van Dijk HA, Fred H. Images of memorable cases: case 2. Connexions Web site. Dec 4, 2008. Available at: http://cnx.org/contents/3d3dcb2e-8e98-496f-91c2-fe94e93428al@3@3/.

70 Vitamin D. X-ray of lower extremity in child with rickets. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Michael L. Richardson. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @ᄄ.

71 Malnutrition: Image A. Child with kwashiorkor. 주제 Courtesy of the US Department of Health and Human Services and Dr. Lyle Conrad.

71 Malnutrition: Image B. Child with marasmus. 젖ㅈ Courtesy of the US Department of Health and Human Services.

84 Alkaptonuria. Pigment granules on dorsum of hand. This image is a derivative work, adapted from the following source, available under - Vasudevan B, Sawhney MPS, Radhakrishnan S. Alkaptonuria associated with degenerative collagenous palmar plaques. Indian J Dermatol. 2009;54:299-301. DOI: 10.4103/0019-5154.55650.

85 Cystinuria. Hexagonal stones in urine. This image is a derivative work, adapted from the following source, available under $ـ$ Courtesy of Cayla Devine.

88 Lysosomal storage diseases: Image A. "Cherry-red" spot on macula in Tay-Sachs disease. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Jonathan Trobe.

88 Lysosomal storage diseases: Image B. Angiokeratomas. This image is a derivative work, adapted from the following source, available under Burlina AP, Sims KB, Politei JM, et al. Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: the report of an expert panel. BMC Neurol. 2011;11:61. DOI: 10.1186/1471-2377-11-61. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.
88 Lysosomal storage diseases: Image C. Gaucher cells in Gaucher disease. This image is a derivative work, adapted from the following source, available under ©o. Sokołowska B, Skomra D, Czartoryska B, et al. Gaucher disease diagnosed after bone marrow trephine biopsy - a report of two cases. Folia Histochem Cytobiol. 2011;49:352-356. DOI: 10.5603/FHC.2011.0048. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

88 Lysosomal storage diseases: Image D. Foam cells in NiemannPick disease. This image is a derivative work, adapted from the following source, available under Prieto-Potin I, RomanBlas JA, Martinez-Calatrava MJ, et al. Hypercholesterolemia boosts joint destruction in chronic arthritis. An experimental model aggravated by foam macrophage infiltration. Arthritis Res Ther. 2013;15:R81. DOI: 10.1186/ar4261.

## Immunology

98 Spleen. Red and white pulp. This image is a derivative work, adapted from the following source, available under Heinrichs S, Conover LF, Bueso-Ramos CE, et al. MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy. eLife. 2013;2:e00825. DOI: 10.7554/eLife. 00825. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

98 Thymus: Image A. Hassall corpuscles. This image is a derivative work, adapted from the following source, available under 뜬: Minato H, Kinoshita E, Nakada S, et al. Thymic lymphoid hyperplasia with multilocular thymic cysts diagnosed before the Sjögren syndrome diagnosis. Diagn Pathol. 2015;10:103. DOI: 10.1186/s13000-015-0332-y.

98 Thymus: Image B. "Sail sign" on x-ray of normal thymus in neonate. This image is a derivative work, adapted from the following source, available under Lo: Di Serafino M, Esposito F, Severino R, et al. Think thymus, think well: the chest x-ray thymic signs. J Pediatr Moth Care. 2016;1(2):108-109. DOI: 10.19104/japm.2016.108.

117 Immunodeficiencies: Image A. Spider angioma (telangiectasia). This image is a derivative work, adapted from the following source, available under ■o. Liapakis IE, Englander M, Sinani $R$, et al. Management of facial telangiectasias with hand cautery. World J Plast Surg. 2015 Jul;4(2):127-133.

117 Immunodeficiencies: Image B. Giant granules in granulocytes in Chédiak-Higashi syndrome. This image is a derivative work, adapted from the following source, available under Bharti S, Bhatia P, Bansal D, et al. The accelerated phase of ChediakHigashi syndrome: the importance of hematological evaluation. Turk J Haematol. 2013;30:85-87. DOI: 10.4274/tjh.2012.0027. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

## Microbiology

126 Stains: Image A. Trypanosoma lewisi on Giemsa stain. ©ㅉㅉ Courtesy of the US Department of Health and Human Services and Dr. Mae Melvin.

126 Stains: Image B. Tropheryma whipplei on periodic acid-Schiff stain. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Ed Uthman.

126 Stains: Image C. Mycobacterium tuberculosis on Ziehl-Neelsen stain. Courtesy of the US Department of Health and Human Services and Dr. George P. Kubica.
126 Stains: Image D. Cryptococcus neoformans on India ink stain. © (ex Courtesy of the US Department of Health and Human Services.

126 Stains: Image E. Coccidioides immitis on silver stain. © (ex Courtesy of the US Department of Health and Human Services and Dr. Edwin P. Ewing, Jr.

128 Encapsulated bacteria. Capsular swelling of Streptococcus pneumoniae using the Neufeld-Quellung test. 제 Courtesy of the US Department of Health and Human Services.

128 Catalase-positive organisms. Oxygen bubbles released during catalase reaction. This image is a derivative work, adapted from the following source, available under ©.. Courtesy of Stefano Nase. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @உ.

131 Bacterial spores. This image is a derivative work, adapted from the following source, available under ․ㅡ응 Jones SW, Paredes CJ, Tracy B. The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol. 2008;9:R114. DOI: 10.1186/gb-2008-9-7-rll4.
$135 \alpha$-hemolytic bacteria. $\alpha$-hemolysis. This image is a derivative work, adapted from the following source, available under @… Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 응.
$135 \beta$-hemolytic bacteria. $\beta$-hemolysis. This image is a derivative work, adapted from the following source, available under @. Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ․․

135 Staphylococcus aureus. 좆ㅉ Courtesy of the US Department of Health and Human Services and Dr. Richard Facklam.

136 Streptococcus pneumoniae. 전 Courtesy of the US Department of Health and Human Services and Dr. Mike Miller.

136 Streptococcus pyogenes (group A streptococci). Gram stain. This image is a derivative work, adapted from the following source, available under @. Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...

137 Bacillus anthracis. Ulcer with black eschar. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and James H. Steele.

138 Clostridia (with exotoxins): Image A. Gas gangrene due to Clostridium perfringens infection. This image is a derivative work, adapted from the following source, available under 뜬: Schröpfer E, Rauthe S, Meyer T. Diagnosis and misdiagnosis of necrotizing soft tissue infections: three case reports. Cases J. 2008;1:252. DOI: 10.1186/1757-1626-1-252.

138 Clostridia (with exotoxins): Image B. Pseudomembranous enterocolitis on colonoscopy. This image is a derivative work, adapted from the following source, available under @ㅇ.. Courtesy of Klinikum Dritter Orden für die Überlassung des Bildes zur Veröffentlichu. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

139 Corynebacterium diphtheriae. Pseudomembranous pharyngitis. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/
or captions. MedIQ Learning, LLC makes this image available under @뚀

139 Listeria monocytogenes. Actin rockets. This image is a derivative work, adapted from the following source, available under ■oㅁ Schuppler M, Loessner MJ. The opportunistic pathogen Listeria monocytogenes: pathogenicity and interaction with the mucosal immune system. Int J Inflamm. 2010;2010:704321. DOI: $10.4061 / 2010 / 704321$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

139 Nocardia vs Actinomyces: Image A. Nocardia on acid-fast stain. This image is a derivative work, adapted from the following source, available under © Venkataramana K. Human Nocardia infections: a review of pulmonary nocardiosis. Cereus. 2015;7(8):e304. DOI: 10.7759/cureus. 304.

139 Nocardia vs Actinomyces: Image B. Actinomyces israelii on Gram stain. Courtesy of the US Department of Health and Human Services.

140 Mycobacteria. Acid-fast stain. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and Dr. Edwin P. Ewing, Jr.

140 Tuberculosis. Langhans giant cell in caseating granuloma. Courtesy of J. Hayman.

141 Leprosy (Hansen disease): Image A. "Glove and stocking" distribution. This image is a derivative work, adapted from the following source, available under Courtesy of Bruno Jehle.

142 Neisseria: Image A. Intracellular $N$ gonorrhoeae. 젖 Courtesy of the US Department of Health and Human Services and Dr. Mike Miller.

142 Haemophilus influenzae: Image A. Epiglottitis. This image is a derivative work, adapted from the following source, available under Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

143 Legionella pneumophila. Lung findings of unilateral and lobar infiltrate. This image is a derivative work, adapted from the following source, available under Robbins NM, Kumar A, Blair BM. Legionella pneumophila infection presenting as headache, confusion and dysarthria in a human immunodeficiency virus-1 (HIV-1) positive patient: case report. BMC Infect Dis. 2012;12:225. DOI: 10.1186/1471-2334-12-225.

143 Pseudomonas aeruginosa: Image A. Blue-green pigment on centrimide agar. This image is a derivative work, adapted from the following source, available under @.. Courtesy of Hansen. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @ـ.

143 Pseudomonas aeruginosa: Image B. Ecthyma gangrenosum. This image is a derivative work, adapted from the following source, available under Uludokumaci S, Balkan II, Mete B, et al. Ecthyma gangrenosum-like lesions in a febrile neutropenic patient with simultaneous Pseudomonas sepsis and disseminated fusariosis. Turk J Haematol. 2013 Sep;30(3):321-324. DOI: 10.4274/Tjh.2012.0030.

145 Klebsiella. ©区 Courtesy of the US Department of Health and Human Services.

145 Campylobacter jejuni. © Courtesy of the US Department of Health and Human Services.

146 Vibrio cholerae. This image is a derivative work, adapted from the following source, available under _o. Phetsouvanh R, Nakatsu M, Arakawa E, et al. Fatal bacteremia due to immotile Vibrio cholerae serogroup O21 in Vientiane, Laos - a case report. Ann Clin Microbiol Antimicrob. 2008;7:10. DOI: 10.1186/1476-0711-7-10.

146 Helicobacter pylori. © Courtesy of the US Department of Health and Human Services, Dr. Patricia Fields, and Dr. Collette Fitzgerald.

146 Spirochetes. Appearance on dark field microscopy. 즌 Courtesy of the US Department of Health and Human Services.

146 Lyme disease: Image A. Ixodes tick. Courtesy of the US Department of Health and Human Services and Dr. Michael L. Levin.

146 Lyme disease: Image B. Erythema migrans. 줄쨰 Courtesy of the US Department of Health and Human Services and James Gathany.

147 Syphilis: Image A. Painless chancre in $1^{\circ}$ syphilis. Courtesy of the US Department of Health and Human Services and M. Rein.

147 Syphilis: Image B. Treponeme on dark-field microscopy. ©ㄸㅉ Courtesy of the US Department of Health and Human Services and Renelle Woodall.

147 Syphilis: Image D. Rash on palms. This image is a derivative work, adapted from the following source, available under
@- Drahansky M, Dolezel M, Urbanek J, et al. Influence of skin diseases on fingerprint recognition. J Biomed Biotechnol. 2012;626148. DOI: 10.1155/2012/626148.

147 Syphilis: Image E. Condyloma lata. Courtesy of the US Department of Health and Human Services and Susan Lindsley.

147 Syphilis: Image F. Gumma. This image is a derivative work, adapted from the following source, available under ـــ: Chakir K, Benchikhi H. Granulome centro-facial révélant une syphilis tertiaire. Pan Afr Med J. 2013;15:82. DOI: 10.11604/ pamj.2013.15.82.3011.

147 Syphilis: Image G. Congenital syphilis. Courtesy of the US Department of Health and Human Services and Dr. Norman Cole.

147 Syphilis: Image H. Hutchinson teeth. 주 Courtesy of the US Department of Health and Human Services and Susan Lindsley.

148 Gardnerella vaginalis. Courtesy of the US Department of Health and Human Services and M. Rein.

150 Rickettsial diseases and vector-borne illnesses: Image A. Rash of Rocky Mountain spotted fever. Courtesy of the US Department of Health and Human Services.

150 Rickettsial diseases and vector-borne illnesses: Image B. Ehrlichia morulae. This image is a derivative work, adapted from the following source, available under Dantas-Torres F. Canine vector-borne diseases in Brazil. Parasit Vectors. 2008;1:25. DOI: $10.1186 / 1756-3305-1-25$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

150 Rickettsial diseases and vector-borne illnesses: Image C. Anaplasma phagocytophilium in neutrophil. 조즞 Courtesy of the US Department of Health and Human Services and Dumler JS, Choi K, Garcia-Garcia JC, et al. Human granulocytic anaplasmosis. Emerg Infect Dis. 2005. DOI: 10.3201/ eidl112.050898.

150 Mycoplasma pneumoniae. This image is a derivative work, adapted from the following source, available under .e.: Rottem S, Kosower ND, Kornspan JD. Contamination of tissue cultures by Mycoplasma. In: Ceccherini-Nelli L, ed: Biomedical tissue culture. 2016. DOI: 10.5772/51518.

151 Systemic mycoses: Image A. Histoplasma. ㅈㅓㅉ Courtesy of the US Department of Health and Human Services and Dr. D.T. McClenan.

151 Systemic mycoses: Image B. Blastomyces dermatitidis undergoing broad-base budding. 조 Courtesy of the US Department of Health and Human Services and Dr. Libero Ajello.

151 Systemic mycoses: Image C. Coccidiomycosis with endospheres. © Services.

151 Systemic mycoses: Image D. "Captain's wheel" shape of Paracoccidioides. Courtesy of the US Department of Health and Human Services and Dr. Lucille K. Georg.

152 Cutaneous mycoses: Image G. Tinea versicolor. This image is a derivative work, adapted from the following source, available under @®o. Courtesy of Sarah (Rosenau) Korf. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...

153 Opportunistic fungal infections: Image A. Budding yeast of Candida albicans. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽ㅁㅁ.

153 Opportunistic fungal infections: Image B. Germ tubes of Candida albicans. This image is a derivative work, adapted from the following source, available under @๐.. Courtesy of Y. Tambe. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @용.

153 Opportunistic fungal infections: Image C. Oral thrush. 준째 Courtesy of the US Department of Health and Human Services and Dr. Sol Silverman, Jr.

153 Opportunistic fungal infections: Image E. Conidiophores of Aspergillus fumigatus. Courtesy of the US Department of Health and Human Services.

153 Opportunistic fungal infections: Image F. Aspergilloma in left lung. This image is a derivative work, adapted from the following source, available under ©ouilamas R, Souilamas JI, Alkhamees K, et al. Extra corporal membrane oxygenation in general thoracic surgery: a new single veno-venous cannulation. J Cardiothorac Surg. 2011;6:52. DOI: 10.1186/1749-8090-6-52.

153 Opportunistic fungal infections: Image G. Cryptococcus neoformans on India ink stain. Courtesy of the US Department of Health and Human Services and Dr. Leanor Haley.

153 Opportunistic fungal infections: Image H. Cryptococcus
 Department of Health and Human Services and Dr. Leanor Haley.

153 Opportunistic fungal infections: Image I. Mucor. ㅈㅓㅉ Courtesy of the US Department of Health and Human Services and Dr. Lucille K. Georg.

154 Pneumocystis jirovecii: Image A. Interstitial opacities in lung. This image is a derivative work, adapted from the following source, available under Co. Chuang C, Zhanhong X, Yinyin G, et al. Unsuspected Pneumocystis pneumonia in an HIV-seronegative patient with untreated lung cancer: circa case report. J Med Case Rep. 2007;1:15. DOI: 10.1186/1752-1947-1-115.

154 Pneumocystis jirovecii: Image B. This image is a derivative work, adapted from the following source, available under Allen CM, Al-Jahdali HH, Irion KL, et al. Imaging lung manifestations of HIV/AIDS. Ann Thorac Med. 2010 Oct-Dec;5(4):201-216. DOI: 10.4103/1817-1737.69106.

154 Pneumocystis jiroveci: Image C. Disc-shaped yeast. This image is a derivative work, adapted from the following source, available under Kirby S, Satoskar A, Brodsky S, et al. Histological spectrum of pulmonary manifestations in kidney transplant recipients on sirolimus inclusive immunosuppressive regimens. Diagn Pathol. 2012;7:25. DOI: 10.1186/1746-1596-7-25.

154 Sporothrix schenckii. Subcutaneous mycosis. This image is a derivative work, adapted from the following source, available under ©o: Govender NP, Maphanga TG, Zulu TG, et al. An outbreak of lymphocutaneous sporotrichosis among mineworkers in South Africa. PLoS Negl Trop Dis. 2015 Sep;9(9): e0004096. DOI: 10.1371/journal.pntd. 0004096.

155 Protozoa-Gl infections: Image A. Giardia lamblia trophozoite This image is a derivative work, adapted from the following source, available under ■.․․ Lipoldová M. Giardia and Vilém Dušan Lambl. PLoS Negl Trop Dis. 2014;8:e2686. DOI: 10.1371/journal.pntd. 0002686.

155 Protozoa-Gl infections: Image B. Giardia lamblia cyst. 준 Courtesy of the US Department of Health and Human Services.

155 Protozoa-Gl infections: Image C. Entamoeba histolytica trophozoites. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services.

155 Protozoa-Gl infections. Image D. Entamoeba histolytica cyst. ㅈㅓㅉ Courtesy of the US Department of Health and Human Services.
 Courtesy of the US Department of Health and Human Services.

156 Protozoa-CNS infections: Image A. Ring-enhancing lesions in $T$ gondii infection. This image is a derivative work, adapted from the following source, available under Agrawal A, Bhake A, Sangole VM, et al. Multiple-ring enhancing lesions in an immunocompetent adult. J Glob Infect Dis. 2010 Sep-Dec;2(3):313-324. DOI: 10.4103/0974-777X.68545.

156 Protozoa-CNS infections: Image B. Toxoplasma gondii tachyzoite. (3) Courtesy of the US Department of Health and Human Services and Dr. L.L. Moore, Jr.

156 Protozoa-CNS infections: Image C. Naegleria fowleri amoebas. © $\sec$ Courtesy of the US Department of Health and Human Services.

156 Protozoa-CNS infections: Image D. Trypanosoma brucei gambiense. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and Dr. Mae Melvin.

157 Protozoa-hematologic infections: Image A. Plasmodium trophozoite ring form. Courtesy of the US Department of Health and Human Services.

157 Protozoa—hematologic infections: Image B. Plasmodium schizont containing merozoites. © Health and Human Services and Steven Glenn.

157 Protozoa-hematologic infections: Image C. Babesia. 주 Courtesy of the US Department of Health and Human Services.

158 Protozoa-others: Image A. Trypanosoma cruzi. ㅅㅓㅉ Courtesy of the US Department of Health and Human Services and Dr. Mae Melvin.

158 Protozoa—others: Image B. Leishmania donovani. 줒 Courtesy of the US Department of Health and Human Services and Dr. Francis W. Chandler. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

158 Protozoa-others: Image C. Cutaneous leishmaniasis. This image is a derivative work, adapted from the following source, available under Lo. Sharara SL, Kanj SS. War and infectious diseases: challenges of the Syrian civil war. PLoS Pathog. 2014 Nov;10(11):e1004438. DOI: 10.1371/journal.ppat. 1004438

158 Protozoa-others: Image D. Trichomonas vaginalis. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services.

159 Nematodes (roundworms): Image A. Enterobius vermicularis eggs. ©⿶凵 Courtesy of the US Department of Health and Human Services, BG Partin, and Dr. Moore.

159 Nematodes (roundworms): Image B. Ascaris lumbricoides egg. ㅈㅓㅉ Courtesy of the US Department of Health and Human Services.

159 Nematodes (roundworms): Image C. Elephantiasis. ©® Courtesy of the US Department of Health and Human Services.

160 Cestodes (tapeworms): Image A. Taenia solium scolex. 주주 Courtesy of the US Department of Health and Human Services Robert J. Galindo. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ㄸ..

160 Cestodes (tapeworms): Image B. Neurocysticercosis. This image is a derivative work, adapted from the following source, available under Co. Coyle CM, Tanowitz HB. Diagnosis and treatment of neurocysticercosis. Interdiscip Perspect Infect Dis. 2009;2009:180742. DOI: 10.1155/2009/180742. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

160 Cestodes (tapeworms): Image C. Echinococcus granulosus. 졸 Courtesy of the US Department of Health and Human Services.

160 Cestodes (tapeworms): Image D. Hyatid cyst of Echinococcus granulosus. 조․ Courtesy of the US Department of Health and Human Services and Dr. I. Kagan.

160 Cestodes (tapeworms): Image E. Echinococcus granulosus cyst in liver. This image is a derivative work, adapted from the following source, available under ©-: Ma Z, Yang W, Yao Y, et al. The adventitia resection in treatment of liver hydatid cyst: a case report of a 15-year-old boy. Case Rep Surg. 2014;2014:123149. DOI: 10.1155/2014/123149.

160 Trematodes (flukes): Image A. Schistosoma mansoni egg with lateral spine. 존 Courtesy of the US Department of Health and Human Services.

160 Trematodes (flukes): Image B. Schistosoma mansoni egg with terminal spine. 준 Courtesy of the US Department of Health and Human Services.

161 Ectoparasites: Image A. Scabies. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and J. Pledger.

161 Ectoparasites: Image B. Nit of a louse. Courtesy of the US Department of Health and Human Services and Joe Miller.

165 Herpesviruses: Image A. Keratoconjunctivitis in HSV-1 infection. This image is a derivative work, adapted from the following source, available under ©o. Yang HK, Han YK, Wee WR, et al. Bilateral herpetic keratitis presenting with unilateral neurotrophic keratitis in pemphigus foliaceus: a case report. J Med Case Rep. 2011;5:328. DOI: 10.1186/1752-1947-5-328.

165 Herpesviruses: Image B. Herpes labialis. Courtesy of the US Department of Health and Human Services and Dr. Herrmann.

165 Herpesviruses: Image E. Shingles (varicella-zoster virus infection). This image is a derivative work, adapted from the following source, available under @o. Courtesy of Fisle. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @oo.

165 Herpesviruses: Image F. Hepatosplenomegaly due to EBV infection. This image is a derivative work, adapted from the following source, available under ©ـ: Gow NJ, Davidson RN, Ticehurst R, et al. Case report: no response to liposomal daunorubicin in a patient with drug-resistant HIV-associated visceral leishmaniasis. PLoS Negl Trop Dis. 2015 Aug; 9(8):e0003983. DOI: 10.1371/journal.pntd.0003983.

165 Herpesviruses: Image G. Atypical lymphocytes in Epstein-Barr virus infection. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

165 Herpesviruses: Image I. Roseola. 둦 Courtesy of Emiliano Burzagli.
165 Herpesvirus: Image J. Kaposi sarcoma. Courtesy of the US Department of Health and Human Services.

166 HSV identification. Positive Tzanck smear in HSV-2 infection. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©응.

168 Rotavirus. © Courtesy of the US Department of Health and Human Services and Erskine Palmer.

169 Rubella virus. Rubella rash. Courtesy of the US Department of Health and Human Services.

170 Croup (acute laryngotracheobronchitis). Steeple sign. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

170 Measles (rubeola) virus: Image A. Koplik spots. 주릊 Courtesy of the US Department of Health and Human Services. The image may have been modified by cropping, labeling, and/or captions.

All rights to this adaptation by MedIQ Learning, LLC are reserved.

170 Measles (rubeola) virus: Image B. Rash of measles. © Courtesy of the US Department of Health and Human Services.

170 Mumps virus. Swollen neck and parotid glands. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services.

171 Rabies virus: Image A. Transmission electron micrograph. Courtesy of the US Department of Health and Human Services Dr. Fred Murphy, and Sylvia Whitfield.

171 Rabies virus: Image B. Negri bodies. 젖ㅈ Courtesy of the US Department of Health and Human Services and Dr. Daniel P. Perl.

171 Ebola virus. Courtesy of the US Department of Health and Human Services and Cynthia Goldsmith.

180 Osteomyelitis: Image A. X-ray (left) and MRI (right) views. This image is a derivative work, adapted from the following source, available under ـo․ Huang P-Y, Wu P-K, Chen C-F, et al. Osteomyelitis of the femur mimicking bone tumors: a review of 10 cases. World J Surg Oncol. 2013;11:283. DOI: 10.1186/1477-7819-11-283.

181 Common vaginal infections: Image C. Candida vulvovaginitis. 저제 Courtesy of Mikael Häggström.
182 ToRCHeS infections: Image A. "Blueberry muffin" rash. This image is a derivative work, adapted from the following source, available under ■o: Benmiloud S, Elhaddou G, Belghiti ZA, et al. Blueberry muffin syndrome. Pan Afr Med J. 2012;13:23.

182 ToRCHeS infections: Image B. Periventricular calcifications in congenital cytomegalovirus infection. This image is a derivative work, adapted from the following source, available under ـo: Bonthius D, Perlman S. Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat. PLoS Pathog. 2007;3:el49. DOI: 10.1371/journal. ppat. 0030149 . The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

183 Red rashes of childhood: Image C. Child with scarlet fever. This image is a derivative work, adapted from the following source, available under .o. www.badobadop.co.uk.

183 Red rashes of childhood: Image D. Chicken pox. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services.

184 Sexually transmitted infections. Donovanosis. Courtesy of the US Department of Health and Human Services and Dr. Pinozzi.

185 Pelvic inflammatory disease: Image A. Purulent cervical discharge. This image is a derivative work, adapted from the following source, available under @o. Courtesy of SOS-AIDS Amsterdam. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚕․

185 Pelvic inflammatory disease: Image B. Adhesions in Fitz-HughCurtis syndrome. Courtesy of Hic et nunc.

190 Vancomycin. Red man syndrome. This image is a derivative work, adapted from the following source, available under ـㅡㄴ: O'Meara P, Borici-Mazi R, Morton R, et al. DRESS with delayed onset acute interstitial nephritis and profound refractory
eosinophilia secondary to vancomycin. Allergy Asthma Clin Immunol. 2011;7:16. DOI: 10.1186/1710-1492-7-16.

## Pathology

209 Necrosis: Image A. Coagulative necrosis. 즌 Courtesy of the US Department of Health and Human Services and Dr. Steven Rosenberg.

209 Necrosis: Image B. Liquefactive necrosis. ㅈㅡㅉ Courtesy of Daftblogger.

209 Necrosis: Image C. Caseous necrosis. This image is a derivative work, adapted from the following source, available under … Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

209 Necrosis: Image D. Fat necrosis. This image is a derivative work, adapted from the following source, available under ©.. Courtesy of Patho. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.
209 Necrosis: Image E. Fibrinoid necrosis. This image is a derivative work, adapted from the following source, available under @… Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽․

209 Necrosis: Image F. Acral gangrene. Courtesy of the US Department of Health and Human Services and William Archibald.

110 Infarcts: red vs. pale: Image B. Pale infarct. . Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.

212 Acute inflammation. Courtesy of Dr. Douglas Mata.
214 Granulomatous diseases. Granuloma. 소즈즈 Courtesy of Sanjay Mukhopadhyay.

215 Types of calcification: Image A. Dystrophic calcification. This image is a derivative work, adapted from the following source, available under ©o: Chun J-S, Hong R, Kim J-A. Osseous metaplasia with mature bone formation of the thyroid gland: three case reports. Oncol Lett. 2013;6:977-979. DOI: 10.3892/ ol.2013.1475. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

215 Types of calcification: Image B. Metastatic calcification. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...
215 Lipofuscin. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under 뚱․

216 Scar formation: Image A. Hypertrophic scar. This image is a derivative work, adapted from the following source, available under Baker R, Urso-Baiarda F, Linge C, et al. Cutaneous scarring: a clinical review. Dermatol Res Pract. 2009;2009:625376. DOI: 10.1155/2009/625376.

216 Scar formation: Image B. Keloid scar. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Andreas Settje. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.
218 Amyloidosis: Image A. Amyloid deposits on Congo red stain. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Ed Uthman.

218 Amyloidosis: Image B. Amyloid deposits on Congo red stain under polarized light. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©.
218 Amyloidosis: Image C. Amyloidosis on H\&E stain. This image is a derivative work, adapted from the following source, available under ـo: Mendoza JM, Peev V, Ponce MA, et al. Amyloid A amyloidosis with subcutaneous drug abuse. J Renal Inj Prev. 2014;3:11-16. DOI: 10.12861/jrip.2014.06.

219 Neoplastic progression. Cervical tissue. This image is a derivative work, adapted from the following source, available under ـoㅇ: Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

224 Psammoma bodies. Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.

226 Common metastases: Image A. Brain metastases from breast cancer. This image is a derivative work, adapted from the following source, available under @. Courtesy of Jmarchn. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under ©․․

226 Common metastases: Image B. Brain metastasis. ㅈㅓㅉㅉ Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.
226 Common metastases: Image C. Liver metastasis. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.
226 Common metastases: Image D. Liver metastasis. Courtesy of J. Hayman.

226 Common metastases: Image E. Bone metastasis. This image is a derivative work, adapted from the following source, available under @․․ Courtesy of Hellerhoff.

226 Common metastases: Image F. Bone metastasis. This image is a derivative work, adapted from the following source, available under ©o을: Courtesy of M. Emmanuel.

## Cardiovascular

277 Coronary artery anatomy. This image is a derivative work, adapted from the following source, available under Zonang J, Chen L, Wang X, et al. Compounding local invariant features and global deformable geometry for medical image registration. PLoS One. 2014;9(8):el05815. DOI: 10.1371/journal. pone. 0105815 .

294 Congenital heart diseases: Image A. Tetralogy of Fallot. This image is a derivative work, adapted from the following source, available under ـoㄹ: Rashid AKM: Heart diseases in Down syndrome. In: Dey S, ed: Down syndrome. DOI: 10.5772/46009. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

295 Congenital heart diseases: Image B. Ventricular septal defect. This image is a derivative work, adapted from the following source, available under ©o: Bardo DME, Brown P. Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications. Curr Cardiol Rev. 2008 Aug;4(3):231-243. DOI: 10.2174/157340308785160615.

295 Congenital heart diseases: Image C. Atrial septal defect. This image is a derivative work, adapted from the following source, available under .eor Teo KSL, Dundon BK, Molaee P, et al. Percutaneous closure of atrial septal defects leads to normalisation of atrial and ventricular volumes. J Cardiovasc Magn Reson. 2008;10(1):55. DOI: 10.1186/1532-429X-10-55.

295 Congenital heart diseases: Image D. Patent ductus arteriosus. This image is a derivative work, adapted from the following source, available under Henjes CR, Nolte I, Wesfaedt P. Multidetector-row computed tomography of thoracic aortic anomalies in dogs and cats: patent ductus arteriosus and vascular rings. BMC Vet Res. 2011;7:57. DOI: 10.1186/1746-6148-7-57.

295 Congenital heart diseases: Image E. Clubbing of fingers. Courtesy of Ann McGrath.

296 Hypertension: Image A. "String of beads" appearance in fibromuscular dysplasia. This image is a derivative work, adapted from the following source, available under Plouin PF, Perdu J, LaBatide-Alanore A, et al. Fibromuscular dysplasia. Orphanet J Rare Dis. 2007;7:28. DOI: 10.1186/1750-1172-2-28. The image may have been modified by cropping, labeling, and/ or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

297 Hyperlipidemia signs: Image C. Tendinous xanthoma. This image is a derivative work, adapted from the following source, available under @o.

297 Arteriosclerosis: Image A. Hyaline type. This image is a derivative work, adapted from the following source, available under @ㅇ.․ Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©..

297 Arteriosclerosis: Image B. Hyperplastic type. This image is a derivative work, adapted from the following source, available under @으. Courtesy of Paco Larosa. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

297 Arteriosclerosis: Image C. Monckeberg sclerosis (medial calcific sclerosis). This image is a derivative work, adapted from the following source, available under Courtesy of CE Couri, GA da Silva, JA Martinez, FA Pereira, and F de Paula. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

298 Atherosclerosis: Image A. Carotid plaque. This image is a derivative work, adapted from the following source, available under ©o응 Courtesy of Dr. Ed Uthman. The image may have
been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

299 Aortic dissection. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. James Heilman.

302 Myocardial infarction complications: Image A. Papillary muscle rupture. This image is a derivative work, adapted from the following source, available under Routy B, Huynh T, Fraser R, et al. Vascular endothelial cell function in catastrophic antiphospholipid syndrome: a case report and review of the literature. Case Rep Hematol. 2013;2013:710365. DOI: 10.1155/2013/710365.

302 Myocardial infarction complications: Image B. Drawing of pseudoaneurysm. This image is a derivative work, adapted from the following source, available under ■-요: Courtesy of Patrick J. Lynch and Dr. C. Carl Jaffe.

302 Myocardial infarction complications: Image C. Free wall rupture of left ventricle. This image is a derivative work, adapted from the following source, available under ©ـ: Zacarias ML, da Trindade H, Tsutsu J, et al. Left ventricular free wall impeding rupture in post-myocardial infarction period diagnosed by myocardial contrast echocardiography: case report. Cardiovasc Ultrasound. 2006;4:7. DOI: 10.1186/1476-7120-4-7.

303 Cardiomyopathies: Image A. Dilated cardiomyopathy. This image is a derivative work, adapted from the following source, available under ©o: Gho JMIH, van Es R, Stathonikos N, et al. High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Arg14del mutation associated cardiomyopathy. PLoS One. 2014;9:e94820. DOI: 10.1371/journal.pone. 0094820 .

304 Heart failure. Pedal edema. This image is a derivative work, adapted from the following source, available under ㄸ.. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.o.

305 Bacterial endocarditis: Image B. Courtesy of Dr. Nicholas Mahoney.

305 Bacterial endocarditis: Image C. This image is a derivative work, adapted from the following source, available under 은: Yang ML, Chen YH, Lin WR, et al. Case report: infective endocarditis caused by Brevundimonas vesicularis. BMC Infect Dis. 2006;6:179. DOI: 10.1186/1471-2334-6-179.

305 Bacterial endocarditis: Image D. Janeway lesions on sole. This image is a derivative work, adapted from the following source, available under Courtesy of DeNanneke.

306 Rheumatic fever. Aschoff body and Anitschkow cells. This image is a derivative work, adapted from the following source, available under ⓞ.: Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

306 Acute pericarditis. This image is a derivative work, adapted from the following source, available under Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson. 2009;11:14. DOI: 10.1186/1532-429X-11-14. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

307 Cardiac tamponade. This image is a derivative work, adapted from the following source, available under 뜬: Yousuf T, Kramer J, Kopiec A, et al. A rare case of cardiac tamponade induced by chronic rheumatoid arthritis. J Clin Med Res. 2015 Sep; 7(9):720-723. DOI: 10.14740/jocmr2226w.
309 Vasculitides: Image A. Temporal arteritis histology. This image is a derivative work, adapted from the following source, available under @®.. Courtesy of Marvin. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©...

309 Vasculitides: Image B. Angiogram in patient with Takayasu arteritis. ©® Human Services and Justin Ly.

309 Vasculitides: Image C. Microaneurysms in polyarteritis nodosa. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

309 Vasculitides: Image D. Strawberry tongue in patient with Kawasaki disease. This image is a derivative work, adapted from the following source, available under ©o: Courtesy of Natr.

309 Vasculitides: Image E. Coronary artery aneurysm in Kawasaki disease. This image is a derivative work, adapted from the following source, available under Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

309 Vasculitides: Image F. Gangrene as a consequence of Buerger disease. This image is a derivative work, adapted from the following source, available under ©ـ: Afsjarfard A, Mozaffar M, Malekpour F, et al. The wound healing effects of iloprost in patients with Buerger's disease: claudication and prevention of major amputations. Iran Red Crescent Med J. 2011;13:420-423.

309 Vasculitides: Image G. Granulomatosis with polyangiitis (formerly Wegener) and PR3-ANCA/c-ANCA. Courtesy of M.A. Little.

309 Vasculitides: Image I. Churg-Strauss syndrome histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©-

309 Vasculitides: Image J. Henoch-Schönlein purpura. ㅈㅜㅉ Courtesy of Okwikikim.

## Endocrine

320 Thyroid development. Thyroglossal duct cyst. This image is a derivative work, adapted from the following source, available under ©ـ: Adelchi C, Mara P, Melissa L, et al. Ectopic thyroid tissue in the head and neck: a case series. BMC Res Notes. 2014;7:790. DOI: 10.1186/1756-0500-7-790.

320 Adrenal cortex and medulla. Courtesy of Dr. Kristine Krafts.
332 Adrenal insufficiency. Mucosal hyperpigmentation in $1^{\circ}$ adrenal insufficiency. © Courtesy of FlatOut. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

333 Neuroblastoma: Image A. CT scan of abdomen. This image is a derivative work, adapted from the following source, available
under @ـ-: Koumarianou A, Oikonomopoulou P, Baka M, et al. Implications of the incidental finding of a MYCN amplified adrenal tumor: a case report and update of a pediatric disease diagnosed in adults. Case Rep Oncol Med. 2013;2013:393128. DOI: $10.1155 / 2013 / 393128$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

333 Neuroblastoma: Image B. Neuroblastoma, Homer-Write rosettes. Courtesy of Dr. Kristine Krafts.

334 Pheochromocytoma. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Dr. Michael Feldman.

335 Hypothyroidism vs hyperthyroidism. Onycholysis. This image is a derivative work, adapted from the following source, available under ©®: Rajebi MR, Shahrokni A, Chaisson M. Uncommon osseous involvement in multisystemic sarcoidosis. Ann Saudi Med. 2009 Nov-Dec;29(6):485-486.

336 Hypothyroidism: Image A. Hashimoto thyroiditis, Hurthle cells. Courtesy of Dr. Kristine Krafts.

336 Hypothyroidism: Image B. Before and after treatment of congenital hypothyroidism. 조 S Courtesy of the US Department of Health and Human Services.

336 Hypothyroidism: Image C. Congenital hypothyroidism. This image is a derivative work, adapted from the following source, available under Courtesy of Sadasiv Swain. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

336 Hypothyroidism: Image D. Reidel thyroiditis histology. Courtesy of Dr. Kristine Krafts.

337 Hyperthyroidism: Image B. Scalloped colloid. Courtesy of Dr. Kristine Krafts.

338 Thyroid adenoma. Courtesy of Dr. Kristine Krafts.
339 Hypoparathyroidism. Shortened 4th and 5th digits. This image is a derivative work, adapted from the following source, available under Ferrario C, Gastaldi G, Portmann L, et al. Bariatric surgery in an obese patient with Albright hereditary osteodystrophy: a case report. J Med Case Rep. 2013;7:111. DOI: 10.1186/1752-1947-7-111.

340 Hyperparathyroidism. Multiple lytic lesions. This image is a derivative work, adapted from the following source, available under ©ـ: Khaoula BA, Kaouther BA, Ines C, et al. An unusual presentation of primary hyperparathyroidism: pathological fracture. Case Rep Orthop. 2011;2011:521578. DOI: $10.1155 / 2011 / 521578$. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

346 Carcinoid syndrome. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.

347 Multiple endocrine neoplasias. Mucosal neuroma. This image is a derivative work, adapted from the following source, available under Martucciello G, Lerone M, Bricco L, et al. Multiple endocrine neoplasias type 2B and RET proto-oncogene. Ital J Pediatr. 2012;38:9. DOI: 10.1186/1824-7288-38-9.

## Gastrointestinal

352 Ventral wall defects. Drawings of gastroschisis (left) and omphalocele (right). 주 Courtesy of the US Department of Health and Human Services.

353 Intestinal atresia. "Double bubble" sign of duodenal atresia. This image is a derivative work, adapted from the following source, available under Alorainy IA, Barlas NB, Al-Boukai AA. Pictorial essay: infants of diabetic mothers. Indian J Radiol Imaging. 2010;20:174-181. DOI: 0.4103/0971-3026.69349.
353 Hypertrophic pyloric stenosis. This image is a derivative work, adapted from the following source, available under Hassan RAA, Choo YU, Noraida R, et al. Infantile hypertrophic pyloric stenosis in postoperative esophageal atresia with tracheoesophageal fistula. J Neonatal Surg. 2015 Jul-Sep;4(3):32.

353 Pancreas and spleen embryology. Annular pancreas. This image is a derivative work, adapted from the following source, available under 뜨﹎: Mahdi B, Selim S, Hassen T, et al. A rare cause of proximal intestinal obstruction in adults-annular pancreas: a case report. Pan Afr Med J. 2011;10:56. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

354 Retroperitoneal structures. This image is a derivative work, adapted from the following source, available under Sammut J, Ahiaku E, Williams DT. Complete regression of renal tumour following ligation of an accessory renal artery during repair of an abdominal aortic aneurysm. Ann R Coll Surg Engl. 2012 Sep;94(6):el98-e200. DOI: 10.1308/003588412X13 373405384972.

361 Liver tissue architecture: Image A. Portal triad of liver tissue. This image is a derivative work, adapted from the following source, available under Le: Liver development. In: Zorn AM. Stem book. Cambridge: Harvard Stem Cell Institute, 2008.

361 Liver tissue architecture: Image B. Kupffer cells. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.o.
362 Biliary structures. Gallstones. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of J. Guntau. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

364 Hernias. Congenital diaphragmatic hernia. This image is a derivative work, adapted from the following source, available under @o: Tovar J. Congenital diaphragmatic hernia. Orphanet J Rare Dis. 2012;7:1. DOI: 10.1186/1750-1172-7-1.
368 Peyer patches. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Plainpaper. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @oo.

370 Sialolithiasis. This image is a derivative work, adapted from the following source, available under Pastor-Ramos V, CuervoDiaz A, Aracil-Kessler L. Sialolithiasis. Proposal for a new minimally invasive procedure: piezoelectric surgery. J Clin Exp Dent. 2014 Jul;6(3):e295-e298. DOI: 10.4317/jced.51253.

370 Salivary gland tumors. Pleomorphic adenoma histology. This image is a derivative work, adapted from the following source,
available under @o. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @요.

370 Achalasia. This image is a derivative work, adapted from the following source, available under Courtesy of Farnoosh Farrokhi and Michael F. Vaezi. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

371 Esophageal pathologies. Pneumomediastinum in Boerhaave syndrome. This image is a derivative work, adapted from the following source, available under @. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.o.

371 Esophageal pathologies: Image B. Esophageal varices on endoscopy. This image is a derivative work, adapted from the following source, available under 뜬: Costaguta A, Alvarez F. Etiology and management of hemorrhagic complications of portal hypertension in children. Int J Hepatol. 2012;2012:879163. DOI: 10.1155/2012/879163.

371 Esophageal pathologies: Image C. Esophageal varices on CT. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ゅ.

372 Barrett esophagus: Image A. Endoscopy. This image is a derivative work, adapted from the following source, available under Coda S, Thillainayagam AV. State of the art in advanced endoscopic imaging for the detection and evaluation of dysplasia and early cancer of the gastrointestinal tract. Clin Exp Gastroenterol. 2014;7:133-150. DOI: 10.2147/CEG. S58157. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

372 Barrett esophagus: Image B. Goblet cells. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

373 Ménétriere disease. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

374 Ulcer complications. Free air under diaphragm in perforated ulcer. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

375 Malabsorption syndromes: Image B. Tropheryma whippeli on PAS stain. This image is a derivative work, adapted from the following source, available under ©o. Tran HA. Reversible hypothyroidism and Whipple's disease. BMC Endocr Disord. 2006;6:3. DOI: 10.1186/1472-6823-6-3.

376 Inflammatory bowel disease: Image A. "String sign" on barium swallow in Crohn disease. This image is a derivative work, adapted from the following source, available under Al-Mofarreh MA, Al Mofleh IA, Al-Teimi IN, et al. Crohn's disease in a Saudi outpatient population: is it still rare? Saudi

J Gastroenterol. 2009;15:111-116. DOI: 10.4103/13193767.45357. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

376 Inflammatory bowel diseases: Images B (normal mucosa) and C (punched-out ulcers) in ulcerative colitis. This image is a derivative work, adapted from the following source, available under ©o. Ishikawa D, Ando T, Watanabe O, et al. Images of colonic real-time tissue sonoelastography correlate with those of colonoscopy and may predict response to therapy in patients with ulcerative colitis. BMC Gastroenterol. 2011;11:29. DOI: 10.1186/1471-230X-11-29.

377 Appendicitis. Fecalith. This image is a derivative work, adapted from the following source, available under 뚕. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽․

377 Diverticula of the GI tract: Image B. Diverticulosis. This image is a derivative work, adapted from the following source, available under Lom: Sartelli M, Moore FA, Ansaloni L, et al. A proposal for a CT driven classification of left colon acute diverticulitis. World J Emerg Surg. 2015;10:3. DOI: 10.1186/1749-7922-10-3.

377 Diverticula of the GI tract: Image C. Diverticulitis. This image is a derivative work, adapted from the following source, available under Maze: Ma, Squitieri NC, Guerrini S, et al. Sigmoid diverticulitis: US findings. Crit Ultrasound J. 2013;5(Suppl 1):S5. DOI: 10.1186/2036-7902-5-S1-S5.

378 Zenker diverticulum. This image is a derivative work, adapted from the following source, available under 뜽: Courtesy of Bernd Brägelmann.

379 Maltotation. This image is a derivative work, adapted from the following source, available under Mathews R, Thenabadu S, Jaiganesh T. Abdominal pain with a twist. Int J Emerg Med. 2011;4:21. DOI: 10.1186/1865-1380-4-21.

379 Volvulus. Coffee bean sign. This image is a derivative work, adapted from the following source, available under - Yigit M, Turkdogan KA. Coffee bean sign, whirl sign and bird's beak sign in the diagnosis of sigmoid volvulus. Pan Afr Med J. 1014;19:56. DOI: 10.11604/pamj.2014.19.56.5142.

379 Intussusception. Interoperative image of intussusception. This image is a derivative work, adapted from the following source, available under ..: Vasiliadis K, Kogopoulos E, Katsamakas M , et al. Ileoileal intussusception induced by a gastrointestinal stromal tumor. World J Surg Oncol. 2008;6:133. DOI: 10.1186/1477-7819-6-133.

380 Other intestinal disorders: Image A. Necrosis due to occlusion of SMA. This image is a derivative work, adapted from the following source, available under Van De Winkel N, Cheragwandi A, Nieboer K, et al. Superior mesenteric arterial branch occlusion causing partial jejunal ischemia: a case report. J Med Case Rep. 2012;6:48. DOI: 10.1186/1752-1947-6-48.

380 Other intestinal disorders: Image B. Endoscopy showing dilated vessels. This image is a derivative work, adapted from the following source, available under ©-: Gunjan D, Sharma V, Rana SS, et al. Small bowel bleeding: a comprehensive review. Gastroenterol Rep. 2014 Nov;2(4):262-275. DOI: 10.1093/ gastro/gou025.

380 Other intestinal disorders: Image C. Loops of dilated bowel suggestive of small bowel obstruction. This image is a derivative
 Welte FJ, Crosso M. Left-sided appendicitis in a patient with congenital gastrointestinal malrotation: a case report. J Med Case Rep. 2007;1:92. DOI: 10.1186/1752-1947-1-92.

380 Other intestinal disorders: Image D. Pneumatosis intestinalis. This image is a derivative work, adapted from the following source, available under ــO: Pelizzo G, Nakib G, Goruppi I, et al. Isolated colon ischemia with norovirus infection in preterm babies: a case series. J Med Case Rep. 2013;7:108. DOI: 10.1186/1752-1947-7-108.

381 Colonic polyps: Image A. Colonic polyps and cancer. This image is a derivative work, adapted from the following source, available under ©o: Courtesy of M. Emannuel.

382 Colorectal cancer: Image A. Polyp on endoscopy. This image is a derivative work, adapted from the following source, available under 응: Chen C-W, Hsiao K-H, Yue C-T, et al. Invasive adenocarcinoma arising from a mixed hyperplastic/adenomatous polyp and synchronous transverse colon cancer. World J Surg Oncol. 2013;11:214. DOI: 10.1186/1477-7819-11-214.

383 Cirrhosis and portal hypertension. Splenomegaly and liver nodularity in cirrhosis. This image is a derivative work, adapted from the following source, available under @oo. Courtesy of Inversitus. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©.

385 Alcoholic liver disease: Image B. Mallory bodies. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

385 Alcoholic liver disease: Image C. Sclerosis in alcoholic cirrhosis. This image is a derivative work, adapted from the following source, available under @요. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @…

385 Non-alcoholic fatty liver disease. This image is a derivative work, adapted from the following source, available under @o- ElKaraksy HM, El-Koofy NM, Anwar GM, et al. Predictors of nonalcoholic fatty liver disease in obese and overweight Egyptian children: single center study. Saudi J Gastroenterol. 2011;17:4046. DOI: 10.4103/1319-3767.74476.

386 Hepatocellular carcinoma/hepatoma: Image A. Gross specimen. Reproduced, with permission, from Jean-Christophe Fournet and Humpath.

386 Other liver tumors. Cavernous liver hemangioma. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.
$386 \alpha_{1}$-antitrypsin deficiency. Liver histology. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Jerad M. Gardner. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @oo.

387 Jaundice. Yellow sclera. Courtesy of the US Department of Health and Human Services and Dr. Thomas F. Sellers.

389 Hemochromatosis. Hemosiderin deposits. This image is a derivative work, adapted from the following source, available under Mathew J, Leong MY, Morley N, et al. A liver fibrosis cocktail? Psoriasis, methotrexate and genetic hemochromatosis. BMC Dermatol. 2005;5:12. DOI: 10.1186/1471-5945-5-12.

390 Gallstones (cholelithiasis): Image A. Gross specimen. This image is a derivative work, adapted from the following source, available under ©응 Courtesy of M. Emmanuel.
390 Gallstones (cholelithiasis): Image B. This image is a derivative work, adapted from the following source, available under ـoㄹ: Spangler R, Van Pham T, Khoujah D, et al. Abdominal emergencies in the geriatric patient. Int J Emerg Med. 2014;7: 43. DOI: 10.1186/s12245-014-0043-2.

390 Gallstones (cholelithiasis): Image C. Porcelain gallbladder. This image is a derivative work, adapted from the following source, available under .e. Fred H, van Dijk H. Images of memorable cases: case 19. Connexions Web site. December 4, 2008. Available at: http://cnx.org/content/m14939/1.3/. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.
391 Acute pancreatitis: Image A. Acute exudative pancreatitis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.o.

391 Acute pancreatitis: Image B. Pancreatic pseudocyst. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Thomas Zimmerman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @.

391 Chronic pancreatitis. This image is a derivative work, adapted from the following source, available under @. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

391 Pancreatic adenocarcinoma: Image A. Histology. This image is a derivative work, adapted from the following source, available under @®. Courtesy of KGH. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

391 Pancreatic adenocarcinoma: Image B. CT scan. Courtesy of MBq. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

## Hematology and Oncology

396 Erythrocytes. Courtesy of the US Department of Health and Human Services and Drs. Noguchi, Rodgers, and Schechter.
396 Thrombocytes (platelets). This image is a derivative work, adapted from the following source, available under @๑. Courtesy of Dr. Ed Uthman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @응.

396 Neutrophils. 설 Courtesy of B. Lennert.

397 Monocytes. This image is a derivative work, adapted from the following source, available under 숑. Courtesy of Dr. Graham Beards. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©.

397 Macrophages. This image is a derivative work, adapted from the following source, available under ©- De Tommasi AS, Otranto D, Furlanello T, et al. Evaluation of blood and bone marrow in selected canine vector-borne diseases. Parasit Vectors. 2014;7:534. DOI: 10.1186/s13071-014-0534-2.

397 Eosinophils. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Ed Uthman.

397 Basophils. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of Dr. Erhabor Osaro. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©.

398 Mast cells. Courtesy of Wikimedia Commons.
398 Dendritic cells. This image is a derivative work, adapted from the following source, available under Cheng J-H, Lee S-Y, Lien Y-Y, et al. Immunomodulating activity of Nymphaea rubra roxb. extracts: activation of rat dendritic cells and improvement of the THl immune response. Int J Mol Sci. 2012;13:1072210735. DOI: 10.3390/ijms130910722.

398 Lymphocytes. This image is a derivative work, adapted from the following source, available under Courtesy of Fickleandfreckled.

399 Plasma cells. Courtesy of the US Department of Health and Human Services and Dr. Francis W. Chandler. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.
404 Pathologic RBC forms: Image A. Acanthocyte ("spur cell"). Courtesy of Dr. Kristine Krafts.
404 Pathologic RBC forms: Image B. Basophilic stippling. This image is a derivative work, adapted from the following source, available under ©o: van Dijk HA, Fred HL. Images of memorable cases: case 81. Connexions Web site. December 3, 2008. Available at http://cnx.org/contents/3196bf3e-lele-4c4d-alacd4fc9ab65443@4@4.

404 Pathologic RBC forms: Image C. Dacrocyte ("teardrop cell"). Courtesy of Dr. Kristine Krafts.

404 Pathologic RBC forms: Image D. Degmacyte ("bite cell"). Courtesy of Dr. Kristine Krafts.

404 Pathologic RBC forms: Image E. Echinocyte ("burr cell"). Courtesy of Dr. Kristine Krafts.

404 Pathologic RBC forms: Image F. Elliptocyte. Courtesy of Dr. Kristine Krafts.

404 Pathologic RBC forms: Image G. Macro-ovalocyte. Courtesy of Dr. Kristine Krafts.

405 Pathologic RBC forms: Image H . Ringed sideroblast. This image is a derivative work, adapted from the following source, available under @. Courtesy of Paulo Henrique Orlandi Mourao. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚱.

405 Pathologic RBC forms: Image I. Schistocyte. Courtesy of Dr. Kristine Krafts.

405 Pathologic RBC forms: Image J. Sickle cell. 젖ㅉ Courtesy of the US Department of Health and Human Services and the Sickle Cell Foundation of Georgia, Jackie George, and Beverly Sinclair.

405 Pathologic RBC forms: Image K. Spherocyte. Courtesy of Dr. Kristine Krafts.

405 Pathologic RBC forms: Image L. Target cell. Courtesy of Dr. Kristine Krafts.

405 Other RBC abnormalities: Image A. Heinz bodies. Courtesy of Dr. Kristine Krafts.

405 Other RBC abnormalities: Image B. Howell-Jolly bodies. This image is a derivative work, adapted from the following source, available under @o-: Serio B, Pezzullo L, Giudice V, et al. OPSI threat in hematological patients. Transl Med UniSa. 2013 May-Aug;62-10.

407 Microcytic, hypochromic anemia: Image C. $\beta$-thalassemia. Courtesy of Dr. Kristine Krafts.

407 Microcytic, hypochromic anemia: Image D. Lead lines in lead poisoning. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

407 Microcytic, hypochromic anemia: Image E. Sideroblastic anemia. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Paulo Henrique Orlandi Moura. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽․

408 Macrocytic anemia. Megaloblastic anemia. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Ed Uthman.
410 Intrinsic hemolytic anemia: Image B. Dactylitis. This image is a derivative work, adapted from the following source, available under ■o은: Pedram M, Jaseb K, Haghi S, et al. First presentation of sickle cell anemia in a 3.5-year-old girl: a case report. Iran Red Crescent Med J. 2012;14:184-185.

411 Extrinsic hemolytic anemia. Autoimmune hemolytic anemia. Courtesy of Dr. Kristine Krafts.

413 Heme synthesis, porphyrias, and lead poisoning: Image A. Basophilic stippling in lead poisoning. This image is a derivative work, adapted from the following source, available under ـo: van Dijk HA, Fred HL. Images of memorable cases: case 81. Connexions Web site. December 3, 2008. Available at http://cnx. org/contents/3196bf3e-lele-4c4d-alac-d4fc9ab65443@4@4.

413 Heme synthesis, porphyrias, and lead poisoning: Image B.
Porphyria cutanea tarda. This image is a derivative work, adapted from the following source, available under ـo: Bovenschen HJ, Vissers WHPM. Primary hemochromatosis presented by porphyria cutanea tarda: a case report. Cases J, 2009;2:7246. DOI: 10.4076/1757-1626-2-7246.

414 Coagulation disorders. Hemarthrosis. This image is a derivative work, adapted from the following source, available under ـo: Benajiba N, El Boussaadni Y, Aljabri M, et al. Hémophilie: état des lieux dans un service de pédiatrie dans la région de l'oriental du Maroc. Pan Afr Med J. 2014;18:126. DOI: 10.11604/ pamj.2014.18.126.4007.

418 Non-Hodgkin lymphoma: Image C. Primary central nervous system lymphoma. This image is a derivative work, adapted from the following source, available under ©o: Mansour A, Qandeel M, Abdel-Razeq H, et al. MR imaging features of intracranial primary CNS lymphoma in immune competent patients. Cancer Imaging. 2014;14(1):22. DOI: 10.1186/1470-7330-14-22.

419 Multiple myeloma: Image B. RBC rouleaux formation. Courtesy of Dr. Kristine Krafts.

419 Multiple myeloma: Image C. Plasma cells. This image is a derivative work, adapted from the following source, available under ©®o: Sharma A, Kaushal M, Chaturvedi NK, et al. Cytodiagnosis of multiple myeloma presenting as orbital involvement: a case report. Cytojournal. 2006;3:19. DOI: 10.1186/1742-6413-3-19.

420 Leukemias: Image C. Hairy cell leukemia. This image is a derivative work, adapted from the following source, available under உـ: Chan SM, George T, Cherry AM, et al. Complete remission of primary plasma cell leukemia with bortezomib, doxorubicin, and dexamethasone: a case report. Cases J. 2009;2:121. DOI: 10.1186/1757-1626-2-121.

420 Leukemias: Image E. Chronic myelogenous leukemia. Courtesy of Dr. Kristine Krafts.

421 Chronic myeloproliferative disorders: Image A. Erythromelalgia in polycythemia vera. This image is a derivative work, adapted from the following source, available under ©o: Fred H , van Dijk H. Images of memorable cases: case 151. Connexions Web site. December 4, 2008. Available at http://cnx.org/content/ ml4932/1.3/.

421 Chronic myeloproliferative disorders: Image B. Essential thrombocytosis with enlarged megakaryocytes. Courtesy of Dr. Kristine Krafts.

421 Chronic myeloproliferative disorders: Image C. Myelofibrosis. This image is a derivative work, adapted from the following source, available under ©oin: Courtesy of Dr. Ed Uthman.

422 Langerhans cell histiocytosis: Image A. Lytic bone lesion. This image is a derivative work, adapted from the following source, available under ©o: Dehkordi NR, Rajabi P, Naimi A, et al. Langerhans cell histiocytosis following Hodgkin lymphoma: a case report from Iran. J Res Med Sci 2010;15:58-61. PMCID PMC3082786.

422 Langerhans cell histiocytosis: Image B. Birbeck granules. This image is a derivative work, adapted from the following source, available under 뜽. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

424 Warfarin. Skin necrosis. This image is a derivative work, adapted from the following source, available under ©oin Fred H, van Dijk H. Images of memorable cases: cases 84 and 85. Connexions Web site. December 2, 2008. Available at http://cnx. org/content/ml5024/atest/.

## Musculoskeletal, Skin, and Connective Tissue

434 Rotator cuff muscles. Glenohumeral instability. This image is a derivative work, adapted from the following source, available under ©o: Koike Y, Sano H, Imamura I, et al. Changes with time in skin temperature of the shoulders in healthy controls and a patient with shoulder-hand syndrome. Ups J Med Sci

2010;115:260-265. DOI: 10.3109/03009734.2010.503354. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

435 Wrist region: Image B. Anatomic snuff box. This image is a derivative work, adapted from the following source, available under ـoㅇ: Rhemrev SJ, Ootes D, Beeres FJP, et al. Current methods ofdiagnosis and treatment of scaphoid fractures. Int J Emerg Med. 2011;4:4. DOI: 10.1186/1865-1380-4-4.

435 Wrist regions: Image C. Thenar eminence atrophy in carpal tunnel syndrome. Courtesy of Dr. Harry Gouvas.

436 Common pediatric fractures: Image A. Greenstick fracture. This image is a derivative work, adapted from the following source, available under $ـ$ - Randsborg PH, Sivertsen EA. Classification of distal radius fractures in children: good interand intraobserver reliability, which improves with clinical experience. BMC Musculoskelet Disord. 2013;13:6. DOI: 10.1186/1471-2474-13-6.

436 Common pediatric fractures: Image B. Buckle fracture. This image is a derivative work, adapted from the following source, available under @-: Randsborg PH, Sivertsen EA. Classification of distal radius fractures in children: good inter- and intraobserver reliability, which improves with clinical experience. BMC Musculoskelet Disord. 2012;13:6. DOI: 10.1186/1471-2474-13-6.

438 Brachial plexus lesions: Image A. Cervical rib. This image is a derivative work, adapted from the following source, available under ©- Dahlin LB, Backman C, Duppe H, et al. Compression of the lower trunk of the brachial plexus by a cervical rib in two adolescent girls: case reports and surgical treatment. J Brachial Plex Peripher Nerve Inj. 2009;4:14. DOI: 10.1186/1749-7221-4-14.

438 Brachial plexus lesions: Image B. Winged scapula. This image is a derivative work, adapted from the following source, available under @: Boukhris J, Boussouga M, Jaafar A, et al. Stabilisation dynamique d'un winging scapula (à propos d'un cas avec revue de la littérature). Pan Afr Med J. 2014;19:331. DOI: 10.11604/pamj.2014.19.331.3429.

441 Common hip and knee conditions: Image A. ACL tear. This image is a derivative work, adapted from the following source, available under @. Chang MJ, Chang CB, Choi J-Y, et al. Can magnetic resonance imaging findings predict the degree of knee joint laxity in patients undergoing anterior cruciate ligament reconstruction? BMC Musculoskelet Disord. 2014;15:214. DOI: 10.1186/1471-2474-15-214. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

441 Common hip and knee conditions: Images B (prepatellar bursitis) and C (Baker cyst). This image is a derivative work, adapted from the following source, available under ©®: Hirji Z, Hunhun JS, Choudur HN. Imaging of the bursae. J Clin Imaging Sci. 2011;1:22. DOI: 10.4103/2156-7514.80374. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

449 Osteoporosis. Vertebral compression fractures of spine. This image is a derivative work, adapted from the following source, available under ©. Imani F, Gharaei H, Rahimzadeh P, et al. Management of painful vertebral compression fracture with kyphoplasty in a sever cardio-respiratory compromised patient.

Anesth Pain Med. 2012 summer;2(1):42-45. DOI: 10.5812/ aapm. 5030.

449 Osteopetrosis (marble bone disease). This image is a derivative work, adapted from the following source, available under @-®: Kant P, Sharda N, Bhowate RR. Clinical and radiological findings of autosomal dominant osteopetrosis type II: a case report. Case Rep Dent. 2013;2013:707343. DOI: 10.1155/2013/707343.

450 Osteomalacia/rickets: Image A, left. Clinical photo. This image is a derivative work, adapted from the following source, available under @o: Linglart A, Biosse-Duplan M, Briot K, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3:R13-R30. DOI: 10.1530/EC-13-0103.

450 Osteomalacia/rickets: Image B. Rachitic rosary on chest X-ray. This image is a derivative work, adapted from the following source, available under © Essabar L, Meskini T, Ettair S, et al. Malignant infantile osteopetrosis: case report with review of literature. Pan Afr Med J. 2014;17:63. DOI: 10.11604/ pamj.2014.17.63.3759.

450 Paget disease of bone (osteitis deformans). Thickened calvarium. This image is a derivative work, adapted from the following source, available under [Radiology Picture of the Day Website]. Published June 21, 2007. Available at http://www.radpod.org/2007/06/21/pagetsdisease/.

450 Osteonecrosis (avascular necrosis). Bilateral necrosis of femoral head. This image is a derivative work, adapted from the following source, available under S , et al. The effect of postoperative corticosteroid administration on free vascularized fibular grafting for treating osteonecrosis of the femoral head. Sci World J. 2013;708014. DOI: 10.1155/2013/708014. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

453 Primary bone tumors: Image A. Osteochondroma. This image is a derivative work, adapted from the following source, available under @ロ. Courtesy of Lucien Monfils. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ఠ.

453 Primary bone tumors: Image B. Giant cell tumor. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia. org.
453 Primary bone tumors: Image C. Osteosarcoma. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

454 Osteoarthritis and rheumatoid arthritis: Image A. Histology of rheumatoid nodule. This image is a derivative work, adapted from the following source, available under F, El-Naggar AK, Guha-Thakurta N, et al. Rheumatoid arthritis mimicking metastatic squamous cell carcinoma. Head Neck Oncol. 2011;3:26. DOI: 10.1186/1758-3284-3-26.

455 Gout: Image B. Uric acid crystals under polarized light. This image is a derivative work, adapted from the following source, available under @®®. Courtesy of Robert J. Galindo. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

455 Gout: Image C. Podagra. This image is a derivative work, adapted from the following source, available under 응: Roddy E.

Revisiting the pathogenesis of podagra: why does gout target the foot? J Foot Ankle Res. 2011;4:13. DOI: 10.1186/1757-1146-4-13.

455 Calcium pyrophosphate deposition disease. Calcium phosphate crystals. This image is a derivative work, adapted from the following source, available under ــO: Dieppe P, Swan A. Identification of crystals in synovial fluid. Ann Rheum Dis. 1999 May;58(5):261-263.

456 Sjögren syndrome: Image A. Lymphocytic infiltration. 좄ㅉ Courtesy of the US Department of Health and Human Services.

456 Sjögren syndrome: Image B. Dry tongue. This image is a derivative work, adapted from the following source, available under ©o: Negrato CA, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metab Syndr. 2010;2:3. DOI: 10.1186/1758-5996-2-3.

456 Septic arthritis. Joint effusion. This image is a derivative work, adapted from the following source, available under @... Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ㅇ..

457 Seronegative spondyloarthropathies: Image C, left. Bamboo spine. This image is a derivative work, adapted from the following source, available under 요. Courtesy of Stevenfruitsmaak. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @®.

457 Seronegative spondyloarthropathies: Image C, right. Bamboo spine. 주ㄴㅡㅐ Courtesy of Heather Hawker.

458 Systemic lupus erythematosus: Image B. Discoid rash. Courtesy of Dr. Kachiu Lee.

459 Raynaud phenomenon. This image is a derivative work, adapted from the following source, available under 뚀. Courtesy of Jamclaassen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ㅇ..

461 Epithelial cell junctions: Image A. Large, electron-dense actin structures within adherens junction. This image is a derivative work, adapted from the following source, available under ـo: Taylor RR, Jagger DJ, Saeed SR, et al. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiol Aging. 2015 Jun;36(6):20682084. DOI: 10.1016/j.neurobiolaging.2015.02.013.

461 Epithelial cell junctions: Image B. Desmosome. This image is a derivative work, adapted from the following source, available under Massa F, Devader C, Lacas-Gervais S, et al. Impairement of HT29 cancer cells cohesion by the soluble form of neurotensin receptor-3. Genes Cancer. 2014 Jul;5(7-8):240249. DOI: 10.18632/genesandcancer. 22 .

463 Seborrheic dermatitis. This image is a derivative work, adapted from the following source, available under 뚕. Courtesy of Roymishali.

464 Common skin disorders: Image 0 . Urticaria. This image is a derivative work, adapted from the following source, available under ©. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @oo.

465 Vascular tumors of skin: Image C. Cystic hygroma. This image is a derivative work, adapted from the following source, available under ـo: Sharif M, Elsiddig IE, Atwan F. Complete resolution of cystic hygroma with single session of intralesional bleomycin. J Neonatal Surg. 2012 Jul-Sep;1(3):44.

465 Vascular tumors of skin: Image D. Glomus tumor under fingernail. This image is a derivative work, adapted from the following source, available under ـo: Hazani R, Houle JM, Kasdan ML, et al. Glomus tumors of the hand. Eplasty. 2008;8:e48. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

466 Skin infections: Image C. Erysipelas. This image is a derivative work, adapted from the following source, available under ■o: Courtesy of Klaus D. Peter.

467 Blistering skin disorders: Image D. Bullous pemphigoid on immunofluorescence. This image is a derivative work, adapted from the following source, available under ©-: Courtesy of M. Emmanuel.

469 Skin cancer: Image D. Basal cell carcinoma histopathology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®.

## Neurology and Special Senses

475 Holoprosencephaly. This image is a derivative work, adapted from the following source, available under Alorainy IA, Barlas NB, Al-Boukai AA. Pictorial essay: infants of diabetic mothers. Indian J Radiol Imaging. 2010 Aug;20(3):174-181. DOI: 10.4103/0971-3026.69349.

476 Posterior fossa malformations: Image A. Chiari I malformation. This image is a derivative work, adapted from the following source, available under .o. Toldo I, De Carlo D, Mardari R, et al. Short lasting activity-related headaches with sudden onset in children: a case-based reasoning on classification and diagnosis. J Headache Pain. 2013;14(1):3. DOI: 10.1186/1129-2377-14-3.

476 Posterior fossa malformations: Image B. Dandy-Walker malformation. This image is a derivative work, adapted from the following source, available under ©-: Krupa K, BekiesinskaFigatowska M. Congenital and acquired abnormalities of the corpus callosum: a pictorial essay. Biomed Res Int. 2013;2013:265619. DOI: $10.1155 / 2013 / 265619$.

476 Syringomyelia. Reproduced, with permission, from Dr. Frank Gaillard and www.radiopaedia.org.

478 Myelin. Myelinated neuron. ㅈㅜㅉ Courtesy of the Electron Microscopy Facility at Trinity College.

479 Chromatolysis. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr. Michael Bonnert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under

482 Limbic system. This image is a derivative work, adapted from the following source, available under ©o: Schopf V, Fischmeister FP, Windischberger C, et al. Effects of individual glucose levels
on the neuronal correlates of emotions. Front Hum Neurosci. 2013 May;21;7:212. DOI: 10.3389/fnhum.2013.00212.

483 Cerebellum. This image is a derivative work, adapted from the following source, available under : Jarius S, Wandinger KP, Horn S, et al. A new Purkinje cell antibody (anti-Ca) associated with subacute cerebellar ataxia: immunological characterization. J Neuroinflammation. 2010;7: 21. DOI: 10.1186/1742-2094-7-21.

486 Cerebral arteries-cortical distribution. Cortical watershed areas. This image is a derivative work, adapted from the following source, available under ©o: Isabel C, Lecler A, Turc G, et al. Relationship between watershed infarcts and recent intra plaque haemorrhage in carotid atherosclerotic plaque. PLoS One. 2014;9(10):e108712. DOI: 10.1371/journal.pone.0108712.

487 Dural venous sinuses. This image is a derivative work, adapted from the following source, available under ©-: Cikla U, Aagaard-Kienitz B, Turski PA, et al. Familial perimesencephalic subarachnoid hemorrhage: two case reports. J Med Case Rep. 2014;8. DOI: 10.1186/1752-1947-8-380. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

492 Spinal cord and associated tracts. Spinal cord cross-section. This image is a derivative work, adapted from the following source, available under Courtesy of Regents of University of Michigan Medical School.

496 Neonatal interventricular hemorrhage. This image is a derivative work, adapted from the following source, available under ■ـ: Shooman D, Portess H, Sparrow O. A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants. Cerebrospinal Fluid Res. 2009;6:1. DOI: 10.1186/1743-8454-6-1.

497 Intracranial hemorrhage: Image A. Axial CT of brain showing epidural blood. This image is a derivative work, adapted from the following source, available under @융. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚀.

497 Intracranial hemorrhage: Image B. Axial CT of brain showing skull fracture and scalp hematoma. This image is a derivative work, adapted from the following source, available under @®. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

497 Intracranial hemorrhage: Image C. Subdural hematoma. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©응.

497 Intracranial hemorrhage: Image E. Subarachnoid hemorrhage. This image is a derivative work, adapted from the following source, available under ـo﹎: Hakan T, Turk CC, Celik H. Intra-operative real time intracranial subarachnoid haemorrhage during glial tumour resection: a case report. Cases J. 2008;1:306. DOI: 10.1186/1757-1626-1-306. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

499 Effects of strokes: Image A. Large abnormality of the left MCA territory. This image is a derivative work, adapted from the
following source, available under Hakimelahi R, Yoo AJ, He J, et al. Rapid identification of a major diffusion/perfusion mismatch in distal internal carotid artery or middle cerebral artery ischemic stroke. BMC Neurol. 2012 Nov; ; ;12:132. DOI: 10.1186/1471-2377-12-132. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

499 Effects of strokes: Image B. MRI diffusion weighted image shows a hypersensitive lesion on posterior limb of internal capsular. This image is a derivative work, adapted from the following source, available under ©-: Zhou L, Ni J, Yao M, et al. Highresolution MRI findings in patients with capsular warning syndrome. BMC Neurol. 2014;14:16. DOI: 10.1186/1471-2377-14-16.

499 Effects of strokes: Image C. Infarct of posterior inferior cerebellar artery. This image is a derivative work, adapted from the following source, available under Louh A, Remke J, Ruland S. Ischemic posterior circulation stroke: a review of anatomy, clinical presentations, diagnosis, and current management. Front Neurol. 2014 Apr;7;5:30. DOI: 10.3389/ fneur.2014.00030.

499 Effects of strokes: Image D. Infarct of posterior cerebral artery. This image is a derivative work, adapted from the following source, available under ©o. Nakao Y, Terai H. Embolic brain infarction related to posttraumatic occlusion of vertebral artery resulting from cervical spine injury: a case report. J Med Case Rep. 2014;8:344. DOI: 10.1186/1752-1947-8-344.
499 Diffuse axonal injury. Moenninghoff C, Kraff O, Maderwald S, et al. Diffuse axonal injury at ultra-high field MRI. PLoS One. 2015;10(3):e0122329. DOI: 10.1371/journal.pone. 0122329.
505 Neurodegenerative disorders: Image A. Lewy body in substantia nigra. This image is a derivative work, adapted from the following source, available under Werner CJ, Heyny-von Haussen R, Mall G, et al. Parkinson's disease. Proteome Sci. 2008;6:8. DOI: 10.1186/1477-5956-6-8. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

505 Neurodegenerative disorders: Image B. Gross specimen of normal brain. This image is a derivative work, adapted from the following source, available under Niedowicz DM, Nelson PT, Murphy MP. Alzheimer's disease: pathological mechanisms and recent insights. Curr Neuropharmacol. 2011 Dec;9(4):67484. DOI: 10.2174/157015911798376181.

505 Neurodegenerative disorders: Images C (brain atrophy in Alzheimer disease) and $\mathbf{F}$ (atrophy in frontotemporal dementia). This image is a derivative work, adapted from the following source, available under Neo: Niedowicz DM, Nelson PT, Murphy MP. Alzheimer's disease: pathological mechanisms and recent insights. Curr Neuropharmacol. 2011 Dec;9(4):674-684. DOI: 10.2174/157015911798376181.

505 Neurodegenerative disorders: Image D. Neurofibrillary tangles in Alzheimer disease. Courtesy of Dr. Kristine Krafts
505 Neurodegenerative disorders: Image G. Pick bodies in frontotemporal dementia. This image is a derivative work, adapted from the following source, available under ©~: Niedowicz DM, Nelson PT, Murphy MP. Alzheimer's disease: pathological mechanisms and recent insights. Curr Neuropharmacol. 2011;9:674-684. DOI: 10.2174/157015911798376181.

505 Neurodegenerative disorders：Image H．Spongiform changes in brain in Creutzfeld－Jacob disease．This image is a derivative work，adapted from the following source，available under ©．． Courtesy of DRdoubleB．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ـ．

506 Hydrocephalus：Image B．Communicating hydrocephalus．This image is a derivative work，adapted from the following source， available under ـoo：Torres－Martin M，Pena－Granero C， Carceller F，et al．Homozygous deletion of TNFRSF4，TP73， PPAP2B and DPYD at lp and PDCD5 at 19q identified by multiplex ligation－dependent probe amplification（MLPA） analysis in pediatric anaplastic glioma with questionable oligodendroglial component．Mol Cytogenet．2014；7：1．DOI： 10．1186／1755－8166－7－1．

506 Hydrocephalus：Image C．Ex vacuo ventriculomegaly．This image is a derivative work，adapted from the following source，available under ©o：Ghetti B，Oblak AL，Boeve BF，et al．Frontotemporal dementia caused by microtubule－ associated protein tau gene（MAPT）mutations：a chameleon for neuropathology and neuroimaging．Neurophathol Appl Neurobiol． 2015 Feb；41（1）：24－46．DOI：10．1111／nan．12213．

507 Multiple sclerosis．Periventricular plaques．This image is a derivative work，adapted from the following source，available under مـo：Dooley MC，Foroozan R．Optic neuritis． J Ophthalmic Vis Res． 2010 Jul；5（3）：182－187．

508 Other demyelinated and dysmyelinating disorders：Image A． Central pontine myelinolysis．This image is a derivative work， adapted from the following source，available under＠응 Courtesy of Wikimedia Commons．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠응．

508 Other demyelinating and dysmyelinating disorders：Image B． Progressive multifocal leukoencephalopathy．This image is a derivative work，adapted from the following source， available under Garrote H，de la Fuente A，Ona R，et al．Long－term survival in a patient with progressive multifocal leukoencephalopathy after therapy with rituximab，fludarabine and cyclophosphamide for chronic lymphocytic leukemia．Exp Hematol Oncol．2015；4：8．DOI：10．1186／s40164－015－0003－4．

509 Neurocutaneous disorders：Image A．Sturge－Weber syndrome and port wine stain．This image is a derivative work，adapted from the following source，available under Babaji P，Bansal A， Krishna G，et al．Sturge－Weber syndrome with osteohypertrophy of maxilla．Case Rep Pediatr 2013．DOI：10．1155／2013／964596．

509 Neurocutaneous disorders：Image B．Leptomeningeal angioma in Sturge－Weber syndrome．Reproduced，with permission，from Dr． Frank Gaillard and www．radiopaedia．org．

509 Neurocutaneous disorders：Image C．Tuberous sclerosis．This image is a derivative work，adapted from the following source， available under ．e：Fred H，van Dijk H．Images of memorable cases：case 143．Connexions Web site．December 4， 2008. Available at：http：／／cnx．org／content／m14923／1．3／．

509 Neurocutaneous disorders：Image D．Ash leaf spots in tuberous sclerosis．This image is a derivative work，adapted from the following source，available under ©ـo：Tonekaboni SH，Tousi P， Ebrahimi A，et al．Clinical and para clinical manifestations of tuberous sclerosis：a cross sectional study on 81 pediatric
patients．Iran J Child Neurol．2012；6：25－31．PMCID PMC3943027．

509 Neurocutaneous disorders：Image E．Angiomyolipoma in tuberous sclerosis．This image is a derivative work，adapted from the following source，available under Courtesy of KGH．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠ロ．

509 Neurocutaneous disorders：Image F．Café－au－lait spots in neurofibromatosis．This image is a derivative work，adapted from the following source，available under＠ㅇ．．Courtesy of Wikimedia Commons．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠．

509 Neurocutaneous disorders：Image G．Lisch nodules in neurofibromatosis．ㅈㅛㅉ Courtesy of the US Department of Health and Human Services．

509 Neurocutaneous disorders：Image H．Cutaneous neurofibromas． This image is a derivative work，adapted from the following source，available under ©oㅇ﹎ㄴ Kim BK，Choi YS，Gwoo S，et al．Neurofibromatosis type l associated with papillary thyroid carcinoma incidentally detected by thyroid ultrasonography：a case report．J Med Case Rep．2012；6：179．DOI：10．1186／1752－ 1947－6－179

509 Neurocutaneous disorders：Image I．Cerebellar hemangioblastoma histology．This image is a derivative work，adapted from the following source，available under＠⿴囗冂．Courtesy of Dr．Michael Bonert．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠o．

509 Neurocutaneous disorders：Image J．Brainstem and spinal cord hemangioblastomas in von Hippel－Lindau disease．This image is a derivative work，adapted from the following source，available under ـo：Park DM，Zhuang Z，Chen L，et al．von Hippel－ Lindau disease－associated hemangioblastomas are derived from embryologic multipotent cells．PLoS Med． 2007 Feb；4（2）：e60． DOI：10．1371／journal．pmed． 0040060 ．

511 Adult primary brain tumors：Image A．Glioblastoma multiforme． © 3 E．Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology．

511 Adult primary brain tumors：Image B．Glioblastoma multiforme histology．This image is a derivative work，adapted from the following source，available under ．Courtesy of Wikimedia Commons．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under ©o․

511 Adult primary brain tumors：Image C．Oligodendroglioma in frontal lobes．This image is a derivative work，adapted from the following source，available under Celzo FG，Venstermans C，De Belder F，et al．Brain stones revisited－between a rock and a hard place．Insights Imaging． 2013 Oct；4（5）：625－35．DOI： 10．1007／s13244－013－0279－z．

511 Adult primary brain tumors：Image D．Oligodendroglioma，＂fried egg＂cells．This image is a derivative work，adapted from the following source，available under＠．Courtesy of Nephron． The image may have been modified by cropping，labeling，and／ or captions．MedIQ Learning，LLC makes this image available under＠o．

511 Adult primary brain tumors: Image E. Meningioma with dural tail. This image is a derivative work, adapted from the following source, available under ـoㅇ: Smits A, Zetterling M, Lundin M, et al. Neurological impairment linked with cortico-subcortical infiltration of diffuse low-grade gliomas at initial diagnosis supports early brain plasticity. Front Neurol. 2015;6:137. DOI: 10.3389/fneur. 2015.00137.

511 Adult primary brain tumors: Image F. Meningioma, psammoma bodies. This image is a derivative work, adapted from the following source, available under @... Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o.

511 Adult primary brain tumors: Image G. Cerebellar hemangioblastoma. This image is a derivative work, adapted from the following source, available under © Park DM, Zhengping Z, Chen L, et al. von Hippel-Lindau diseaseassociated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med. 2007 Feb;4(2):e60. DOI: 10.1371/ journal.pmed. 0040060 .

511 Adult primary brain tumors: Image H. Minimal parenchyma in hemangioblastoma. This image is a derivative work, adapted from the following source, available under @o®. Courtesy of Marvin 101. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚱.

511 Adult primary brain tumors: Image I. Prolactinoma. This image is a derivative work, adapted from the following source, available under ـㅡㅇ Wang CS, Yeh TC, Wu TC, et al. Pituitary macroadenoma co-existent with supraclinoid internal carotid artery cerebral aneurysm: a case report and review of the literature. Cases J. 2009;2:6459. DOI: 10.4076/1757-1626-26459.

511 Adult primary brain tumors: Image J. Field of vision in bitemporal hemianopia. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ․․

511 Adult primary brain tumors: Image K. Schwannoma at cerebellopontine angle. ㅈㅜㅉ Courtesy of MRT-Bild.

511 Adult primary brain tumors: Image L. Schwann cell origin of schwannoma. This image is a derivative work, adapted from the following source, available under @®o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @ㅇ..

512 Childhood primary brain tumors: Image A. MRI of pilocytic astrocytoma. This image is a derivative work, adapted from the following source, available under ©o응 Hafez RFA. Stereotaxic gamma knife surgery in treatment of critically located pilocytic astrocytoma: preliminary result. World J Surg Oncol. 2007;5:39. DOI: 10.1186/1477-7819-5-39.

512 Childhood primary brain tumors: Image C. CT of medulloblastoma. Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.

512 Childhood primary brain tumors: Image D. Medulloblastoma histology. This image is a derivative work, adapted from the following source, available under ©o. Courtesy of KGH. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @응

512 Childhood primary brain tumors: Image E. MRI of ependymoma. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Hellerhoff. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

512 Childhood primary brain tumors: Image F. Ependymoma histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Nephron. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @뚀.

512 Childhood primary brain tumors: Image G. CT of craniopharyngioma. This image is a derivative work, adapted from the following source, available under ©o. Garnet MR, Puget S, Grill J, et al. Craniopharyngioma. Orphanet J Rare Dis. 2007;2:18. DOI: 10.1186/1750-1172-2-18.

512 Childhood primary brain tumors: Image H. Craniopharyngioma histology. This image is a derivative work, adapted from the following source, available under @ㅇ.․ Courtesy of Nephron. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @oㅇ

515 Friedreich ataxia: Image A. Clinical kyphoscoliosis. This image is a derivative work, adapted from the following source, available under Axelrod FB, Gold-von Simson. Hereditary sensory and autonomic neuropathies: types II, III, and IV. Orphanet J Rare Dis. 2007;2:39. DOI: 10.1186/1750-1172-2-39.

515 Friedreich ataxia: Image B. Radiograph showing kyphoscoliosis. This image is a derivative work, adapted from the following source, available under ․ㅡㅇ: Bounakis N, Karampalis C, Tsirikos AI. Surgical treatment of scoliosis in Rubinstein-Taybi syndrome type 2: a case report. J Med Case Rep. 2015;9:10. DOI: 10.1186/1752-1947-9-10.

516 Facial nerve lesions. Facial nerve palsy. This image is a derivative work, adapted from the following source, available under سom: Socolovsky M, Paez MD, Di Masi G, et al. Bell's palsy and partial hypoglossal to facial nerve transfer: Case presentation and literature review. Surg Neurol Int. 2012;3:46. DOI:10.4103/21527806.95391.

517 Cholesteatoma. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Welleschik. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @응.

518 Normal eye. This image is a derivative work, adapted from the following source, available under @ゅ. Courtesy of Jan Kaláb. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @o-

518 Conjunctivitis. This image is a derivative work, adapted from the following source, available under Baiyeroju A, Bowman R, Gilbert C, et al. Managing eye health in young children. Community Eye Health. 2010;23:4-11.

519 Cataract. Juvenile cataract. This image is a derivative work, adapted from the following source, available under Roser Rosh M, Vijaya PH, Lavanya GR, et al. A novel human CRYGD mutation in a juvenile autosomal dominant cataract. Mol Vis. 2010;16:887-896. PMCID PMC2875257.

520 Glaucoma: Images A (normal optic cup) and B (optic cup in glaucoma). Courtesy of Dr. Nicholas Mahoney.

520 Glaucoma: Image C. Closed/narrow angle glaucoma. This image is a derivative work, adapted from the following source, available under ـo﹎ Low S, Davidson AE, Holder GE, et al. Autosomal dominant Best disease with an unusual electrooculographic light rise and risk of angle-closure glaucoma: a clinical and molecular genetic study. Mol Vis. 2011;17:2272-2282. PMCID PMC3171497. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

520 Glaucoma: Image D. Acute angle closure glaucoma. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Jonathan Trobe.

520 Uveitis. This image is a derivative work, adapted from the following source, available under ©o. Weber AC, Levison AL, Srivastava, et al. A case of Listeria monocytogenes endophthalmitis with recurrent inflammation and novel management. J Ophthalmic Inflamm Infect. 2015;5(1):28. DOI: 10.1186/s12348-015-0058-8.

520 Age-related macular degeneration. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services.

521 Diabetic retinopathy. This image is a derivative work, adapted from the following source, available under 뚀응 Sundling V, Gulbrandsen P, Straand J. Sensitivity and specificity of Norwegian optometrists' evaluation of diabetic retinopathy in single-field retinal images - a cross-sectional experimental study. BMC Health Services Res. 2013;13:17. DOI: 10.1186/1472-6963-13-17.

521 Hypertensive retinopathy. This image is a derivative work, adapted from the following source, available under 뜬: Diallo JW, Méda N, Tougouma SJB, et al. Intérêts de l'examen du fond d'œil en pratique de ville: bilan de 438 cas. Pan Afr Med J 2015;20:363. DOI: 10.11604/pamj.2015.20.363.6629.

521 Retinal vein occlusion. This image is a derivative work, adapted from the following source, available under Alasil T, Rauser ME. Intravitreal bevacizumab in the treatment of neovascular glaucoma secondary to central retinal vein occlusion: a case report. Cases J. 2009;2:176. DOI: 10.1186/1757-1626-2-176. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

521 Retinal detachment. Courtesy of EyeRounds.
522 Retinitis pigmentosa. Courtesy of EyeRounds.
522 Retinitis. ©® Courtesy of the US Department of Health and Human Services.

522 Papilledema. Courtesy of Dr. Nicholas Mahoney.
524 Ocular motility. Testing ocular muscles. This image is a derivative work, adapted from the following source, available under @. Courtesy of Au.yousef. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 응․․

525 Cranial nerve III, IV, VI palsies: Image A. Cranial nerve III damage. This image is a derivative work, adapted from the following source, available under 요응 Hakim W, Sherman R, Rezk T, et al. An acute case of herpes zoster ophthalmicus with ophthalmoplegia. Case Rep Ophthalmol Med. 1012; 2012:953910. DOI: 10.1155/2012/953910.

525 Cranial nerve III, IV, VI palsies: Image B. Cranial nerve IV damage. This image is a derivative work, adapted from the following source, available under سo: Mendez JA, Arias CR, Sanchez D, et al. Painful ophthalmoplegia of the left eye in a 19 -yearold female, with an emphasis in Tolosa-Hunt syndrome: a case report. Cases J. 2009;2:8271. DOI: 10.4076/1757-1626-2-8271.

525 Cranial nerve III, IV, VI palsies: Image C. Cranial nerve VI damage. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Jordi March i Nogué. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @®.

## Renal

562 Potter sequence (syndrome). ©m Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.

564 Course of ureters. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Wikimedia Commons. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©...

565 Glomerular filtration barrier. This image is a derivative work, adapted from the following source, available under :- Feng J, Wei H, Sun Y, et al. Regulation of podocalyxin expression in the kidney of streptozotocin-induced diabetic rats with Chinese herbs (Yishen capsule). BMC Complement Altern Med. 2013;13:76. DOI: 10.1186/1472-6882-13-76.

578 Casts in urine: Image A. RBC casts. Courtesy of Dr. Adam Weinstein.

578 Casts in urine: Image B. This image is a derivative work, adapted from the following source, available under ـor: Perazella MA. Diagnosing drug-induced AIN in the hospitalized patient: a challenge for the clinician. Clin Nephrol. 2014 Jun;81(6):381-8. DOI: 10.5414/CN108301.

578 Casts in urine: Image C. Granular cysts. Courtesy of Dr. Adam Weinstein.

578 Casts in urine: Image D. Waxy casts. This image is a derivative work, adapted from the following source, available under ــ: Courtesy of Iqbal Osman.

578 Casts in urine: Image E. Hyaline casts. Courtesy of Dr. Adam Weinstein.

580 Nephrotic syndrome: Image B. Histology of focal segmental glomerulosclerosis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

580 Nephrotic syndrome: Image D. Diabetic glomerulosclerosis with Kimmelstiel-Wilson lesions. This image is a derivative work, adapted from the following source, available under @o.

Courtesy of Doc Mari．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under ©．

581 Nephritic syndrome：Image A．Histology of acute poststreptococcal glomerulonephritis．This image is a derivative work，adapted from the following source，available under 용．Courtesy of Dr．Michael Bonert．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠．．

581 Nephritic syndrome：Image B．This image is a derivative work，adapted from the following source，available under
 glomerulonephritis．Oda T，Yoshizawa N，Yamakami K， et al．The role of nephritis－associated plasmin receptor （naplr）in glomerulonephritis associated with streptococcal infection．Biomed Biotechnol．2012；2012：417675．DOI： 10．1155／2012／417675．

581 Nephritic syndrome：Image C．Histology of rapidly progressive glomerulonephritis． Health and Human Services and Uniformed Services University of the Health Sciences．

581 Nephritic syndrome：Image E．Membranoproliferative glomerulonephritis with＂tram tracks＂appearance on H\＆E stain．Courtesy of Dr．Adam Weinstein．

581 Nephritic syndrome：Image E．Membranoproliferative glomerulonephritis with＂tram tracks＂appearance on PAS． Courtesy of Dr．Adam Weinstein．

582 Kidney stones：Image D．Uric acid crystals．Courtesy of Dr．Adam Weinstein．

583 Hydronephrosis．Ultrasound．This image is a derivative work， adapted from the following source，available under 뜽． Courtesy of Wikimedia Commons．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under 뚀 운．

583 Renal cell carcinoma：Image A．Histoilogy．This image is a derivative work，adapted from the following source，available under＠๔．．Courtesy of Dr．Yale Rosen．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠o．．

583 Renal cell carcinoma：Image B．Gross specimen．줒 Courtesy of Dr．Ed Uthman．

583 Renal cell carcinoma：Image C．CT scan．This image is a derivative work，adapted from the following source，available under ■o． Behnes CL，Schlegel C，Shoukier M，et al．Hereditary papillary renal cell carcinoma primarily diagnosed in a cervical lymph node：a case report of a 30 －year－old woman with multiple metastases．BMC Urol．2013；13：3．DOI：10．1186／1471－2490－ 13－3．

583 Renal oncocytoma：Image A．Gross specimen．This image is a derivative work，adapted from the following source，available under 뜰：Courtesy of M．Emmanuel．

583 Renal oncocytoma：Image B．Histology．This image is a derivative work，adapted from the following source，available under ＠（．）．Courtesy of Dr．Michael Bonert．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠oo．

584 Nephroblastoma（Wilms tumor）．This image is a derivative work，adapted from the following source，available under ـロー：Refaie H，Sarhan M，Hafez A．Role of CT in assessment of unresectable Wilms tumor response after preoperative chemotherapy in pediatrics．Sci World J．2008；8：661－669．DOI： 10．1100／tsw．2008．96．

584 Transitional cell carcinoma：Image A．This image is a derivative work，adapted from the following source，available under 뜨를 Geavlete B，Stanescu F，Moldoveanu C，et al．NBI cystoscopy and bipolar electrosurgery in NMIBC management－an overview of daily practice．J Med Life．2013；6：140－145．PMCID PMC3725437．

585 Pyelonephritis：Image B．CT scan in acute pyelonephritis． Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology．

587 Acute tubular necrosis：Image A．Muddy brown casts．This image is a derivative work，adapted from the following source，available under＠ロ．Courtesy of Dr．Serban Nicolescu．

587 Renal papillary necrosis．저 Courtesy of the US Department of Health and Human Services and William D．Craig，Dr．Brent J． Wagner，and Mark D．Travis．

588 Renal cyst disorders：Image C．Ultrasound of simple cyst．This image is a derivative work，adapted from the following source， available under＠．．Courtesy of Nevit Dilmen．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠o．

## Reproductive

597 Fetal alcohol syndrome．Characteristic facies．This image is a derivative work，adapted from the following source，available under ©．Courtesy of Teresa Kellerman．The image may have been modified by cropping，labeling，and／or captions．MedIQ Learning，LLC makes this image available under＠®o．

600 Umbilical cord．Cross－section of normal umbilical cord．This image is a derivative work，adapted from the following source， available under＠o．Courtesy of Dr．Ed Uthman．The image may have been modified by cropping，labeling，and／or captions． MedIQ Learning，LLC makes this image available under＠o．

605 Uterine（Müllerian）duct anomalies：Images A－D．This image is a derivative work，adapted from the following source， available under Ahmadi F，Zafarani F，Haghighi H，et al．Application of 3D ultrasonography in detection of uterine abnormalities．Int J Fertil Steril．2011；4：144－147．PMCID PMC4023499．

608 Female reproductive epithelial histology．Transformation zone． This image is a derivative work，adapted from the following source，available under ©o：Courtesy of Dr．Ed Uthman．The image may have been modified by cropping，labeling，and／or captions．All rights to this adaptation by MedIQ Learning，LLC are reserved．

610 Seminiferous tubules．This image is a derivative work，adapted from the following source，available under＠o．Courtesy of Dr．Anlt Rao．The image may have been modified by cropping， labeling，and／or captions．MedIQ Learning，LLC makes this image available under ©．

622 Choriocarcinoma：Image B．＂Cannonball＂metastases．This image is a derivative work，adapted from the following source，
available under ©ـ: Lekanidi K, Vlachou PA, Morgan B, et al. Spontaneous regression of metastatic renal cell carcinoma: case report. J Med Case Rep. 2007;1:89. DOI: 10.1186/1752-1947-1-89.

623 Pregnancy complications. Ectopic pregnancy. This image is a derivative work, adapted from the following source, available under .-. Li W, Wang G, Lin T, et al. Misdiagnosis of bilateral tubal pregnancy: a case report. J Med Case Rep. 2014;8:342. DOI: 10.1186/1752-1947-8-342.

626 Vulvar pathology: Image A. Bartholin cyst. ㅈㅜㅉ Courtesy of the US Department of Health and Human Services and Susan Lindsley.

626 Vulvar pathology: Image B. Lichen sclerosis. This image is a derivative work, adapted from the following source, available under ـo-: Lambert J. Pruritus in female patients. Biomed Res Int. 2014;2014:541867. DOI: 10.1155/2014/541867.

626 Vulvar pathology: Image C. Vulvar carcinoma. This image is a derivative work, adapted from the following source, available under ـoㅁ: Ramli I, Hassam B. Carcinome épidermoïde vulvaire: pourquoi surveiller un lichen scléro-atrophique. Pan Afr Med J. 2015;21:48. DOI: 10.11604/pamj.2015.21.48.6018.

626 Vulvar pathology: Image D. Extramallary Paget disease. This image is a derivative work, adapted from the following source, available under ©o: Wang X, Yang W, Yang J. Extramammary Paget's disease with the appearance of a nodule: a case report. BMC Cancer. 2010;10:405. DOI: 10.1186/1471-2407-10-405.

627 Polycystic ovarian syndrome (Stein-Leventhal syndrome). This image is a derivative work, adapted from the following source, available under Lo: Lujan ME, Chizen DR, Peppin AK, et al. Improving inter-observer variability in the evaluation of ultrasonographic features of polycystic ovaries. Reprod Biol Endocrinol. 2008;6:30. DOI: 10.1186/1477-7827-6-30.

628 Ovarian neoplasms: Image C. Mature cystic teratoma. This image is a derivative work, adapted from the following source, available under @... Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...

628 Ovarian neoplasms: Image D. Call-Exner bodies. This image is a derivative work, adapted from the following source, available under Katoh T, Yasuda M, Hasegawa K, et al. Estrogenproducing endometrioid adenocarcinoma resembling sex cordstromal tumor of the ovary: a review of four postmenopausal cases. Diagn Pathol. 2012;7:164. DOI: 10.1186/1746-1596-7164.

628 Ovarian neoplasms: Image E. Dysgerminoma.This image is a derivative work, adapted from the following source, available under Lـ: Montesinos L, Acien P, Martinez-Beltran M, et al. Ovarian dysgerminoma and synchronic contralateral tubal pregnancy followed by normal intra-uterine gestation: a case report. J Med Rep. 2012;6:399. DOI: 10.1186/1752-1947-6-399.

628 Ovarian neoplasms: Image F. Yolk sac tumor. This image is a derivative work, adapted from the following source, available under @. Courtesy of Jensflorian. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @®o.

630 Endometrial conditions: Image A. Leiomyoma (fibroid), gross specimen. This image is a derivative work, adapted from the following source, available under Courtesy of Hic et nunc.

630 Endometrial conditions: Image B. Leiomyoma (fibroid) histology. This image is a derivative work, adapted from the following source, available under Londero AP, Perego P, Mangioni C, et al. Locally relapsed and metastatic uterine leiomyoma: a case report. J Med Case Rep. 2008;2:308. DOI: 10.1186/1752-1947-2-308. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

630 Endometrial conditions: Image D. Endometritis with inflammation of the endometrium. This image is a derivative work, adapted from the following source, available under Montesinos L, Acien P, Martinez-Beltran M, et al. Ovarian dysgerminoma and synchronic contralateral tubal pregnancy followed by normal intra-uterine gestation: a case report. J Med Rep. 2012;6:399. DOI: 10.1186/1752-1947-6-399.

630 Endometrial conditions: Image E. Endometrial tissue found outside the uterus. This image is a derivative work, adapted from the following source, available under Hastings JM, Fazleabas AT. A baboon model for endometriosis: implications for fertility. Reprod Biol Endocrinol. 2006;4(suppl 1):S7. DOI: 10.1186/1477-7827-4-S1-S7.

631 Benign breast disease: Image A. Fibroadenomas. This image is a derivative work, adapted from the following source, available under ©o. Gokhale S. Ultrasound characterization of breast masses. Indian J Radiol Imaging. 2009 Aug;19(3):242-247. DOI: 10.4103/0971-3026.54878.

631 Benign breast disease: Images B (phyllodes tumor on ultrasound) and C (phyllodes cyst). This image is a derivative work, adapted from the following source, available under 응: Muttarak MD, Lerttumnongtum P, Somwangjaroen A, et al. Phyllodes tumour of the breast. Biomed Imaging Interv J. 2006 Apr-Jun;2(2):e33. DOI: 10.2349/biij.2.2.e33.

632 Malignant breast tumors: Image B. Comedocarcinoma. This image is a derivative work, adapted from the following source, available under Costarelli L, Campagna D, Mauri M, et al. Intraductal proliferative lesions of the breast-terminology and biology matter: premalignant lesions or preinvasive cancer? Int J Surg Oncol. 2012;501904. DOI: 10.1155/2012/501904. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

632 Malignant breast tumors: Image C. Paget disease of breast. This image is a derivative work, adapted from the following source, available under Muttarak M, Siriya B, Kongmebhol P, et al. Paget's disease of the breast: clinical, imaging and pathologic findings: a review of 16 patients. Biomed Imaging Interv J. 2011;7:e16. DOI: 10.2349/biij.7.2.el6.

632 Malignant breast tumors: Image D. Invasive lobular carcinoma. This image is a derivative work, adapted from the following source, available under .o. Franceschini G, Manno A, Mule A, et al. Gastro-intestinal symptoms as clinical manifestation of peritoneal and retroperitoneal spread of an invasive lobular breast cancer: report of a case and review of the literature. BMC Cancer. 2006;6:193. DOI: 10.1186/1471-2407-6-193.

632 Malignant breast tumors: Image E. Peau d'orange of inflammatory breast cancer. This image is a derivative work, adapted from the following source, available under Le: Levine PH, Zolfaghari L, Young H, et al. What Is inflammatory breast cancer? Revisiting the case definition. Cancers (Basel). 2010 Mar;2(1):143-152. DOI: 10.3390/cancers2010143.

633 Varicocele. Dilated pampiniform veins. Courtesy of Dr. Bruce R. Gilbert.

634 Scrotal masses. Congenital hydrocele. This image is a derivative work, adapted from the following source, available under
©ـo: Leonardi S, Barone P, Gravina G, et al. Severe Kawasaki disease in a 3-month-old patient: a case report. BMC Res Notes. 2013;6:500. DOI: 10.1186/1756-0500-6-500.

## Respiratory

643 Alveolar cell types: Image A. Electron micrograph of type II pneumocyte. This image is a derivative work, adapted from the following source, available under 뜬: Fehrenbach H, Tews S, Fehrenbach A, et al. Improved lung preservation relates to an increase in tubular myelin-associated surfactant protein A. Respir Res. 2005 Jun;21;6:60. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

643 Alveolar cell types: Image B. Micrograph of type II pneumocyte. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. Thomas Caceci.

643 Neonatal respiratory distress syndrome. This image is a derivative work, adapted from the following source, available under Alorainy IA, Balas NB, Al-Boukai AA. Pictorial essay: infants of diabetic mothers. Indian J Radiol Imaging. 2010;20:174-181. DOI: 10.4103/0971-3026.69349.

645 Lung relations: Image A. X-ray of normal lung. This image is a derivative work, adapted from the following source, available under Namkoong H, Fujiwara H, Ishii M, et al. Immune reconstitution inflammatory syndrome due to Mycobacterium avium complex successfully followed up using 18 F -fluorodeoxyglucose positron emission tomography-computed tomography in a patient with human immunodeficiency virus infection: A case report. BMC Med Imaging. 2015;15:24. DOI: 10.1186/s12880-015-0063-2.

645 Lung relations: Image B. This image is a derivative work, adapted from the following source, available under 뜬: Wang JF, Wang B, Jansen JA, et al. Primary squamous cell carcinoma of lung in a 13-year-old boy: a case report. Cases J. 2008 Aug;22;1(1):123. DOI: 10.1186/1757-1626-1-123. The image may have been modified by cropping, labeling, and/or captions. All rights to this adaptation by MedIQ Learning, LLC are reserved.

653 Rhinosinusitis. This image is a derivative work, adapted from the following source, available under ©-: Strek P, Zagolski O, Sktadzien J. Fatty tissue within the maxillary sinus: a rare finding. Head Face Med. 2006;2:28. DOI: 10.1186/1746-160X-228.

653 Deep venous thrombosis. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

654 Pulmonary emboli: Image C. CT scan. This image is a derivative work, adapted from the following source, available under ©o․ Courtesy of Dr. Carl Chartrand-Lefebvre. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @...

657 Obstructive lung diseases: Image A. Lung tissue with enlarged alveoli in emphysema. This image is a derivative work, adapted
from the following source, available under ©. Courtesy of Dr. Michael Bonnert.

657 Obstructive lung diseases: Image B. CT of centriacinar emphysema. Courtesy of the US Department of Health and Human Services and Dr. Edwin P. Ewing, Jr.

657 Obstructive lung diseases: Image C. Emphysema histology. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @요

657 Obstructive lung diseases: Image D. Barrel-shaped chest in emphysema. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

657 Obstructive lung disease: Image E. Curschmann spirals. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o. Dr. James Heilman.

657 Obstructive lung diseases: Image F. Mucus plugs in asthma. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/ or captions. MedIQ Learning, LLC makes this image available under @응

657 Obstructive lung diseases: Image G. Charcot-Leyden crystals on bronchalverolar lavage. This image is a derivative work, adapted from the following source, available under 뜽: Gholamnejad M, Rezaie N. Unusual presentation of chronic eosinophilic pneumonia with "reversed halo sign": a case report. Iran J Radiol. 2014 May;11(2):e7891. DOI: 10.5812/iranjradiol.7891.

657 Obstructive lung disease: Image H. Bronchiectasis in cystic fibrosis. This image is a derivative work, adapted from the following source, available under @o.. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뚱.

657 Restrictive lung diseases: Image A. Pulmonary fibrosis. This image is a derivative work, adapted from the following source, available under Walsh SLF, Wells AU, Sverzellati N, et al. Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease. BMC Med. 2015;13:241. DOI: 10.1186/s12916-015-0479-0.

658 Sarcoidosis: Images B (X-ray of the chest) and C (CT of the chest).
This image is a derivative work, adapted from the following source, available under @ــ口: Lǿnborg J, Ward M, Gill A, et al. Utility of cardiac magnetic resonance in assessing right-sided heart failure in sarcoidosis. BMC Med Imaging. 2013;13:2. DOI: 10.1186/1471-2342-13-2.

658 Inhalational injury and sequelae: Images A (18 hours after inhalation injury) and $\mathbf{B}$ ( 11 days after injury). This image is a derivative work, adapted from the following source, available under ©ـ: Bai C, Huang H, Yao X, et al. Application of flexible bronchoscopy in inhalation lung injury. Diagn Pathol. 2013;8:174. DOI: 10.1186/1746-1596-8-174.

659 Pneumoconioses: Image A. Pleural plaques in asbestosis. This image is a derivative work, adapted from the following source, available under @o․ Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @ㅇ..

659 Pneumoconioses: Image B. CT scan of asbestosis. This image is a derivative work, adapted from the following source, available under Miles SE, Sandrini A, Johnson AR, et al. Clinical consequences of asbestos-related diffuse pleural thickening: a review. J Occup Med Toxicol. 2008;3:20. DOI: 10.1186/1745-6673-3-20.

659 Pneumoconioses: Image C. Ferruginous bodies in asbestosis. This image is a derivative work, adapted from the following source, available under @. Courtesy of Dr, Michael Bonert. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under ©.ㅇ․

660 Mesothelioma. This image is a derivative work, adapted from the following source, available under ■o: Weiner SJ, NeragiMiandoab S. Pathogenesis of malignant pleural mesothelioma and the role of environmental and genetic factors. J Carcinog. 2008;7:3. DOI: 10.1186/1477-3163-7-3.

660 Acute respiratory distress syndrome: Image B. Bilateral lung opacities. This image is a derivative work, adapted from the following source, available under © Imanaka H, Takahara B, Yamaguchi H, et al. Chest computed tomography of a patient revealing severe hypoxia due to amniotic fluid embolism: a case report. J Med Case Reports. 2010;4:55. DOI: 10.1186/1752-1947-4-55.

662 Pleural effusions: Images $\mathbf{A}$ (before treatment) and $\mathbf{B}$ (after treatment). This image is a derivative work, adapted from the following source, available under @ـO: Toshikazu A, Takeoka H, Nishioka K, et al. Successful management of refractory pleural effusion due to systemic immunoglobulin light chain amyloidosis by vincristine adriamycin dexamethasone chemotherapy: a case report. Med Case Rep. 2010;4:322. DOI: 10.1186/1752-1947-4-322.

664 Pneumonia: Image B. Lobar pneumonia, gross specimen. This image is a derivative work, adapted from the following source, available under @.. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

664 Pneumonia: Image C. Acute inflammatory infiltrates in bronchopneumonia. This image is a derivative work, adapted
from the following source, available under @. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under 뜽.

664 Pneumonia: Image D. Bronchopneumonia, gross specimen. This image is a derivative work, adapted from the following source, available under @o. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

665 Lung cancer: Image B. Adenocarcinoma histology. © Courtesy of the US Department of Health and Human Services and the Armed Forces Institute of Pathology.

665 Lung cancer: Image C. Squamous cell carcinoma. This image is a derivative work, adapted from the following source, available under Courtesy of Dr. James Heilman. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

665 Lung cancer: Image E. Large cell lung cancer. This image is a derivative work, adapted from the following source, available under © Jala VR, Radde BN, Haribabu B, et al. Enhanced expression of G-protein coupled estrogen receptor (GPER/ GPR30) in lung cancer. BMC Cancer. 2012;12:624. DOI: 10.1186/1471-2407-12-624.

666 Lung abscess: Image A. Gross specimen. This image is a derivative work, adapted from the following source, available under @.. Courtesy of Dr. Yale Rosen. The image may have been modified by cropping, labeling, and/or captions. MedIQ Learning, LLC makes this image available under @o.

666 Lung abscess: Image B. X-ray. This image is a derivative work, adapted from the following source, available under -ـ: Courtesy of Dr. Yale Rosen.

666 Pancoast tumor. This image is a derivative work, adapted from the following source, available under Manenti G, Raguso M, D'Onofrio S, et al. Pancoast tumor: the role of magnetic resonance imaging. Case Rep Radiol. 2013;2013:479120. DOI: 10.1155/2013/479120.

666 Superior vena cava syndrome: Images A (blanching of skin with pressure) and $\mathbf{B}$ (CT of chest). This image is a derivative work, adapted from the following source, available under 뜬: Shaikh I, Berg K, Kman N. Thrombogenic catheter-associated superior vena cava syndrome. Case Rep Emerg Med. 2013;2013:793054. DOI: 10.1155/2013/793054.

Index

## A

A-a gradient
in elderly, 650
with hypoxemia, 651
restrictive lung disease, 657
Abacavir, 201, 203
Abciximab, 122
Glycoprotein IIb/IIIa inhibitors, 425
thrombogenesis and, 403
Abdominal aorta, 357
atherosclerosis in, 298, 683
bifurcation of, 645
Abdominal aortic aneurysm, 298
Abdominal colic
lead poisoning, 407
Abdominal distension
intestinal aresia, 353
Abdominal pain
bacterial peritonitis, 384
Budd-Chiari syndrome, 386, 672
cilostazol/dipyridamole, 425
Clostridium difficile, 671
diabetic ketoacidosis and, 345
ectopic pregnancy, 624
Henoch-Schönlein purpura, 309, 672
hypercalcemia, 575
hyperparathyroidism, 340
intussusception, 379
irritable bowel syndrome, 377
McBurney point, 377
McBurney sign, 672
Meckel diverticulum, 600
pancreas divisum, 353
pancreatic cancer, 391
panic disorder, 547
periumbilical, 377
polyarteritis nodosa, 308
porphyria, 413
postprandial, 357
RLQ pain, 378
Rovsing sign, 672
RUQ, 390
Abdominal striae, 331
Abdominal wall inguinal hernias, 363
ventral defects, 352
Abducens nerve (CN VI), 490
location, 488
ocular motility, 524
palsy, 525
pathway for, 489
Abduction
arm, 434
hand, 434
hip, 443
Abductor digiti minimi muscle, 436

Abductor pollicis brevis muscle, 436
Abetalipoproteinemia, 94, 404
Abnormal passive abduction, 440
Abnormal passive adduction, 440
Abnormal uterine bleeding (AUB),

## 614

ABO blood classification, 400
newborn hemolysis, 400
Abruptio placentae, 623
cocaine use, 596
preeclampsia, 625
Abscess, 466
lung, 666
Absence seizures, 501
drug therapy for, 528
treatment, 681
Absolute risk reduction (ARR), 254, 687
Absorption disorders and anemia, 406
AB toxin, 132
Abuse
confidentiality exceptions, 264
dependent personality disorder and, 549
intimate partner violence, 263
Acalculia, 495
Acalculous cholecystitis, 390
Acamprosate
alcoholism, 555, 681
Acanthocytes, 404
Acanthocytosis, 70
Acantholysis, 462
pemphigus vulgaris and, 467
Acanthosis, 462
psoriasis, 464
Acanthosis nigricans, 221, 468
acanthosis and, 462
stomach cancer, 373
Acarbose, 349
Accessory nerve (CN XI), 490
arm abduction, 434
lesion of, 516
location, 488
pathway for, 489
Accessory pancreatic duct, 353, 362
Accuracy vs precision, 255
Acebutolol, 241
angina and, 312
ACE inhibitors, 592
acute coronary syndromes, 302
Cl esterase inhibitor deficiency, 107
dilated cardiomyopathy, 303
dry cough, 246
heart failure, 304
hypertension, 310
naming convention for, 248
preload/afterload effects, 279
teratogenicity, 596
Acetaldehyde, 72
Acetaldehyde dehydrogenase, 72
Acetaminophen, 470
vs aspirin for pediatric patients, 470
free radical injury and, 216
hepatic necrosis from, 244
for osteoarthritis, 454
tension headaches, 502
toxicity effects, 470
toxicity treatment for, 243
Acetazolamide, 247, 535, 590
metabolic acidosis, 576
in nephron physiology, 569
pseudotumor cerebri, 505
site of action, 589
Acetoacetate metabolism, 90
Acetone breath, 345
Acetylation
chromatin, 34
posttranslation, 45
Acetylcholine (ACh)
anticholinesterase effect on, 236
change with disease, 479
in nervous system, 233
opioid analgesics, 534
pacemaker action potential and, 287
Acetylcholine (ACh) receptor agonists, 233, 534
in cholinergic drugs, 235
Acetylcholine (AChR) receptors, 221
Acetylcholinesterase (AChE)
cholinesterase inhibitor poisoning, 236
malathion, 200
neural tube defects and, 475
Acetylcholinesterase (AChE) inhibitors
Alzheimer disease, 532
in cholinergic drugs, 235
naming convention for, 248
for neuromuscular junction disease, 459
toxicity treatment for, 243
Acetyl-CoA carboxylase
fatty acid synthesis, 73
vitamin $B_{7}$ and, 68
Achalasia, 370
esophageal cancer and, 372
LES tone in, 365
Achilles reflex, 494
lumbosacral radiculopathy, 445
Achilles tendon xanthomas, 297, 670
Achlorhydria
stomach cancer, 373
VIPomas, 365

Achondroplasia, 448
chromosome disorder, 64
endochondral ossification in, 447
inheritance, 60
AChR (acetylcholine receptor), 221
Acid-base physiology, 576
Acidemia, 576
diuretic effect on, 591
Acid-fast, 140
Acid-fast oocysts, 177
Acid-fast organisms, 126, 140, 155
Acidic amino acids, 81
Acid maltase, 86
Acidosis, 574, 576
contractility in, 279
hyperkalemia with, 574
Acid phosphatase in neutrophils, 396
Acid reflux
esophageal pathology and, 371
$\mathrm{H}_{2}$ blockers for, 392
proton pump inhibitors for, 392
Acid suppression therapy, 392
Acinetobacter spp.
nosocomial infections, 185
taxonomy, 125
Acinetobacter baumannii
highly resistant bacteria, 198
Acne, 462, 464
danazol, 638
PCOS, 627
tetracyclines for, 192
Acoustic schwannomas, 674
Acquired hydrocele (scrotal), 634
Acrodermatitis enteropathica, 71
Acromegaly, 341
carpal tunnel syndrome, 435
GH, 325
octreotide for, 393
somatostatin analogs for, 323
somatostatin for, 350
Acromion, 434
ACTH. See Adrenocorticotropic hormone (ACTH)
Actin
cytoskeleton, 48
muscular dystrophies, 61
Actin filaments
epithelial cells, 461
Acting out, 538
Actinic keratosis, 468
associations of, 685
squamous cell carcinoma, 469
Actinomyces spp.
anaerobic organism, 127
Gram-positive algorithm, 134
Nocardia spp. vs, 139
penicillin G/V for, 187

Actinomyces israelii
labs/findings, 675
oral infections, 186
pigment production, 129
Action/willpower, 552
Activated carriers, 75
Active errors, 268
Active immunity, 110
Acute chest syndrome, 410
Acute cholestatic hepatitis
as drug reaction, 244
macrolides, 193
Acute coronary syndrome
ADP receptor inhibitors for, 425
heparin for, 423
nitrates for, 311
treatments for, $\mathbf{3 0 2}$
Acute cystitis, 578
Acute disseminated (postinfectious) encephalomyelitis, 508
Acute dystonia, 237, 553
Acute gastritis, 373
Acute hemolytic transfusion reactions, 114
Acute hemorrhagic cystitis, 164
Acute inflammatory demyelinating polyradiculopathy, 508
Acute intermittent porphyria, 413
Acute interstitial nephritis, 587
Acute kidney injury, 586
Acute lymphoblastic leukemia (ALL), 420
associations with, 685
methotrexate for, 427
oncogenes and, 222
Acute mesenteric ischemia, 380
Acute myelogenous leukemia (AML), 420
chromosomal translocations, 422
cytarabine for, 427
myelodysplastic syndromes, 419
Acute myeloid leukemia (AML) associations with, 685
Acute pancreatitis, 391
associations, 685
DIC and, 685
hyperparathyroidism, 340
necrosis and, 209
Acute pericarditis, 306
Acute-phase proteins, 108, 211
Acute-phase reactants, 211
IL-6, 108
Acute poststreptococcal glomerulonephritis, 581
Acute promyelocytic leukemia all-trans retinoic acid for, 66 treatment, 681
Acute pulmonary edema
opiod analgesics, 534
Acute pyelonephritis, 585
labs/findings, 678
renal papillary necrosis and, 587
WBC casts in, 578
Acute renal failure, 586
Acute respiratory distress syndrome (ARDS), 660
acute pancreatitis, 391
eclampsia and, 625
inhalational injury, 658
Acute stress disorder, 548
Acute transplant rejection, 119
Acute tubular necrosis, 587
Acyclovir, 201
Adalimumab, 122, 472
for Crohn disease, 376

## Adaptive immunity, 99

Addiction, 552
Addison disease, 332
metabolic acidosis in, 576
presentation, 672
Additive drug interactions, 229
Adduction
arm (rotator cuff), 434
hand, 436
hip, 443
thigh, 442
Adductor brevis, 442
Adductor longus, 442, 443
Adductor longus muscle, 362
Adductor magnus, 442
Adenine
methylation of, 34
Shiga/Shiga-like toxins and, 132
Adenocarcinoma
lungs, 665
Adenocarcinomas
carcinogens causing, 223
esophagus, 372
gallbladder, 390
gastric, 214, 223
lung, 222
nomenclature for, 220
nonbacterial thrombotic endocarditis and, 221
pancreas, 362, 391
pancreatic, 224
paraneoplastic syndromes, 221
pectinate line, 360
prostatic, 635
stomach, 373, 684
Adenohypophysis, 321
embryologic derivatives, 595
hypothalamus and, 480
Adenomas
bone, 451
colorectal, 383
nomenclature for, 220
primary hyperparathyroidism, 339
salivary gland, 370
thyroid, 338
Adenomatous colonic polyps, 381
Adenomyosis (endometrial), 630 uterine bleeding from, 614
Adenopathy
Kawasaki disease, 308
Whipple disease, 672
Adenosine
as antiarrhythmic drug, 317
blood flow regulation, 292
pacemaker action potential and, 287
Adenosine deaminase deficiency, 37, 117
Adenosine triphosphate (ATP)
in electron transport chain, 78
in glycogen regulation, 85
nephron physiology, 569
production of, 74, 78
in TCA cycle, 77
in urea cycle, 82
Adenosine triphosphate (ATP) synthase inhibitors, 78
Adenoviruses
characteristics of, 164
conjunctivitis, 518
pneumonia, 664
viral envelope, 163
Adherens junctions, 461
Adhesions, 380

Adipose lipolysis, 313
Adipose stores, 91
Adipose tissue
estrogen production, 611
Adjustment disorder, 547
Adoption studies, 252
ADPKD (Autosomal dominant polycystic kidney disease)
saccular aneurysms and, 500
ADP receptor inhibitors, $\mathbf{4 2 5}$
ADP ribosyltransferases, 132
Adrenal adenomas
Cushing syndrome, 331
hyperaldosteronism, 332
Adrenal carcinomas
Cushing syndrome, 331
Li-Fraumeni syndrome, 222
P-glycoprotein in, 225
Adrenal cortex, 320
embryologic derivatives, 595
progesterone production, 611
Adrenal enzyme deficiencies (congenital), 326
Adrenal hemorrhage, 671
Waterhouse-Friderichsen syndrome, 332
Adrenal hyperplasia
Cushing syndrome, 331
hyperaldosteronism and, 332
Adrenal insufficiency, 332
adrenoleukodystrophy, 47
anovulation with, 627
fludrocortisone for, 350
vitamin $\mathrm{B}_{5}$ deficiency, 67
Adrenal medulla, 320
innervation, 233
neuroblastomas of, 333
pheochromocytomas in, 334
tumors, 684
Adrenal steroids, 326
Adrenal zona fasciculata, 327
Adrenocortical adenomas, 684
Adrenocortical atrophy
Addison disease, 332
exogeneous corticosteroids, 331
Adrenocortical insufficiency
as drug reaction, 244
presentation, 672
Adrenocorticotropic hormone (ACTH)
adrenal cortex regulation of, 320
adrenal insufficiency and, 332
in Cushing syndrome, 221, 331
secretion of, 321
signaling pathways of, 330
Adrenoleukodystrophy, 47, 508
Adrenoreceptors, 235
Adults
common causes of death, 266
Adult T-cell leukemia, 223
Adult T-cell lymphoma, 418
Advance directives, 261
Adverse effects/events
ACE inhibitors, 592
acetazolamide, 588
antacids, 393
antidepressant drugs, 559-560
antipsychotic drugs, 557
atropine, 237
$\beta$-blockers, 241
cardiotoxicity, 431
cardiovascular, 243
cimetidine, 392
CNS toxicity, 428
femoral stress fracture, 471
from lithium, 558
in geriatric patients, 242
herpes zoster reactivation, 430
leukoencephalopathy, 428
local anesthetics, 533
loop diuretics, 590
opioid analgesics, 534
osteonecrosis of jaw, 471
ototoxicity, 428, 590
proton pump inhibitors, 392
restrictive lung disease, 657
Reye syndrome as, 471
spironolactone endocrine effects, 591
tardive dyskinesia, 394
teratogenicity, 424, 427, 471
thromboembolic events, 431
toxicities and side effects, 243-247
Aedes mosquitoes
yellow fever transmission, 168
Aerobic metabolism
ATP production, 74
fed state, 91
Vitamin $B_{1}$ (thiamine), 66
Aerobic organisms
culture requirements, 127
Afferent arteriole, 564
ANP/BNP effect on, 572
constriction of, 567
dopamine effects, 573
filtration, 567
Afferent nerves, 291
Aflatoxin
as carcinogen, 223
hepatocellular carcinoma, 386
Aflatoxins, 153
African sleeping sickness, 156
Afterload
auscultation and, 284
cardiac output, 279
hydralazine, 311
in shock, 305
Agammaglobulinemia
chromosome affected, 64
Agars (bacterial culture), 127
Agenesis, 595
Müllerian, 604
uterovaginal, 621
Age-related amyloidosis, 218
Age-related macular degeneration, 520
Aging changes, 264
Agnosia, 495
Agonist potency and efficacy, 230
Agoraphobia, 547
Agranulocytosis, 557
clozapine, 557
as drug reaction, 245
sulfa drug allergies, 247
thionamides, 349
Agraphia, 495
AIDS (acquired immunodeficiency syndrome)
bacillary angiomatosis, 465
brain abscess, 180
Candida albicans, 153
cryptococcal meningitis, 199
Cryptosporidium, 155
Cytomegalovirus (CMV), 165
human herpesvirus 8, 165
labs/findings, 675
marijuana for, 555
mycobacteria, 140

Pneumocystis jirovecii, 154
primary central nervous system lymphoma (PCL), 418
retinitis, 165
retroviruses, 167
timecouse (untreated), 176
AIDS retinitis, 165
Air emboli, 654
Airways (conducting zone), 644
Akathisia, 482, 503
antipsychotic drugs and, 557
Akinesia, 504
Akinesia in Parkinson disease, 674
ALA dehydratase, 407, 413
Alanine
ammonia transport, 82
pyruvate dehydrogenase complex deficiency, 77
Alanine aminotransferase (ALT), 77, 384
Alar plate, 474
Albendazole
cestodes, 160
Albinism, 463
catecholamine synthesis, 83
locus heterogeneity, 57
ocular, 60
Albright hereditary osteodystrophy, 339
Albumin, 211
calcium and, 327
as liver marker, 384
plasma volume and, 565
Albuminocytologic dissociation (CSF), 508
Albuminuria
glomerular filtration barrier, 565
Albuterol, 238
asthma, 668
Alcohol dehydrogenase, 72
Alcohol exposure
in utero, 296
Alcoholic cirrhosis, 71, 385
cholelithiasis and, 390
Alcoholic hepatitis, 385
Alcoholic liver disease, $\mathbf{3 8 5}$
Alcoholism, 555
anemia, 408
in anemia taxonomy, 406
cardiomyopathy, 303
cataracts and, 519
cirrhosis and, 383
common organisms affecting, 179
esophageal cancer, 372
ethanol metabolism and, 72
folate deficiency, 408
gastritis in, 373
hepatitis, 361
hypertension and, 296
ketone bodies in, 90
Klebsiella in, 145
Korsakoff syndrome, 542
liver serum markers in, 384
lung abscesses and, 666
magnesium levels in, 328
Mallory-Weiss syndrome in, 371
osteonecrosis in, 450
osteoporosis and, 449
pancreatitis, 244, 391
porphyria, 413
sideroblastic anemia, 407
subdural hematomas, 497
treatment, 681
vitamin $\mathrm{B}_{1}$ deficiency, 66
vitamin $\mathrm{B}_{9}$ deficiency, 68
wet beriberi, 670
Alcohol-related disorders
readmissions with, 266
Alcohol use
essential tremor, 503
gout and, 455
head and neck cancer, 653
intoxication and withdrawal, 554
loss of orientation, 541
sexual dysfunction, 551
sleep, 481
suicide and, 546
teratogenic effects, 596
Alcohol withdrawal
benzodiazepines, 542
drug therapy, 556
hallucinations in, 543
Aldesleukin, 121
Aldolase B, 80
Aldose reductase, 81
Aldosterone, 572
adrenal cortex secretion of, 320
kidney effects, 574
nephron physiology, 569
primary adrenal insufficiency, 332
SIADH, 342
signaling pathways for, 330
Aldosterone antagonists, 310
Aldosterone synthase, 326
Alemtuzumab, 122
Alendronate, 471
Alirocumab, 313
Aliskiren, 592
Alkalemia, 576
diuretic effects, 591
Alkaline phosphatase (ALP), 384, 450
bone disorder lab values, 451
hyperparathyroidism and, 340
Paget disease of bone, 450
in thyroid storm, 337
as tumor marker, 224
Alkalosis, 574, 576
bulimia nervosa, 550
hypokalemia with, 574
metabolic, 332
Alkaptonuria, 83, 84
ALK gene, 222
lung cancer, 665
Alkylating agents, 428
as carcinogens, 223
in cell cycle, 426
targets of, 426
teratogenicity of, 596
Allantois, 600
Allelic heterogeneity, 57
Allergic bronchopulmonary aspergillosis, 153
Allergic contact dermatitis, 464
Allergic reaction
blood transfusion, 114
Allergic rhinitis, 464
Allergies, 112
Allografts, 118
Allopurinol
for gout, 455, 472
gout, 681
kidney stones, 582
Lesch-Nyhan syndrome, 37 rash with, 245
All-trans retinoic acid, 66 acute promyelocytic leukemia, 681 Alopecia
doxorubicin, 428
etoposide/teniposide, 429
minoxidil for, 639
syphilis, 147
tinea capitis, 152
vitamin A toxicity, 66
vitamin $\mathrm{B}_{5}$ deficiency, 67
vitamin $B_{7}$ deficiency, 68
$\alpha-1,4-g l u c o s i d a s e$
glycogen metabolism, 86
$\alpha_{1}$-antagonists
benign prostatic hyperplasia, 682
BPH treatment, 635
naming convention for, 248
$\alpha_{1}$-antitrypsin
elastin and, 52
$\alpha_{1}$-antitrypsin deficiency, 52, 386
emphysema, 656
$\alpha_{1}$-selective blockers, 240
$\alpha_{2}$-agonists, 239
$\alpha_{2}$-antagonists, 560
$\alpha_{2}$-selective blockers, 240
$\alpha$-adrenergic agonists, 667
$\alpha$-agonists
glaucoma treatment, 535
$\alpha$-amanitin
RNA polymerase inhibition, 41
$\alpha$-amylase, 367
$\alpha$-antagonists
for pheochromocytomas, 334
pheochromocytomas, 680
$\alpha$-blockers, 240
Beers criteria, 242
for cocaine overdose, 554
$\alpha$ cells, 321
glucagonomas in, 346
glucagon production by, 323
$\alpha$-dystroglycan
muscular dystrophy, 61
$\alpha$-fetoprotein
anencephaly, 673
ataxia-telangiectasia, 117
in hepatocellular carcinoma, 386
neural tube defects, 475
spina bifida, 673
as tumor marker, 224
yolk sac tumors, 634
$\alpha$-galactosidase A
Fabry disease, 88
$\alpha$-glucosidase inhibitors, 349
$\alpha$-hemolytic bacteria, 135
$\alpha$-ketoglutarate
hyperammonemia and, 82
$\alpha$-ketoglutarate dehydrogenase
metabolic pathways, 74
TCA cycle, 77
vitamin $\mathrm{B}_{1}$ and, 66
$\alpha$-methyldopa, 239
anemia and, 411
gestational hypertension, 625
$\alpha$-oxidation, 47
Alpha rhythm (EEG), 481
$\alpha$-synuclein, 504
$\alpha$-thalassemia, 406
$\alpha$ toxin, 133, 138
$\alpha$ (type I) error, 258
Alport syndrome, 581
cataracts and, 519
collagen deficiency in, 50
inheritance of, 59
presentation, 670
Alprazolam, 529
ALT (alanine transaminase)
hepatitis viruses, 172
toxic shock syndrome, 135

Alteplase (tPA), 401, 425
Alternative hypothesis, 257
Alternative medical therapy, 263
Altitude sickness, 652
acetazolamide for, 590
Altruism, 539
Aluminum hydroxide, 393
Alveolar cell types, 643
Alveolar dead space, 646
Alveolar gas equation, 650, 688
Alveolar macrophages, 643, 644
Alveolar $\mathrm{PO}_{2}, 650$
Alveolar sacs, 644
Alveolar stage (development), 642
Alveolar ventilation, 646
Alveoli, 642
pneumocytes, 643
Alzheimer disease, 504
amalyoidosis in, 218
Down syndome and, 63
drug therapy for, 236,532
labs/findings, 677, 686
neurotransmitters for, 479
ventriculomegaly with, 506
Amanita phalloides
necrosis caused by, 244
RNA polymerase inhibition, 41
Amantadine, 201, 531
Ambiguous genitalia
46,XY DSD, 621
ovotesticular disorder of sex development, 620
placental aromatase deficiency, 621
Amenorrhea
antiandrogens, 639
cirrhosis, 383
Cushing syndrome, 331
cystic fibrosis, 60
ectopic pregnancy and, 624
menopause, 617
Müllerian agenesis, 604
PCOS, 627
pituitary adenoma and, 510
pituitary prolactinomas, 323
Turner syndrome, 620
Amide local anesthetics, 533
Amikacin, 187, 191
Amiloride, 591
for diabetes insipidus, 342
nephron physiology, 569
Amine precursor uptake decarboxylase (APUD), 333
Amines
MAO inhibitors, 559
Amine whiff test, 148
Amino acids
blood-brain barrier and, 480
branched, 84
classification of, 81
derivatives of, $\mathbf{8 3}$
genetic code for, 37
in histones, 34
metabolism, 90
purine and pyrimidine synthesis, 35
tRNA, 44
urea cycle, 82
Aminoaciduria
normal pregnancy, 568
Aminoacyl-tRNA, 45
Aminoacyl-tRNA synthase, 44
Aminocaproic acid
for thrombolytic toxicity, 425

Aminoglycosides, 191
acute tubular necrosis, 587
magnesium levels and, 328
mechanism (diagram), 187
pregnancy use, 204
Pseudomonas aeruginosa, 143, 679
teratogenicity, 596
toxicity of, 246
Aminopenicillins
mechanism and use, 188
Amiodarone, 316
hypothyroidism, 244
hypothyroidism with, 336
photosensitivity, 245
pulmonary fibrosis, 246
restrictive lung disease, 657
Amitriptyline, 559
migraine headaches, 502
tension headaches, 502
Amlodipine, 311
Ammonia
Ornithine transcarbamylase deficiency, 83
transport and intoxication, 82
Ammonium chloride
for drug overdoses, 231
Ammonium magnesium phosphate (kidney stones), 582
Amnesia
brain lesions, 495
classification of, 542
clinical drug-induced, 529
electroconvulsive therapy, 542
Amnionitis, 139
Amniotic fluid abnormalities, 624
Amniotic fluid emboli, 654
acute respiratory distress syndrome as cause, 660
Amoxapine, 559
Amoxicillin
clinical use, 188
Haemophilus influenzae, 142
Helicobacter pylori, 146
Lyme disease, 146
mechanism (diagram), 187
prophylaxis, 198
Amphetamines, 238
intoxication and withdrawal, 554
narcolepsy treatment, 551
as noradrenergic drug, 235
norepinephrine and, 235
pulmonary arterial hypertension, 661
as weak bases, 231
Amphotericin B, 198
Candida albicans, 153, 679
clinical use, 199
Naegleria fowleri, 156
opportunistic fungal infections, 153
systemic mycoses, 151
Ampicillin
Clostridium difficile, 138
endometritis, 630
Listeria monocytogenes, 139
mechanism and use, 188
mechanism (diagram), 187
meningitis, 180
prophylaxis, 198
Ampulla of Vater, 362
Amygdala
limbic system, 482
Amygdaloid lesions, 495
Amylase in pancreatitis, 391
Amylin analog, 348

Amyloid angiopathy
intraparenchymal hemorrhage, 497
Amyloidosis
cardiomyopathy with, 303
carpal tunnel syndrome, 435
classification, 218
kidney deposition in, 580
multiple myeloma, 419
with rheumatoid arthritis, 454
Amyloid precursor protein (APP), 504
Amyotrophic lateral sclerosis (ALS)
spinal cord lesions, 514
Anabolic steroids
hepatic adenomas and, 386
Anaerobic metabolism
glycolysis, 74
pyruvate metabolism, 77
Anaerobic organisms
aspiration and, 179
clindamycin, 192
Clostridia (with exotoxins), 138
culture requirements, 127
glycyclines, 192
Nocardia vs Actinomyces, 139
metronidazole, 195
overgrowth in vagina, 148
pneumonia caused by, 179
Anal atresia, 596
Anal cancer
HIV and, 177
oncogenic microbes and, 223
Anal fissures, 360
Anal wink reflex, 494
Anaphase, 46
Anaphylaxis, 112
blood transfusion, 114
complement and, 106
epinephrine for, 238
IgA-containing products, 116
shock with, 305
Anaplasma spp.
anaplasmosis, 150
transmission, 146, 149
Anaplastic thyroid carcinomas, 338
Anastrozole, 637
reproductive hormones and, 636
Anatomic dead space, 646
Anatomic snuff box, 435
Anatomy
endocrinal, 320-321
gastrointestinal, 354-363
hematologic/oncologic, 396-399
musculoskeletal, 434-442
nervous system, 477-494
renal, 564
reproductive, 606-609
respiratory, 644-645
Anatomy of heart, 270, 277
Ancylostoma spp.
diseases associated with, 161
infection routes, 158
microcytic anemia, 161
transmission and treatment, 159
Ancylostoma duodenale, 159
Androblastomas, 634
Androgen-binding protein
Sertoli cell secretion, 610
Androgenetic alopecia, 639
Androgen insensitivity syndrome, 621
Androgen-receptor complex
pharmacologic control, 636
Androgen receptor defect, 621
Androgens, 617
adrenal cortex secretion, 320
adrenal steroids and, 326
PCOS and, 627
Androstenedione, 326, 617
pharmacologic control, 636
Anemia
amphotericin B, 199
Ancylostoma, 161
azathioprine, 120
babesiosis, 157
bacterial endocarditis, 305
blood oxygen content, 649
blood viscosity in, 280
cardiac output and, 278
cephalosporins, 189
chloramphenicol, 192
cirrhosis, 383
cold agglutinin disease, 673
colorectal cancer, 382
dapsone, 194
Diphyllobothrium latum, 160
as drug reaction, 245
Escherichia coli, 145
ESR in, 212
fibroid tumors, 630
G6PD deficiency, 79
hookworms, 159
in hypertensive emergency, 296
isoniazid, 197
kwashiorkor, 71
malaria, 157
nonhomologous end joining, 40
NRTIs, 203
penicillin G, V, 189
pernicious anemia, 366, 373
Plummer-Vinson syndrome, 371
pregnancy and, 614
pure red cell aplasia, 221
recombinant cytokines for, 121
renal failure, 586
sideroblastic, 67
sirolimus, 120
sulfa drug allergies as cause, 247
thionamides causing, 349
trimethroprim, 194
tropical sprue, 375
vitamin $\mathrm{B}_{9}$ deficiency, 68
vitamin $\mathrm{B}_{12}$ deficiency, 69
vitamin E deficiency, 70
Weil disease, 147
Wilson disease, 389
Anemia of chronic disease, 409
rheumatoid arthritis, 454
Anemias, 406-411
blood transfusion therapy, 417
cytarabine and, 427
extrinsic hemolytic, 411
intrinsic hemolytic, 410
lab values, 412
macrocytic, 408
macro-ovalocytes in, 404
microcytic, hypochromic, 406, 407
multiple myeloma, 419
nonhemolytic, normocytic, 409
normocytic, normochromic, 409
ringed sideroblasts in, 405
spherocytes in, 405
taxonomy, 406
Anemic infarcts, 210
Anencephaly, 475
labs/findings, 673
polyhydramnios and, 624
Anergy, 110
Anesthetics
general principles, 532
inhaled, 533
intravenous, 533
local, 533
Aneuploidy, 620
Aneurysms, 500
atherosclerosis, 298
coarctation of aorta, 295
Ehlers-Danlos syndrome and, 51
superior vena cava syndrome, 666
ventricular, 300, 302
Angelman syndrome
chromosome association, 64
imprinting, 58
Angina
aortic stenosis, 285
atherosclerosis, 298
cilostazol/dipyridamole for, 425
cocaine causing, 554
contraindicated drugs, 311, 316
drug therapy for, 311, 312, 317
glycoprotein IIb/IIa inhibitors for, 425
ischemic disease and, 299
presentation, 671
unstable/NSTEMI treatment, 302
Angina, "intestinal," 380
Angina pectoris
$\beta$-blockers for, 241
Angiodysplasia, 380
Angioedema, 592
Cl esterase inhibitor deficiency, 107
scombroid poisoning, 242
Angiofibromas, 509
Angiogenesis
bevacizumab and, 430
in cancer, 219
wound healing and, 217
Angiokeratomas, 88
Angiomatosis
von Hippel-Lindau disease, 509, 674
Angiomyolipomas, 509
Angiosarcomas, 386, 465
carcinogens causing, 223
nomenclature for, 220
Angiotensin II, 326, 572
ACE inhibitor effects on, 592
kidney effects, 574
nephron physiology, 569
signaling pathways for, 330
Angiotensin II receptor blockers, 592
heart failure, 304
hypertension, 310
naming convention for, 248
preload/afterload effects, 279
Angiotensinogen, 572
Angry patients, 262
Anhedonia, 545
Anhidrosis
Horner syndrome, 524, 674
Pancoast tumor, 666
Anidulafungin, 198, 200
Aniline dyes, 584
transitional cell carcinoma and,
Aniridia
WAGR complex, 584
Anisocytosis, 396
Anitschkow cells, 306
Ankle sprains, 441
Ankylosing spondylitis, 457
HLA-B27 and, 100
labs/findings, 677
therapeutic antibodies for, 122
TNF- $\alpha$ inhibitors for, 472
Annular pancreas, 353
Anopheles mosquito, 157
Anopia
visual field defects, 526
Anorectal varices
cirrhosis as cause, 383
portal circulation, 359
Anorexia
hypothalamus and, 480
liver cancer/tumors, 386
Ménétrier disease, 373
pancreatic adenocarcinoma, 391
Anorexia nervosa, 550
anovulation with, 627
treatment, 681
Anorexia (symptom)
amphetamines, 554
renal failure, 586
Anosmia
zinc deficiency, 71
ANOVA tests, 259
Anovulation
common causes, 627
endometrial hyperplasia, 630
ANP. See Atrial natriuretic peptide (ANP)
Antacids, 393
metabolic alkalosis with, 576
Anterior cerebral artery, 486
cavernous sinus, 526
cingulate herniation, 513
circle of Willis, 487
stroke, 498
Anterior chamber (eye), 518
Anterior circulation strokes, 498
Anterior communicating artery circle of Willis, 487
saccular aneurysm, 500
Anterior corticospinal tract, 492
Anterior cruciate ligament (ACL) injury
anterior drawer sign in, 440
presentation, 673
"unhappy triad," 441
Anterior drawer sign, 440, 673
Anterior hypothalamus, 480
Anterior inferior cerebellar artery, 487, 498
Anterior inferior tibiofibular ligament, 441
Anterior perforated substance, 488
Anterior pituitary gland, 321
Anterior spinal artery
complete occlusion, 514
stroke, 498
Anterior spinothalamic tract, 492
Anterior superior pancreaticoduodenal artery, 358
Anterior talofigular ligament, 441
Anterior white commissure, 492
Anterograde amnesia, 542
benzodiazepines, 533
brain lesions, 495
Anthracosis, 659
restrictive disease, 657
Anthracyclines
cardiomyopathy from, 243
Anthrax, 131, 132, 137
Anthrax toxin
Bacillus anthracis and, 137
Anti-ACh receptor antibody, 115

Antiandrogen drugs, 639
Antianginal therapy, 302, 311, 312, 317
Antiapoptotic molecule
oncogene product, 222
Antiarrhythmic drugs, 315-317
torsades de pointes, 243
Anti- $\beta_{2}$ glycoprotein antibodies antiphospholipid syndrome, 458
autoantibody, 115
Antibiotics
acne treatment, 464
Candida albicans and, 153
Clostridium difficile with, 671
Jarlsch-Herxheimer reaction, 148
long QT interval, 289
selective growth media, 126
torsades de pointes, 243
Antibodies
in adaptive immunity, 99
exo- and endotoxins, 131, 133
hepatitis viruses, 174
structure and function, 104
therapeutic, 122
Antibody-dependent cell-mediated cytotoxicity, 101
Anticardiolipin
antiphospholipid syndrome, 458
Anticardiolipin antibody, 115
anti-CCP antibody, 115
Anti-centromere antibodies, 673
scleroderma, 460
Anticentromere autoantibody, 115
Anticholinergic drugs
delirium with, 542
toxicity treatment for, 243
Anticholinesterase drugs, 236
Anticipation (genetics), 56
Anticoagulant drugs, 401
acute coronary syndromes, 302
antiphospholipid syndrome, 458
atrial fibrillation, 290
osteoporosis and, 449
warfarin as, 424
Anticoagulation
coagulation cascade and, 402
Anticodon loop, 44
Anticonvulsant drugs
for fibromyalgia, 458
osteoporosis and, 449
Antidepressant drugs, 558-559
for bulimia nervosa, 550
for fibromyalgia, 458
long QT interval with, 289
torsades de pointes, 243
Anti-desmoglein antibodies, 673
Anti-desmoglein (anti-desmosome) autoantibody, 115
Anti-digoxin Fab fragments, 243
for cardiac glycoside toxicity, 314
Antidiuretic hormone (ADH), 325, 572
in diabetes insipidus, 342
hypothalamus synthesis, 480
kidney effects, 574
nephron physiology, 569
pituitary gland and, 321
SIADH and, 342
signaling pathways of, 330
Antidiuretic hormone (ADH) antagonists, 350
anti-DNA topoisomerase I autoantibody, 115
Anti-dsDNA antibody, 115

Antiemetic drugs, 394
long QT interval with, 289
marijuana as, 555
torsades de pointes, 243
Anti-endomysial antibodies, 676
Antiepileptic drugs
Cytochrome P-450 interactions, 247
rash from, 245
teratogenicity, 596
Antifungal drugs
mechanism and use, 198-200
seborrheic dermatitis, 463
tinea versicolor, 152
Antigenic shift/drift, 169
Antigen-presenting cells (APCs)
B cells as, 398
CD28, 110
dendritic cells as, 398
MHC I and II and, 100
naive T-cell activation, 103
in spleen, 98
Antigens
active immunity, 110
antibody structure and function, 104
chronic mucocutaneous candidiasis, 116
diversity of, 112
for self, 101
HLA I and II, 100
llymphocyte recognition of, 98
type and memory, 105
Anti-gliadin antibodies, 676
Anti-glomerular basement membrane antibodies, 678
Anti-glomerular basement membrane autoantibody, 115
Anti-glutamic acid decarboxylase autoantibody, 115
Anti-HBc, 174
Anti-HBe, 174
Anti-HBs, 174
anti-helicase autoantibody, 115
Antihelminthic drugs, 200
naming convention, 248
Anti-hemidesmosome autoantibody, 115
Antihistamines, 667
for scombroid poisoning, 242
Antihistone antibodies, 115, 677
Antihypertensive drugs
hypertension in pregnancy, 625
sexual dysfunction, 551
Anti-IgE monoclonal therapy, 668
Anti-IgG antibodies, 677
Anti-inflammatory drugs, 470
Anti-intrinsic factor autoantibody, 115
Anti-La/SSB autoantibody, 115
Antileukotrienes
for asthma, 668
Antimalarial drugs
G6PD deficiency, 410
Antimetabolites, 427
in cell cycle, 426
Antimicrobial drugs, 187-204
naming conventions for, 248
pregnancy contraindications, 204
prophylaxis, 198
Antimicrosomal autoantibody, 115
Antimitochondrial autoantibody, 115
Antimitochondrial antibodies, 676
Antimuscarinic drugs
Parkinson disease, 531
toxicity treatment for, 243
urgency incontinence, 584
Antimuscarinic reaction, 246
Antimycin A
electron transport chain, 78
Antimycobacterial drugs, 196
Antineutrophil cytoplasmic antibodies, 676
Anti-NMDA receptor encephalitis, 221
Antinuclear (ANA) antibody, 115
Antinuclear antibodies (ANA), 677
Sjögren syndrome, 456
Antioxidants
free radical elimination by, 216
Antiparasitic drugs
naming convention for, 248
Antiparietal cell autoantibody, 115
Anti-phospholipase $\mathrm{A}_{2}$ receptor autoantibody, 115
Antiphospholipid syndrome, 458
autoantibody in, 115
Antiplatelet antibodies, 676
abciximab as, 122
Antiplatelet drugs
for acute coronary syndromes, 302
Anti-presynaptic voltage-gated calcium channel
autoantibody, 115
Antiprogestin drugs, 638
Antiprotozoan drugs, 200
Antipseudomonal drugs, 187
cephalosporins, 189
fluoroquinolones, 195
penicillins, 188
Antipsychotic drugs, 557
antimuscarinic reaction, 246
dopaminergic pathways, 482
galactorrhea with, 323
long QT interval with, 289
naming convention for, 248
Parkinson-like syndrome, 246
PCP overdose, 555
prolactin and, 324
tardive dyskinesia, 246
torsades de pointes, 243
Tourette syndrome, 541, 556
Antiribonucleoprotein antibodies
Sjögren syndrome, 456
Anti-Ro/SSA autoantibody, 115
Anti-Scl-70 autoantibody, 115
Anti-Smith autoantibody, 115
Anti-smooth muscle autoantibody, 115
Antisocial personality disorder, 549
early-onset disorder, 541
Anti-SRP autoantibody, 115
Anti-streptolysin O (ASO) titers, 306
Antisynthetase autoantibody, 115
Antithrombin
coagulation cascade and, 402
Antithrombin deficiency, 416
Antithyroglobulin autoantibody, 115
Antithyroid peroxidase autoantibody, 115
Anti-topoisomerase antibodies, 677
Antitoxins
as passive immunity, 110
Anti-transglutaminase antibodies, 676
Anti-TSH receptor autoantibody, 115
Antitumor antibiotics, 428
Anti-Ul RNP antibodies, 115, 458
Antiviral therapy, 201
interferons, 204

Anuria
acute kidney injury, 586
Anxiety
benzodiazepine withdrawal, 554
drug therapy, 529
hypercalcemia and, 575
LSD, 555
MAO inhibitors for, 559
MDMA withdrawal, 555
neurotransmitters, 479
nicotine withdrawal, 554
Anxiety disorder, 546
atypical antipsychotics for, 557
Aorta
aneurysm of, 298
coarctation of, 295, 296
congenital heart disease, 294
diaphragm, 645
EKG and, 288
embryonic development, 274-275
fetal circulation, 276
gastrointestinal blood supply, 357
horseshoe kidney and, 563
retroperitoneal, 354
in syphilitic heart disease, 307
traumatic rupture of, 298
"tree bark" appearance, 307
Aortic aneurysm, 298
associations, 683
Ehlers-Danlos syndrome, 51
hypertension, 296
Marfan syndrome, 52, 296
syphilitic heart disease, 307
Aortic arch derivatives, 601
Aortic arch receptors, 291
Aortic, coarctation
labs/findings, 675
Aortic dissection, 299
associations with, 683
hypertension, 296
Marfan syndrome, 670
Marfan syndrome as cause, 296
Aortic insufficiency
syphilitic heart disease, 307
Aorticopulmonary septum, 275
embryologic derivatives, 595
Aortic regurgitation
diastolic murmur in, 284
heart murmurs with, 285
Marfan syndrome, 296
presentation, 671
pulse pressure in, 278
Aortic root dilation
heart murmur with, 285
aortic stenosis
presentation, 671
Aortic stenosis
ejection click and, 683
heart murmurs, 285
macroangiopathic anemia, 411
paradoxical splitting in, 283
presentation, 671
pulse pressure in, 278
S4 heart sound and, 683
systolic murmur in, 284
Williams syndrome, 296
Aortic valve
cardiac cycle, 282
embryological development, 274
sclerosis, 284
Aortitis
syphilis, 147, 184
APC gene, 222
adenomatous colonic polyps and, 381
colorectal cancer and, 383
familial adenomatous polyposis and, 381
"Ape hand" (median nerve injury), 437, 439
Apgar score, 615
Aphasia, 500
MCA stroke, 498
Aphthous stomatitis
Crohn disease, 376
Apixaban
as anticoagulant, 401
factor Xa inhibitors, 425
Aplasia, 595
of thymus, 603
Aplasia cutis
methimazole, 349
Aplasia cutis congenita fetal methimazole exposure, 596
Aplastic anemia, 409
in anemia taxonomy, 406
chloramphenicol, 192
as drug reaction, 245
Fanconi anemia, 673
neutropenia with, 412
thionamides, 349
Aplastic crisis
hereditary spherocytosis, 410
sickle cell anemia, 410
Apolipoproteins, 93
Apoptosis, 208
corticosteroids, 412
evasion in cancer, 219
malignant tumors, 220
Appendages (appendages), 124
Appendicitis, 377
mittelschmerz vs, 612
Appetite regulation, 325
"Apple core" lesion (X-ray), 382, 676
"Apple peel" atresia, 353
Aprepitant, 394
APUD tumor, 333
Aquaporin
renin-angiotensin-aldosterone system, 572
Aqueous humor pathway, 519
Arabinofuranosyl cytidine, 427
Arabinoglycan synthesis, 196
Arabinosyltransferase, 197
Arachidonic acid pathway, 470
Arachnodactyly, 52
Marfan syndrome, 670
Arachnoid granulations, 487, 488, 506
Arachnoid mater meninges, 479
meningioma, 510
ventricular system, 488
Arcuate artery, 564
Arcuate fasciculus aphasia and, 500 diagram, 485
Area postrema, 480
Arenaviruses characteristics of, 167, 168
Arginine
classification, 81
cystinuria, 85
derivatives of, 83
kidney stones and, 582
Arginosuccinate, 82
Argyll Robertson pupils presentation, 671
syphilis, 147, 184
tabes dorsalis, 514

Aripiprazole, 557
Arm abduction, 434
Armadillos (disease vectors), 149
Aromatase, 617
Aromatase inhibitors, 637
breast cancer, 682
Aromatic amines as carcinogens, 223
Arrhythmias
amphotericin B, 199
associations of, 683
atrial fibrillation, 683
diabetic ketoacidosis, 345
diptheria, 139
hypokalemia and, 575
local anesthetics and, 533
macrolides, 193
McArdle disease, 87
MI, 300, 302
muscular dystrophy, 61
psychoactive drug intoxication/ withdrawal, 554
shock caused by, 305
sleep apnea and, 661
stimulants and, 554
TCA toxicity, 553
thyroid hormones and, 349
treatment, 680
Arsenic
angiosarcomas, 465
angiosarcomas c, 386
as carcinogen, 223
glycolysis and, 74
inhalational injury, 658
toxicity symptoms, 76
toxicity treatment for, 243
Artemether, 200
Arterial oxygen saturation, 649
Arterial $\mathrm{PCO}_{2}, 646,650$
Arteries, anatomy of, 277
Arteriolosclerosis, 344
Arteriosclerosis, 297
pulmonary hypertension, 661
Arteriovenous malformations (AVMs)
hereditary hemorrhagic
telangectasia, 310
Arteriovenous shunts, 450
Arteritis
headaches, 502
Artesunate
malaria, 157, 200
Arthralgias
alkaptonuria, 84
cocciciomycosis, 151
Henoch-Schönlein purpura, 309
hepatitis viruses, 172
rubella, 169, 182
serum sickness, 113
vitamin A toxicity, 66
Arthritis, 454
azathioprine for, 427
Campylobacter jejuni, 145
carpal tunnel syndrome and, 435
celecoxib for, 471
chlamydiae, 148, 184
Crohn disease, 376
gonococcal, 456
gonorrhea, 142, 180, 184
immunosuppressants, 120
inflammatory bowel disease, 100
LMN facial nerve palsy, 671
lupus, 458
Lyme disease, 146
Paget disease of bone, 673
parvovirus, 164
psoriatic, 457
reactive arthritis, 457
septic, 456
Sjögren syndrome, 673
Staphylococcus aureus, 135
Takayasu arteritis, 308
therapeutic antibodies, 122
ulcerative colitis, 376
Whipple disease, 672
Arthropathy
hemochromatosis, 389
with sarcoidosis, 658
Arthus reaction, 113
Arylsulfatase A
metachromatic leukodystrophy, 88
Asbestos
carcinogenicity, 223
lung cancer and, 665
Asbestosis
characteristics, 659
restrictive disease, 657
Ascaris spp., 158
Ascaris lumbricoides, 159
Ascending aorta
embryological development of, 274
Ascending cholangitis, 390
Ascending colon, 354
Aschoff bodies, 306
Ascites
Budd-Chiari syndrome, 386, 672
cirrhosis, 383
hepatocellular carcinoma, 386
Meigs syndrome, 628
spontaneous bacterial peritonitis, 384
Asenapine, 557
Aseptic meningitis
mumps, 170
picornaviruses, 167
Asherman syndrome, 638
Ashkenazi Jews
disease incidence, 88
Ash-leaf spots, 509
ASO titer, 136
Aspartame, 84
Aspartate
urea cycle, 82
Aspartate aminotransferase (AST), 384
hepatitis, 172
toxic shock syndrome, 135
Aspartic acid, 81
Aspart insulin. See also Insulin
Aspergillosis
Aspergillus fumigatus, 153
bronchiectasis, 657
echinocandins, 200
Aspergillus spp.
as catalase-positive organism, 128
chronic granulomatous disease, 109
immunodeficiency infections, 118
Aspergillus fumigatus, 153
HIV-positive adults, 177
Aspiration
ARDS and, 660
in utero "breathing," 642
lung abscess, 666
reflux-related, 352, 371
V/Q mismatch, 651
Zenker diverticulum, 378
Aspiration pneumonia
alcoholics, 179
clindamycin, 192

Klebsiella, 145
nosocomial infections, 185
Aspirin, 471
acute coronary syndromes, 302
arachidonic acid pathway and, 470
cyclooxygenase, 403
hemolysis in G6PD deficiency, 245
for ischemic stroke, 496
Kawasaki disease, 308, 680
polycythemia vera, 421
Reye syndrome and, 384
uncoupling agent, 78
as weak acid, 231
zero-order elimination of, 230
Asplenia
Howell-Jolly bodies, 405
target cells, 405
Asterixis, 82, 503
cirrhosis, 383
hepatic encephalopathy, 385
renal failure, 586
Asthma, 656
albuterol for, 238
$\beta$-blockers and, 241
breast milk and, 617
cromolyn sodium for, 398
drug therapy, 668
eczema and, 464
epinephrine for, 238
gastroesophageal reflux disease, 371
hypertension treatment with, 310
immunosuppressants, 120
muscarinic antagonists for, 237
omalizumab for, 122
pulsus paradoxus in, 307
salmeterol for, 238
type I hypersensitivity, 112
Astigmatism, 519
Astrocytes, 477
foot processes, 480
origin of, 474
Astrocytomas, 686
Ataxia
abetalipoproteinemia, 94
amantadine toxicity, 531
Angelman syndrome, 58
ataxia-telangiectasia, 40
cerebellar hemisphere lesions, 495
cerebellar vermis lesions, 495
Friedreich, 60, 62, 64, 515
hypnotics, 529
lithium toxicity, 553
metachromatic leukodystrophy, 88
normal pressure hydrocephalus, 506
opsoclonus-myoclonus syndrome, 221
prion disease, 178
psychoactive drug intoxication, 554
streptomycin, 197
syphilis, 147
tabes dorsalis, 514
trinucleotide repeat expansion disease, 62
vitamin $\mathrm{B}_{12}$ deficiency, 514
Wernicke-Korsakoff syndrome, 66, 495, 555
Ataxia-telangiectasia, 40, 117
Atazanavir, 201, 203
Atelectasis
intrapleural pressures, 647
physical findings with, 662
Atenolol, 241, 316
Ateriolosclerosis, 297

Atherosclerosis, 298
abdominal aortic aneurysms and, 298
aortic aneurysms, 683
diabetes mellitus and, 344
familial dyslipidemias, 94
homocystinuria as cause, 84
sites of, 683
stable angina with, 299
transplant rejection, 119
Athetosis, 495, 503
ATM gene, 117
Atomoxetine, 541, 681
Atonic seizures, 501
Atopic dermatitis (eczema), 464
Atopic reactions, 112
Atorvastatin, 313
Atovaquone
babesiosis, 157
malaria, 157
P falciparum, 200
for Pneumocystis jirovecii, 154
ATPase, 389
Atracurium, 534
Atresia
anal, 596
duodenal, 353
esophageal, 352
intestinal, 353
jejunal/ileal, 353
Atria
cardiac tumors, 309
embryological development of, 274-275
Atrial amyloidosis, isolated, 218
Atrial fibrillation
$\beta$-blockers for, 316
calcium channel blockers for, 317
cardiac glycosides for, 314
ECG tracing of, 290
embolic risk with, 683
embolic stroke, 496
hypertension as cause, 296
jugular venous pulse in, 282
potassium channel blockers for, 316
sleep apnea, 661
Atrial flutter
$\beta$-blockers for, 316
ECG tracing of, 290
potassium channel blockers for, 316
"Atrial kick," 282
Atrial natriuretic peptide (ANP), 291, 572
kidney effects, 574
in SIADH, 342
signaling pathways for, 330
Atrial septa
embryological development of, 274
Atrial septal defect (ASD), 295
congenital rubella, 296
diastolic murmur in, 284
Down syndrome, 296
fetal alcohol syndrome, 296
Atrioventricular block
$\beta$-blockers as cause, 241
$\beta$-blockers in, 316
calcium channel blockers, 311, 317
ECG tracings, 290
Lyme disease, 146
Atrioventricular canals, 275
Atrioventricular node
conduction pathway, 288
EKG and, 288

Atrioventricular septal defect (AVSD), 63
Atrioventricular valves embryological development of, 274
Atrophic gastritis
associations with, 684
gastrin in, 365
Atrophy, 206
cerebral, 497
motor neuron signs, 513, 515
neurodegenerative disorders, 504
optic disc/nerve, 520
ventriculomegaly, 506
Atropine, 237
antimuscarinic reaction, 246
for $\beta$-blocker overdose, 316
cholinesterase inhibitor poisoning, 236
toxicity treatment, 243
Attention deficit disorder (ADD)
amphetamines for, 238
Attention-deficit hyperactivity disorder (ADHD), 541
drug therapy for, 556
smoking and, 596
sympatholytic drugs for, 239
Tourette syndrome, 541
treatment, 681
Attributable risk (AR), 254, 687
Atypical antidepressants, 560
Atypical antipsychotic drugs, 557
bipolar disorder, 545, 681
postpartum psychosis, 546
schizophrenia, 544
Atypical depression, 559
Atypical lymphocytes, 675
Atypical pneumonias
chlamydiae, 148
macrolides, 193
typical organisms, 664
Auditory cortex
diagram, 485
thalamic relay, 482
Auditory hallucinations, 543, 544
Auditory physiology, 517
Auerbach plexus, 370, 378
Auer rods, 677
in AML, 420
Auramine-rhodamine stain, 126
Auscultation of heart, 284
Auspitz sign, 464
Autism spectrum disorder, 541
double Y males and, 620
fragile X syndrome, 62
Autoantibodies, 115
Autodigestion, 391
Autografts, 118
Autoimmune anemia, 406
Autoimmune diseases
acute pericarditis, 306
collagen and, 50
Dressler syndrome, 302
myocarditis, 307
preeclampsia and, 625
self-antigen in, 101
Autoimmune gastritis, 373
Autoimmune hemolytic anemia, 112, 411
cephalosporins, 189
Autoimmune hepatitis type 1
autoantibody, 115
Autoimmune hypothyroidism, 173
Autoimmune lymphoproliferative syndrome, 208

Autoimmune regulator (AIRE), 101
Autoimmune thrombocytopenia, 121
Autoinflammatory disease, 214
Autonomic drugs, 233-242
naming conventions for, 248
Autonomic insufficiency, 238
Autonomic nervous system
delirium tremens, 553
male sexual response, 609
in serotonin syndrome, 552
Autonomy (ethics), 260
Autoregulation of blood flow, 292
Autosomal dominant disease
ADPKD, 500
Charcot-Marie-Tooth disease, 508
Huntington disease, 504
malignant hyperthermia susceptibility, 533
neurofibromatosis, 509
tuberous sclerosis, 509
Von Hippel-Lindau disease, 509
Autosomal dominant disorders
Brugada syndrome, 291
hyper-IgE syndrome, 116
hypertrophic cardiomyopathy, 303
porphyrias, 413
Romano-Ward syndrome, 289
Autosomal dominant hyper-IgE syndrome
presentation, 671
Autosomal dominant inheritance
diseases, 60
mode of, 59
Autosomal dominant polycystic kidney disease (ADPKD), 588
chromosome association, 64
Autosomal dominant tubulointerstitial kidney disease, 588
Autosomal recessive disease
Friedreich ataxia, 515
spinal muscular atrophy, 514
Autosomal recessive disorders
adenosine deaminase deficiency, 117
Chédiak-Higashi syndrome, 117
$5 \alpha$-reductase deficiency, 621
hemochromatosis, 389
hereditary hyperbilirubinemias, 388
IL-12 receptor deficiency, 116
leukocyte adhesion deficiency, 117
severe combined immunodeficiency, 117
Wilson disease, 389
Autosomal recessive inheritance
diseases, 60
mode of, 59
Autosomal recessive polycystic kidney disease (ARPKD), 588
Potter sequence caused by, 562
Autosomal trisomies, 63
karyotyping for, 55
Autosplenectomy
associations with, 685
sickle cell anemia, 410
avascular necrosis
femoral head, 444
Avascular necrosis, 450
scaphoid bone, 435
sickle cell anemia, 410
Avascular necrosis, 450
Aversive stimulus (positive punishment), 538
AV node, 287

Avoidant personality disorder, 549
Axillary lymph nodes
breast cancer and, 632
Axillary nerve, 437
arm abduction, 434
injury presentation, 437
neurovascular pairing, 445
Axonal injury, 479
diffuse, 534
Axonemal dynein, 49
Azathioprine
allopurinol and, 472
antimetabolites, 427
in cell cycle, 426
for Crohn disease, 376
immunosuppressant, 120
pancreatitis caused by, 244
targets of, 121
Azithromycin
babesiosis, 157
chlamydiae, 148
prophylaxis in HIV, 198
in cystic fibrosis, 60
macrolides, 193
mechanism (diagram), 187
Mycobacterium avium-
intracellulare, 140, 196
Azoles, 199
mechanism (diagram), 198
opportunistic fungal infections, 153
vaginal infections, 181
Azoospermia, 617
Azotemia
acute interstitial nephritis, 587
differential diagnosis of, 586
nephritic syndrome and, 581
Aztreonam, 187, 190

## B

Bl9 virus, 164
Babesia spp., 146, 157
anemia, 411
Babesiosis, 157
Babinski reflex, 616
motor neuron signs, 513
primitive reflexes, 494
Bachmann bundle, 288
Bacillary angiomatosis, 465
animal transmission, 149
HIV-positive adults, 177
Bacilli, 125
Gram stain identification of, 134
Bacillus spp.
Gram-positive algorithm, 134 taxonomy, 125
Bacillus anthracis, 137
capsule composition, 124
exotoxin production, 132
spore formation, 131
Bacillus cereus, 138
food poisoning, 178, 682
spore formation, 131
Bacitracin
Gram-positive antibiotic test, 134 mechanism, 187
sensitivity to, 134,136
Bacitracin response, 675
Back pain
G6PD deficiency and, 410
Baclofen
mechanism and use, 534
multiple sclerosis, 507
Bacteremia
brain abscesses, 180
cutaneous anthrax, 137
daptomycin, 195
Staphylococcus gallolyticus, 137
Streptococcus bovis, 137
tuberculosis, 140
Bacteria
biofilm-producing, 129
culture requirements, 127
encapsulated, 128
genetics, 130, 131
hemolytic, 135
highly resistant, 198
infections with immunodeficiency, 118
normal flora, 178
pigment-producing, 129
secretion systems, 129
spore-forming, 131
stains for, 126
structures of, 124
taxonomy, 125
virulence factors, $128,129,135$,
143, 144, 145
zoonotic, 149
Bacterial capsules, 124
Bacterial endocarditis, 305
daptomycin, 195
presentation, 672
Staphylococcus aureus, 135
Bacterial meningitis, 682
Bacterial peritonitis (spontaneous), 384
Bacterial toxins
neutralization of, 105
Bacterial vaginosis
characteristics of, 158, 181
Gardnerella vaginalis, 148
Bacteroides spp.
alcoholism, 179
anaerobic organism, 127
clindamycin, 192
lung abscesses, 666
metronidazole, 195
nosocomial infections, 185
taxonomy, 125
Bacteroides fragilis, 178
"Bag of worms," 633
Baker cyst, 441
tibial nerve injury, 442
BAK protein, 208
Balancing (quality measurement), 267
"Bamboo spine" (X-ray), 457, 677
Band cells, 396
Barbiturates
intoxication and withdrawal, 554
intravenous anesthetics, 533
mechanism and use, 529
naming convention for, 248
sleep alterations, 481
Barlow maneuver, 444
Baroreceptors, 291
Barr bodies, 34
Barrett esophagus, 372
Bartholin cyst/abscess, 626
Bartonella spp.
animal transmission, 149
taxonomy, 125
Bartonella henselae
bacillary angiomatosis, 465
granulomatous diseases, 214
HIV-positive adults, 177
Bartonella quintana, 161
Bartter syndrome, 570
markers in, 575

Basal cell carcinomas, 469
5-fluorouracil for, 427
sunburn and, 468
Basal electric rhythm (GI), 356
Basal ganglia, 484
in holoprosencephaly, 475
intraparenchymal hemorrhage, 497
lesions in, 495
microaneurysms, 500
movement disorders, $\mathbf{5 0 3}$
thalamic connections, 482
Basal lamina, 50
Basal nucleus of Meynert, 479
Basal plate, 474
Base excision repair, 40
Basement membrane
barrel hoop, 98
blood-brain barrier, 480
collagen in, 50
filtration, 567
glomerular filtration barrier, 565
in glomerulus, 564
Basic amino acids, 81
Basilar artery
circle of Willis, 487
herniation syndromes, 513
stroke effects, 499
Basilar membrane (cochlea), 517
Basiliximab
immunosuppressant, 120
targets of, 121
Basophilia, 397
Basophilic stippling, 404, 676
lead poisoning, 407
sideroblastic anemia, 407
Basophils, 397
CML, 420
IgE antibody, 105
BAX protein, 208
B-cell lymphomas, 685
HIV-positive adults, 177
B cells, 398
activation, 103, 105
adaptive immunity, 99
anergy, 110
cell surface proteins, 110
class switching, 103
disorders of, 116, 117
functions of, 101, 398
glucocorticoid effects, 120
immunodeficiency infections, 118
in lymph node, 96
neoplasms, 418
non-Hodgkin lymphoma, 417
sirolimus effect, 120
spleen, 98
BCG vaccination, 140
BCG vaccine
IL-12 receptor deficiency and, 116
BCL-2 gene, 222
Bcl-2 protein, 208
BCR-ABL gene, 222
Bead-like costochondral junctions, 450
Becker muscular dystrophy, 61
presentation, 670
Beck triad (cardiac tamponade), 307, 672
Beckwith-Wiedemann, 584
Beckwith-Wiedemann syndrome, 352
Bedwetting. See Nocturnal enuresis
Beers criteria, 242
Behavior modulation
frontal lobe lesions and, 495
limbic system and, 482

Bell palsy
sarcoidosis and, 658
Bell-shaped distribution, 257
Bence Jones protein, 419
Bendazoles, 159
"The bends," 450
Beneficence (ethics), 260
Benign breast disease, 631
Benign neutrophilia, 420
Benign prostatic hyperplasia (BPH), 635, 686
$\alpha$-blockers for, 240
hydronephrosis and, 583
incontinence with, 584
postrenal azotemia, 586
tamsulosin for, 639
treatment, 682
Benign tumors, 220
Benign tumors (breast), 631
Benzathine pencillin G, 198
Benzene
aplastic anemia, 245, 409
myelodysplastic syndromes, 419
Benzidine as carcinogen, 223
Benznidazole, 158
Benzoate, 82
Benzocaine, 533
methemoglobinemia, 648
Benzodiazepines, 529
addictive risk, 529
alcohol withdrawal, 556, 681
Beers criteria, 242
cocaine overdose, 554
generalized anxiety disorder, 547
intoxication and withdrawal, 554
naming convention for, 248
panic disorder, 547
PCP overdose, 555
phobias, 547
sleep effects, 481
toxicity treatment for, 243
Benzoyl peroxide for acne, 464
Benztropine, 237, 531
Beriberi
cardiomyopathy, 303
vitamin $\mathrm{B}_{1}$ deficiency, 66
Berkson bias, 256
Bernard-Soulier syndrome, 403, 415, 685
Berylliosis, 659
granulomatous disease, 214
$\beta$-oxidation of very-long-chain fatty acids (VLCFA), 47
$\beta_{1}$-blockade, 279
$\beta_{2}$-agonists
asthma, 668
insulin and, 322
naming convention for, 248
$\beta_{2}$-microglobulin
MHC I and II and, 100
$\beta$-blockers, 241
acute coronary syndromes, 302
angina, 312
antiarrhythmic drugs, 316
aortic dissections, 299
cocaine overdose, 554
for cocaine overdose, 238
diabetes and, 241
dilated cardiomyopathy, 303
essential tremor, 503
glaucoma treatment, 535
heart failure, 304
hydralazine and, 311
hyperkalemia, 574
hypertension, 310
hypertrophic cardiomyopathy, 303 juxtaglomerular apparatus effects, 573
migraine headaches, 502
naming convention for, 248
overdose treatment, 316
for pheochromocytomas, 334
phobias, 547
for thyroid storm, 337
toxicity treatment for, 243
$\beta$ cells, 321
diabetes mellitus type 1 and 2,345
insulinomas of, 346
insulin secretion by, 322
$\beta$-dystroglycan, 61
$\beta$-galactosidase, 144
$\beta$-glucan, 200
$\beta$-glucoronidase, 396
$\beta$-hCG
as tumor marker, 224
$\beta$-hemolysis, 133
$\beta$-hemolytic bacteria, 135
$\beta$-hydroxybutyrate, 90
$\beta$-interferon
multiple sclerosis, 507
$\beta$-lactam antibiotics, 187
$\beta$-lactamase inhibitors, 188
$\beta$-lactams, 467
Betamethasone, 470
Beta rhythm (EEG), 481
$\beta$-thalassemia, 407
allelic heterogeneity, 57
intron/exon splicing variants, 43
$\beta$ (type II) error, 258
Betaxolol, 241
Bethanechol, 236
Bevacizumab, 122, 430
Bezafibrate, 313
Bfid ureter, 563
Bias and study errors, 256-257
Bicarbonate
carbon dioxide transport, 652
drug overdoses, 231
GI secretion, 366
pancreatic insufficiency, 375
salicylate toxicity, 243
TCA toxicity, 243
Biceps brachii muscle
Erb palsy, 438
Biceps femoris, 442
Biceps reflex, 494
Biceps tendon, 434
Bicornuate uterus, 605
Bicuspid aortic valve aortic dissection and, 299
coarctation of aorta and, 295
heart murmur with, 285
thoracic aortic aneurysms and, 298
Turner syndrome, 296, 620
Bifurcation external landmarks, 645
Biguanide drugs, 348
Bilaminar disc, 594
Bilateral acoustic schwannomas, 674
Bilateral adenopathy, 658
Bilateral renal agenesis
oligohydramnios and, 624
Potter sequence, 562
pulmonary hypoplasia and, 642

## Bile, 368

hereditary hyperbilirubinemias, 388
secretin effect on, 365
Bile acid resins, 313

Bile acids
lipid transport, 92
reabsorption of, 313
synthesis of, 47
Bile canaliculus, 361
Bile duct, 362
Bile ductule, 361
Bile salts, 368
in cholelithiasis, 390
Biliary cholangitis, primary
autoantibody, 115
Biliary cirrhosis, 383, 387
cystic fibrosis, 60
labs/findings, 676
Biliary cirrhosis (primary) autoantibody, 115
Biliary colic, 390
Biliary structures, 362
Biliary tract disease, $\mathbf{3 8 9}$
Clonorchis sinensis, 161
gallstones, 362
hyperbilrubinemia with, 387
Biliary tract infections
Enterococci, 137
Bilious vomiting, 378
Bilirubin, 369
bile, 368
cholelithiasis, 390
hereditary hyperbilirubinemias, 388
liver marker, 384
toxic shock syndrome, 135
Bimatoprost, 535
Bimodal distribution, 257
Binge eating disorder, 550
Bioavailability, 229
Biochemistry, 34-91
cellular, 46-52
genetics, 56-65
metabolism, 72-94
molecular, 34-43
nutrition, 65-72
Biofilm-producing bacteria, 129
Biomarkers
AFP, 475
astrocytes, 477
Biostatistics/epidemiology, 252-258
Bipolar disorder, 545
drug therapy for, 556, 557
lithium for, 558
postpartum psychosis, 546
treatment, 681
Birbeck granules, 677
Langerhans cell histiocytosis, 422
"Bird's beak" sign (X-ray), 370
Birds (disease vectors), 148, 149
Bismuth, 393
Bisoprolol, 241
Bisphosphonates, 471
esophagitis with, 244
naming convention for, 248
osteogenesis imperfecta treatment, 51
for osteoporosis, 449
"Bite cells," 404
Bitemporal hemianopia, 526
craniopharyngioma, 512
hypopituitarism as cause, 343
Nelson syndrome as cause, 340
optic chiasm compression, 500
pituitary adenoma, 510
visual field defects, 526
Bitot spots, 66
Bivalirudin, 423
BK virus, 164

Black eschar, 137
Blackflies (disease vectors), 159
Black liver, 684
Black lung disease, 659
Bladder, 607
bethanechol effect on, 236
BPH and, 635
development of, 600
estrophy, 606
lymphatic drainage, 606
outlet obstruction, 563, 584
placenta percreta invasion, 623
spasm treatment, 237
transitional cell carcinoma, 584
urachus, 600
Bladder cancer
cisplatin/carboplatin for, 429
hematuria, with, 578
hypercalcemia and, 221
oncogenic microbes and, 223
Schistosoma haematobium, 160, 161
"Blast crisis," 420
Blast crisis in CML, 685
Blastocyst implantation, 594
Blastomyces spp.
amphotericin B, 199
itraconazole, 199
Blastomycosis, 151
Bleeding
adenomatous polyps, 381
control of, 355
direct factor Xa inhibitors, 425
direct thrombin inhibitors, 423
diverticulosis, 377
essential thrombocythemia, 421
glycoprotein IIb/IIa inhibitors, 425
heparin, 423
inflammatory bowel disease, 376
peptic ulcer disease, 374
thrombolytics, 425
variceal, 365
warfarin, 424
Bleeding time, 414, 415
Bleomycin, 428
in cell cycle, 426
pulmonary fibrosis, 246
targets of, 426
Bleomycin toxicity, 431, 657
Blepharospasm, 503
Blindness
Chlamydia trachomatis, 149
conversion disorder, 550
giant cell arteritis, 308
neonatal, 142
Onchocerca volvulus, 159
temporal arteritis, 683
Toxocara canis, 159
Blistering skin disorders, 467
Blood
chocolate-colored, 648
coagulation and kinin pathways, 401
embryologic derivatives, 595
hCG detection in, 614
metrorrhagia, 613
oxygen content, 649
in placenta, 599
umbilical cord, 600
viscosity of, 650
Blood-brain barrier
anesthetics, 532
astrocytes, 477
function and mechanism, 480
L-DOPA, 532

Blood flow autoregulation, 292
Blood flow exercise response, 652
Blood groups, 400
Blood pH
diuretic effects on, 591
Blood pressure
$\alpha$-blocker effect on, 240
angiotensin II effects, 572, 574
antianginal therapy, 312
antidiuretic hormone regulation of, 325
cortisol effect on, 327
fenoldopam and, 311
renal disorders and, 575
renin-angiotensin-aldosterone system, 572
sympathomimetic effect on, 239
Blood-testis barrier, 480, 610
Blood transfusions, 417
reactions, 114
Blood vessels
collagen in, 50
Ehlers-Danlos syndrome, 50
hereditary hemorrhagic telangiectasia, 310
Blood volume
atrial natriuretic peptide (ANP), 291
regulation, 572
venous return and, 281
Bloody diarrhea, 179
Campylobacter jejuni, 145, 149
Shigella, 144
ulcerative colitis, 376
Bloody stool, 360
Blotting procedures, 53
"Blown pupil," 525
CN III damage, 525
herniation syndromes, 513
saccular aneurysms, 500
"Blue babies," 294
Blueberry muffin rash
cytomegalovirus, 182
rubella, 169, 182
Toxoplasma gondii, 182
"Blue kids," 295
Blue sclerae, 51
osteogenesis imperfecta, 670
BMPR2 gene, 661
BNP. See Brain natriuretic peptide (BNP)
Body dysmorphic disorder, 547
Boerhaave syndrome, 371
Bombesin, 333
Bone cancer, 451
primary bone tumors, 452
Bone cell biology, 448
Bone crises, 88
Bone disorder lab values, 451
Bone disorders
"brown" tumor, 677
osteogenesis imperfecta, 51
pain, 673
raised periosteum, 677
"soap bubble" (X-ray), 677
Bone formation, 447
Bone fractures
child abuse sign, 540
fat embol from, 654
Bone-in-bone, 449
Bone lesions
adult T-cell lymphoma, 418
Langerhans cell histiocytosis, 422
multiple myeloma, 419

Bone marrow stimulation, 121
Bone marrow suppression, 199
Bone marrow transplant
osteopetrosis, 449
severe combined
immunodeficiency, 117
Bone mineral density scan, 449
Bones
collagen in, 50
cortisol effect on, 327
lytic/blastic metastases, 226
PTH effect on, 328
renal osteodystrophy, 586
Bone tumors, 452-453
"Boot-shaped" heart (X-ray), 675
Borderline personality disorder, 549
dissociative identity disorder, 542
Bordetella spp., 125
Bordetella pertussis, 143
culture requirements, 127
exotoxin production, 132
Gram-negative algorithm, 141
macrolides, 193
vaccines, 143
Bordet-Gengou agar, 127
Borrelia spp., 146
taxonomy, 125
Borrelia burgdorferi animal transmission, 149
coinfection with, 157
facial nerve palsy, 186
Lyme disease, 146
tetracyclines, 192
Borrelia recurrentis animal transmission, 149
vectors, 161
Bortezomib, 430
Bosentan, 667
Botulinum, 235
Botulinum toxin
lysogenic transduction, 130
passive antibodies for, 110
toxin effects, 132
Botulism
Clostridium botulinum, 138
exotoxin, 131
Bovine spongiform encephalopathy (BSE), 178
Bowel smooth muscle activation, 236
Bowel stenosis, 377
Bowen disease, 633
Bowenoid papulosis, 633
Bow legs (genu varum), 450
Bowman capsule, 567
Boxer's fracture, 435
BPH (benign prostatic hyperplasia) azotemia with, 586
hydronephrosis in, 583
Brachial artery, 445
Brachial plexus
Pancoast tumor, 666
Brachial plexus lesions, 438
Brachiocephalic artery, 487
Brachiocephalic syndrome, 666
Brachiocephalic vein, 666
Brachioradialis reflex, 494
Bradycardia
amiodarone and, 316
atropine for, 237
$\beta$-blockers and, 241, 316
cholinesterase inhibitor poisoning, 236
dopamine for, 238
on EKG, 288
hypermagnesemia, 575
RCA infarct, 277
reflex, 572
sympatholytic drugs and, 239
Bradykinesia
with antipsychotic drugs, 557
Bradykinin
ACE inhibitors and, 592
breakdown of, 572
Cl esterase inhibitor deficiency, 107
BRAF gene, 222, 381
melanomas and, 469
papillary thyroid carcinoma and, 338
vemurafenib and, 431
Brain
blood flow autoregulation, 292
choriocarcinoma and, 634
embryologic derivatives, 595
embryology of, 474
glucose usage by, 322
infarcts, 209
ischemia in, 210
metastasis to, 226
perfusion of, 486
ring-enhancing lesions, 675
Brain abscesses
HIV-positive adults, 180
Toxoplasma gondii, 177
Brain cysts, 161
Brain death, 263, 486
Brain injury
gastritis with, 373
hypopituitarism from, 343
Brain lesions (common), 495
Brain natriuretic peptide (BNP), 291, 572
in SIADH, 342
signaling pathways for, 330
Brain stem
dorsal view, 488
ventral view, 488
Brain tumors
adult primary, 510-511
associations with, 686
biopsy findings, 677
childhood primary, 512
hallucinations with, 543
incidence and mortality, 226
metastatic source, 226
nitrosureas for, 428
Branched-chain ketoacid dehydrogenase, 66
Branchial apparatus, 601
Branchial arch derivatives, 601-602
Branchial cleft derivatives, $\mathbf{6 0 1}$
Branchial pouch derivatives, $\mathbf{6 0 3}$
Branching enzyme (glycogen metabolism), 86
Branching filamentous bacteria
Gram stain identification, 134
taxonomy, 125
Branching gram-positive rods/sulfur granules, 675
BRCAl/BRCA2 genes, 222
breast cancer and, 632
ovarian neoplasm risk with, 628
Breast cancer
hypercalcemia and, 221
incidence/mortality of, 226
key associations, 686
oncogenes and, 222
paclitaxel for, 429
paraneoplastic cerebellar
degeneration and, 221
postmenopausal women, 682
tamoxifen for, 431
trastuzumab for, 431
tumor suppressor genes and, 222
Breast disorders
benign, 631
malignant, 632-633
Breastfeeding, 617
ovarian neoplasms and, 628
Breast milk. See also Lactation
IgA antibodies in, 105
prolactin and, 324
Breast/ovarian cancer
BRCAl mutation, 64
BRCA2 mutation, 64
incomplete penetrance, 56
Breast pathology, 631
Breast tumors (malignant), 632-633
aromatase inhibitors for, 637
breastfeeding and, 617
hormonal contraception contraindication, 638
Breathing
mechanics of, 657
with pneumothorax, 663
Breath sounds, 662
bronchial, 662, 663
diminished, 663
Brenner tumor, 628
Brief psychotic disorder, 544
Brittle hair, 52
Broad-base budding, 151
Broad ligament, 607
Broca area, 485
aphasia, 500
MCA stroke, 498
Bromocriptine, 531. See also Dopamine agonists
prolactin and, 324
Bronchi, 644
Bronchial carcinoid tumor, 665
Bronchiectasis
Aspergillus fumigatus, 153
cystic fibrosis, 60
Kartagener syndrome, 49, 670
Bronchioalveolar cell carcinomas, 665
Bronchioles, 644
histamine receptors and, 234
Bronchiolitis obliterans, 119
Bronchiolitis obliterans organizing pneumonia (BOOP), 664
Bronchitis
croup, 170
cystic fibrosis, 60
Haemophilus influenzae, 142
Bronchoconstriction, 668
Bronchodilation, 668
sympathetic receptors and, 234
Bronchogenic apical lung tumor, 679
Bronchogenic carcinoma
asbestosis and, 659
carcinogens causing, 223
Bronchogenic cysts, 642
Bronchopneumonia, 664
Bronchopulmonary dysplasia, 216
free radical injury, 216
neonatal respiratory distress syndrome as cause, 643
"Brown" bone tumor, 677
Brown-Séquard syndrome, 515
Horner syndrome, 515
"Brown tumors," 451
Brucella spp.
Gram-negative algorithm, 141
intracellular organism, 128
taxonomy, 125
transmission, 149
Brucellosis, 149
Brugada syndrome, 289, 299
Bruising
child abuse sign, 540
scurvy, 69
Brunner glands
duodenum, 356
ulcers and, 374
Brushfield spots, 63
Bruton agammaglobulinemia, 60, 116
Bruxism, 481
BTK gene, 116
B-type natriuretic peptide, 291
Buckle (torus fracture), 436
Budd-Chiari syndrome, 386
labs/findings, 676
portal hypertension, 383
presentation, 672
Budesonide, 668
Buerger disease, 308
associations with, 683
treatment, 680
Buffalo hump, 331
Bulbar (spongy) urethra injury, 609
Bulbus cordis, 274
Bulimia nervosa, 550
anovulation and, 627
drug therapy for, 556
laxative abuse by, 394
Mallory-Weiss syndrome and, 371
SSRIs for, 559
treatment, 681
Bullae, 462
dermatitis herpetiformis, 467
impetigo, 466
necrotizing fasciitis, 466
pemphigus vulgaris, 467
Stevens-Johnson syndrome, 467
Bull neck, 132
Bullous impetigo, 466
Bullous pemphigoid, 462, 467
autoantibody, 115
type II hypersensitivity, 112
"Bulls-eye" erythema, 146
Bumetanide, 590
BUN (blood urea nitrogen)
nephritic syndrome, 579
ornithine transcarbamylase deficiency, 83
renal failure consequences, 586
BUN/creatinine ratio, 586
Bundled payment, 265
Bundle of His, 286, 288
Bundle of Kent, 289
Bunyaviruses
characteristics of, 167, 168
Bupivacaine, 533
Buprenorphine
heroin detoxification, 560
morphine and, 230
opioid withdrawal, 554
Bupropion, 560
major depressive disorder, 545
mechanism, 558
nicotine withdrawal, 554
seizures with, 246
Burkholderia cepacia
characteristics of, 128
cystic fibrosis, 179
immunodeficiency infections, 118
taxonomy, 125
Burkitt lymphoma, 418
chromosomal translocations and, 422
EBV, 165
labs/findings, 676, 685
oncogenes and, 222
oncogenic microbes and, 223
Burns
acute gastric ulcer, 684
child abuse sign, 540
classification, 468
inhalational injuries and, 658
shock with, 305
sunburn, 468
testosterone/methyltestosterone for, 639
Bursitis
prepatellar, 441
Burton line
lead poisoning, 407
presentation, 673
Buspirone, 558
generalized anxiety disorder, 547
Busulfan, 428
pulmonary fibrosis and, 246
Busulfan toxicity, 431
restrictive lung disease, 657
Butorphanol, 535
Butterfly facial rash, 673

## C

Cl esterase inhibitor deficiency, 107
C3 deficiency, 107
C5a receptor, 396
C5-C9 deficiencies, 107
CA 15-3/CA 27-29 (tumor markers), 224
CA 19-9, 391
CA 19-9 (tumor marker), 224
CA 125 levels, 628
CA 125 (tumor marker), 224
Cachexia, 225
TNF- $\alpha$ and, 108
Café-au-lait spots
aplastic anemia and, 409
causes of, 674
McCune-Albright syndrome, 57
neurofibromatosis, 509
Caffeine intoxication and withdrawal, 554
Cahill cycle, 82
Caisson disease, 654
Calcarine sulcus
thalamic relay to, 482
Calciferol (vitamin D), 573
Calcification, 215
dystrophic, 224
Calcineurin, 120
Calcitonin, 329
medullary thyroid carcinoma production, 338
osteoporosis, 449
signaling pathways of, 330
tumor marker, 224
Calcitriol, 573
Calcium
in bone disorders, 451
calcitonin and, 329
in cardiac muscle, 286
in osteomalacia/rickets, 450
in Paget disease of bone, 450

PTH and, 328
rhomboid crystals, 677
Vitamin D and, 330
Calcium carbonate, 393
Calcium channel blockers, 311
angina, 311
antiarrhythmic drugs, 317
contractility in, 279
cutaneous flushing, 243
gingival hyperplasia, 245
hypertension, 310
hypertrophic cardiomyopathy, 303
migraine headaches, 502
Raynaud phenomenon, 459
Calcium channels
ethosuximide effect on, 528
glucose and, 322
Lambert-Eaton myasthenic syndrome, 221
myocardial action potential, 286 opioid effect on, 534
pacemaker action potential, 287
smooth muscle contraction, 447
Calcium homeostasis, $\mathbf{3 2 7}$
Calcium (kidney stones), 582
Calcium oxalate nephrolithiasis, 69
Calcium pyrophosphate deposition disease, 455
Calcium-sensing receptor (CaSR), 350
Calculous cholecystitis, 390
Calf pseudohypertrophy, 670
Caliciviruses
characteristics of, 162, 167
California encephalitis, 167
Call-Exner bodies, 629
Calluses (dermatology), 462
cAMP (cyclic adenosine monophosphate)
cilostazol/dipyridamole effect on, 425
endocrine hormone messenger, 330
exotoxin effects, 132
fructose bisphosphatase-2 and, 76
glycogen regulation, 85
heat-labile/heat-stable toxin effects, 132
hyperparathyroidism, 340
PTH effect on, 328
Vibrio cholerae, 146
CAMP factor, 137
Campylobacter spp.
animal transmission, 149
bloody diarrhea, 179
reactive arthritis and, 457
taxonomy, 125
Campylobacter jejuni, 145
Gram-negative algorithm, 141
Guillain-Barré syndrome, 508
Canagliflozin, 349
Canalicular stage (development), 642
Cancer
bacteremia with, 675
deaths from, 266
common metastases, 226
deaths from, 266
ESR in, 212
intron/exon splicing variants and, 43
microRNAs and, 43
mortality of, 226
neoplastic progression, 219
pneumoconioses, 659
splice site mutations as cause, 39

Cancer drugs
cell cycle, $\mathbf{4 2 6}$
targets, 426
Cancer epidemiology, 226
Candesartan, 592
Candida spp.
amphotericin B, 199
azoles, 199
catalase-positive organism, 128
echinocandins, 200
immunodeficiency infections, 118
osteomyelitis, 180
tricuspid valve endocarditis and, 305
vulvovaginitis, 181
Candida albicans, 153
HIV-positive adults, 177
T cell dysfunction, 116
treatment, 681
Candidate identification number (CIN), 5
Candidiasis
Candida albicans, 153
chronic mucocutaneous, 116
cortisol and, 327
nystatin, 199
Cannibalism, 178
"Cannonball" metastases, 622
Capillary fluid exchange, 293, 688
Capillary supply (lymph node), 96
Capitate bone, 435
Capitation, 265
Caplan syndrome, 454, 659
Capsid (viral), 162
Capsules (bacterial), 124
Captain's wheel, 151
Captopril, 592
Caput medusae, 359
Carbachol, 236
glaucoma, 535
Carbamazepine agranulocytosis, 245
aplastic anemia, 245
bipolar disorder, 545, 681
cytochrome P-450 and, 247
epilepsy, 528
SIADH and, 244
teratogenicity, 596
tonic-clonic seizures, 681
trigeminal neuralgia, 681
Carbamoyl phosphate, 82
Carbamoyl phosphate synthetase, 73
Carbapenems
mechanism and use, 187, 190
Pseudomonas aeruginosa, 143
Carbidopa, 532
Carbohydrate absorption, 367
Carbon dioxide retention, 656, 661
Carbon dioxide transport, 652
Carbonic anhydrase, 652
Carbon monoxide (CO)
carboxyhemoglobin, 648
electron transport inhibition, 78
inhalational injuries, 658
poisoning, 649
teratogenicity, 596
toxicity treatment, 243
Carbon tetrachloride
free radical injury and, 216
Carboplatin, 429
toxicities of, 431
Carboxyhemoglobin, 648
Carboxylases, 73

Carboxypeptidase, 367
Carcinoembryonic antigen (CEA)
(tumor marker), 224
Carcinogens, 223
griseofulvin, 200
Carcinoid syndrome, 346, 552
bronchial carcinoid tumors, 665
somatostatin for, 350
treatment, 680
Carcinoid tumor, 225
octreotide for, 393
stomach, 373
Carcinoma in situ, 219
Carcinoma in situ (cervical), 627
Carcinomas
bone, 451
colorectal, 383
invasive, 219
metastases of, 219, 226
nomenclature of, 220
primary hyperparathyroidism, 339
thyroid, 338
Cardiac arrest
hypermagnesemia, 575
Cardiac cycle, 282
Cardiac depression, 311
Cardiac function curves, 281
Cardiac glycosides, 314
Cardiac looping, 274
Cardiac muscle innervation, 233
Cardiac output, 278
equation for, 687
exercise and, 652
in pregnancy, 614
variables in, 279
V/Q mismatch and, 651
Cardiac pressures (normal), 292
Cardiac tamponade, 307
aortic dissection and, 299
jugular venous pulse in, 282
MI, 300, 302
pulse pressure in, 278
shock, 305
Cardiac troponin I, 301
Cardiac tumors, 309
Cardinal ligament, 607
Cardinal veins, 274
Cardiogenic shock
MI, 300
pulse pressure in, 278
Cardiomegaly
Pompe disease, 87
Cardiomegaly with apical trophy, 675
Cardiomyopathy, 303
auscultation changes with, 284
Chagas disease, 158
familial amyloid, 218
heart failure with, 304
hematochromatosis and, 389
Kussmaul sign in, 310
S4 heart sound and, 683
Starling curves, 280
sudden cardiac death, 299
Cardiomyopathy (hypertrophic)
$\beta$-blockers, 241
Cardiotoxicity
doxorubicin, 428
drugs causing, 431
methylxanthines, 668
trastuzumab, 431
Cardiovascular drugs
naming conventions for, 248
reactions to, $\mathbf{2 4 3}$

Cardiovascular system, 274-316
anatomy, 277
embryology, 274-276
pathology, 294-309
pharmacology, 310-316
physiology, 278-293
sclerosis of, 460
Carditis
Lyme disease, 146
rheumatic fever, 306
Carfilzomib, 430
Carina (trachea), 645
Carmustine, 428
in cell cycle, 426
pulmonary fibrosis, 246
Carnitine, 89
Carnitine acyltransferase I, 73
Carotid artery
atherosclerosis in, 298, 683
bifurcation landmark, 645
embryonic development, 601
giant cell arteritis and, 308
Carotid artery (internal)
cavernous sinus, 526
circle of Willis, 487
emboli from, 522
Carotid massage, 291
Carotid sinus, 291
Carpal bones, 435
Carpal tunnel syndrome, 435
lunate disclocation, 435
median nerve injury, 437
rheumatoid arthritis, 454
Car seats for children, 264
Cartilage
collagen in, 50
fluoroquinolone damage to, 245
Carvedilol, 241, 316
Casal necklace, 67
Caseating granulomas, 140
Case-control studies, 252
Caseous necrosis, 209
granulomatous diseases and, 214
Caspases, 208
Caspofungin
Candida albicans, 153, 679
echinocandins, 200
mechanism (diagram), 198
Casts in urine, 578
Catabolism
amino acids, 82
tyrosine, 83
Catalase, 216
Catalase-positive organisms, 128
Cataplexy, 551
Cataracts, 519
corticosteroid toxicity, 120
diabetes mellitus and, 344
galactosemia, 80
muscular dystrophy, 61
rubella, 182
sorbitol, 81
Catecholamines adrenal medulla secretion, 320
amphetamines and, 238
contractility effects of, 279
ephedrine and, 238
pacemaker action potential and, 287
pheochromocytoma and, 334 synthesis of, $\mathbf{8 3}$
Cat scratch disease, 149
as granulomatous disease, 214
Cats, (disease vectors)
Campylobacter jejuni, 145

Pasteurella multocida, 149, 186
Tinea corporis, 152
Toxoplasma gondii, 156, 182
Cauda equina, 491
Cauda equina syndrome, 514
Caudal fold closure defects, 352
Caudal regression syndrome, 596
Caudal regression system, 596
Caudate
basal ganglia, 484
Huntington disease, 504
Caustic ingestion, 371
Cavernous hemangiomas liver, 386
Cavernous sinus, 526
dural venous sinuses, 487
Cavernous sinus syndrome, 526
CCR5 protein
HIV and, 175
maraviroc, 203
viral receptor, 166
CD4 protein, 101
viral receptor, 166
CD4+ T cells (HIV), 176
CD5 protein, 420
CD8 protein, 101
CD16 protein, 101
CD20 protein, 110
in CLL, 420
CD21 protein, 110
viral receptor, 166
CD25 protein
cell surface protein, 110
regulatory T cells and, 102
CD28 protein, 110
CD34 protein, 110
leukocyte extravasation and, 213
CD40 protein, 110
CDKN2A gene, 222
CEA tumor marker, 382
Cefaclor, 189
Cefazolin
mechanism and use, 189
prophylaxis, 198
Cefepime
mechanism and use, 189
mechanism (diagram), 187
Pseudomonas aeruginosa, 143
Cefotaxime, 189
Cefoxitin
mechanism and use, 189
mechanism (diagram), 187
Ceftaroline
mechanism and use, 189
mechanism (diagram), 187
MRSA, 198
Ceftazidime
mechanism and use, 189
Pseudomonas aeruginosa, 143
Ceftriaxone
Chlamydia spp., 148
Chlamydia trachomatis, 679
for gonococci, 142
for Haemophilus influenzae, 142
mechanism and use, 189
mechanism (diagram), 187
meningitis, 180
meningococci, 142
prophylaxis, 198
typhoid fever, 144
Cefuroxime
mechanism and use, 189
Celecoxib, 247, 471
arachidonic acid pathway, 470

Celiac artery
mesenteric ischemia, 380
structures supplied, 357
Celiac disease, 375
antibodies in, 676
autoantibody, 115
biliary cirrhosis and, 389
dermatitis herpetiformis, 467
HLA genes and, 100
IgA deficiency, 116
Celiac trunk, 357, 358
Cell adaptations, 207
Cell cycle phases, 46
Cell envelope (bacterial), 124
Cell injury, 207-211
Cell lysis, 574
Cell membrane
apoptosis and, 208
Cell surface proteins
association and functions, 110
leukocyte adhesion deficiency, 117
T cells and, 101
Cell trafficking, 47
Cellular biochemistry, 46-52
Cellulitis, 466
Pasteurella multocida, 149
Streptococcus pyogenes, 136
Cell walls
bacterial, 124
Central canal of spinal cord, 492
Central clearing, 152
Central clearing (nuclei), 338
Central diabetes insipidus, 342
Central nervous system (CNS), 233
anesthetic principles for, 532
antiarrhythmic adverse effects, 315, 316
cell types in, 477-478
depression, 529
nitrosoureas effect on, 428
origins of, 474
posterior fossa malformations, 476
regional specification of, 490
shock from injury, 305
Central nervous system stimulants, 556
Central pontine myelinolysis. See Osmotic demyelination syndrome
Central post-stroke pain syndrome, 499
Central retinal artery occlusion, 522
"cherry-red" macular spot, 670
Central sleep apnea, 661
Central sulcus, 485
Central tendency measures, 257
Central tendon (diaphragm), 645
Central vertigo, 518
Centriacinar emphysema, 656
Cephalexin
mechanism and use, 189
Cephalosporins
disulfram-like reaction, 246
mechanism and use, 189
mechanism (diagram), 187
pseudomembranous colitis, 244
Pseudomonas aeruginosa, 143
Cephazolin, 187
Ceramide, 88
Ceramide trihexoside, 88
Cerebellar degeneration
paraneoplastic, 221
with small cell carcinoma, 665

Cerebellar lesions
hemisphere, 495
lateral, 483
medial, 483
vermis lesions, 495
Cerebellum
development of, 474
input/output of, 483
thalamic connections, 482
tonsils, 476
Cerebral aqueduct of Sylvius, 488
Cerebral arteries
cavernous sinus, 526
cortical distribution, 486
Cerebral cortex
arterial distribution, 485
functional areas of, 485
Cerebral edema
diabetic ketoacidosis and, 345
hyperammonemia, 82
therapeutic hyperventilation, 486
Cerebral hemispheres, 474
Cerebral peduncle, 488
Cerebral perfusion, 486
Cerebral perfusion pressure (CPP), 486
"Cerebriform" nuclei, 418
Cerebrospinal fluid (CSF) absorption of, 488
blood-brain barrier and, 480
circulation of, 479, 487, 505
Guillain-Barré syndrome, 508
hydrocephalus, 506
multiple sclerosis, 507
neurodegenerative disorders, 505
origins, 474
poliomyelitis, 515
spinal cord, 491
ventricular system, 488
yellowish tint, 677
Cerebrovascular disease
diabetes mellitus, 344
Cereulide, 138
Certolizumab, 122
Ceruloplasmin
free radical elimination by, 216
Cervical cancer, 627
carcinogens causing, 223
epidemiology of, 625
epithelial histology, 608
HIV-positive adults, 177
hydronephrosis with, 583
oncogenic microbes and, 223
papillomaviruses, 164
Cervical dysplasia, 627
Cervical lymphadenopathy, 672
Cervical rib, 438
Cervicitis
sexually transmitted infections, 184
Cervix
anatomy of, 607
epithelial histology, 608
lymphatic drainage of, 606
pathology of, 627
Cestodes, 160
Cetirizine, 667
Cetuximab, 122, 430
CFTR gene, 60
chronic pancreatitis and, 391
cGMP (cyclic guanosine monophosphate)
atrial natriuretic peptide and, 291
endocrine hormone messenger, 330
hydralazine and, 311
male sexual response, 609
PDE-5 inhibitors, effect on, 639
smooth muscle contraction, 447
Chagas disease, 158
achalasia in, 370
cardiomyopathy in, 303
labs/findings, 675
Chalk-stick fractures, 450
Chancroids, 184
Chaperone protein, 45
Charcoal yeast extract culture
Legionella pneumophila, 127, 143
Charcot-Bouchard microaneurysm, 500
Charcot joints
syphilis, 147
tabes dorsalis and, 514
Charcot-Leyden crystals, 656
Charcot-Marie-Tooth disease, 508
Charcot triad, 390, 507
Charging, tRNA, 44
Chédiak-Higashi syndrome, 117
Cheilosis, 67
Chelation
hemochromatosis, 389
iron poisoning, 414
lead poisoning, 407
Chemical tracheobronchitis, 658
Chemokines, 108
delayed hypersensitivity, 112
Chemoreceptors, 291
Chemotherapeutic agents
MDR1 and responsiveness to, 225
Chemotherapy
AML and, 420
myelodysplastic syndromes, 419
neutropenia with, 412
ondansetron, 394
pancreatic cancer, 391
readmissions with, 266
Chemotoxicities, 431
Cherry hemangiomas, 465
"Cherry red" epiglottis, 186
Cherry-red macular spot diagnoses with, 670
Cherry red skin, 648
Cherry-red spot (macula), 522
lysosomal storage disease, 88
Chest pain
Dressler syndrome, 671
on exertion, 671
panic disorder, 547
pneumothorax, 663
pulmonary embolism, 654
Chest wall
elastic properties, 647
Chest wall compliance
in elderly, 647
Chest X-rays
aortic dissections on, 299
balloon heart on, 303
eggshell calcification, 659
lung abscesses, 666
notched ribs on, 295
Wegener granulomatosis on, 308
Cheyne-Stokes respirations, 661
Chiari malformations, 476
Chickenpox
rash, 183
VZV, 164
Chief cells (parathyroid), 328
Chief cells (stomach), 366

Child abuse, 540
osteogenesis imperfecta and, 51
reporting requirements, 263
Childbirth
brachial plexus injury in, 438
Budd-Chiari syndrome and, 386
contraction prevention, 611
endometritis after, 630
Graves disease and, 337
low birth weight, 616
misoprostol induction, 393
neonatal flora, 178
oxytocin, 617
oxytocin for induction of, 350
postpartum mood disturbances, 546
preterm, as common cause of death, 266
progesterone levels after, 611
Sheehan syndrome after, 343
stress incontinence and, 584
Childhood disorders, 541
Childhood orthopedic conditions, 444
Child neglect, 540
Children
car seats for, 264
causes of death, 266
Chipmunk facies, 407
Chi-square tests, 259
Chlamydia spp., 148
atypical infections, 179
Giemsa stain, 126
intracellular organism, 128
macrolides, 193
pneumonia, 664
reactive arthritis, 457
sulfonamides for, 194
taxonomy, 125
tetracyclines, 192
Chlamydia, 184
Chlamydia trachomatis, 148
eosinophilia, 149
pelvic inflammatory disease, 149
pneumonia, 179
serotypes, 149
treatment, 679
UTIs, 585
Chlamydophila pneumoniae, 148 pneumonia, 179
Chlamydophila psittaci, 148 transmission, 149
Chloasma (melasma), 463
Chloramphenicol, 192
aplastic anemia and, 245, 409
gray baby syndrome, 245
mechanism (diagram), 187
protein synthesis inhibition, 191
Chlordiazepoxide, 529
alcohol withdrawal, 556
Chloride channels
cystic fibrosis, 60
Chloroquine, 200
malaria, 157
Chlorpheniramine, 667
Chlorpromazine, 557
Chlorpropamide, 348
Chlorthalidone, 591
Chocolate agar
Haemophilus influenzae, 127, 142
Chocolate-colored blood, 648
Chocolate cysts, 628, 630
Cholangiocarcinomas
Clonorchis sinensis, 160, 161
hyperbilirubinemia, 387
oncogenic microbes and, 223
sclerosing cholangitis, 389
Cholangitis, 362, 376, 387, 390
Cholecalciferol. See also Vitamin D
Cholecystectomy, 390
Cholecystitis, 390
Cholecystokinin (CCK)
functions, 365
secretory cell location, 367
Choledocholithiasis, 390
Cholelithiasis, $\mathbf{3 9 0}$
acute pancreatitis, 391
bile ducts and, 362
biliary cirrhosis and, 389
Crohn disease, 376
hyperbilirubinemia and, 387
octreotide and, 393
somatostatinomas, 346
Cholera toxin
lysogenic phage infection, 130
mechanism, 132
Cholestasis serum markers, 384
Cholesteatomas, 517
Cholesterol
atherosclerosis, 298
in bile, 368
cholelithiasis and, 390
functions, 50
lipid-lowering agents, 313
synthesis of, 47, 72, 73, 79
vitamin $B_{3}$ effects, 67
Cholesterol desmolase, 326
Cholestyramine, 313
Choline, 235
Cholinergic agonists, 248
Cholinergic drugs, 235
Cholinergic effects, 314
Cholinesterase inhibitors
diarrhea with, 244
poisoning from, 236
Cholinomimetic agents, 236
glaucoma treatment, 535
Chondrocalcinosis, 455
Chondrocytes
achondroplasia, 448
bone formation and, 447
osteoarthritis, 454
Chondroma, 452
Chordae rupture, 285
Chorea
brain lesions, 495
Huntington disease, 504
movement disorders, 503
Choriocarcinoma, 622
hCG in, 614
hydatidform mole, 622
testicular tumors, 634
theca-lutein cysts and, 628
Choriocarcinomas
methotrexate for, 427
Chorionic plate, 599
Chorionic somatomammotropin, 615
Chorionic villi
hydatidiform moles, 622
placenta, 599
Chorioretinitis
congenital toxoplasmosis, 182
Choristomas, 220
Choroid layer (ophthalmology)
inflammation, 520
neovascularization, 520
normal eye, 518
Choroid plexus (CNS), 488
"Christmas tree" distribution, 468
Chromaffin cells
diagram, 320
embryologic derivatives, 595
pheochromocytomas, 334
Chromatin structure, 34
Chromatolysis, 479
Chromogranin, 224
Chromogranin A, 665
Chromosomal aneuploidy syndromes, 563
Chromosomal disorders, 64
karyotyping for, 55
Chromosomal translocations, 422
Chromosome abnormalities
hemochromatosis, 389
omphaloceles, 352
polyposis syndrome, 381
Wilson disease, 389
Chromosome disorders
renal cell carcinoma, 583
Chronic bronchitis, 656
Chronic gastritis, 373
Chronic gout
treatment, 681
Chronic granulomatous disease (CGD), 214
catalase-positive microbes, 186
immunodeficiencies and, 117
recombinant cytokines for, 121
respiratory burst in, 109
Chronic inflammation, 214
Chronic ischemic heart disease, 299
Chronic kidney disease in anemia taxonomy, 406
erythropoietin in, 573
hypertension and, 296
Chronic lymphocytic leukemia
(CLL), 420
age ranges, 685
immunosuppressants, 120
lab findings, 673, 677
presentation, 673
rituximab for, 430
therapeutic antibodies, 122
Chronic mesenteric ischemia, 380
Chronic mucocutaneous candidiasis, 116
Chronic myelogenous leukemia (CML), 420
age ranges, 685
basophilia caused by, 397
busulfan for, 428
chromosomal translocations and, 422
imatinib for, 430
oncogenes and, 222
Philadelphia chromosome, 685
Chronic myeloproliferative disorders, 421
Chronic obstructive pulmonary disease (COPD)
albuterol for, 238
$\beta$-blockers and, 241
muscarinic antagonists for, 237
salmeterol for, 238
Chronic pancreatitis, 391
pancreatic insufficiency from, 375
Chronic placental insufficiency, 562
Chronic pyelonephritis, 585
labs/findings, 678
Chronic renal disease, 625
Chronic renal failure, 339, 586
hypherphosphatemia with, 340

Chronic respiratory disease, as common cause of death, 266
Chronic thromboembolic pulmonary hypertension, 661
Chronic transplant rejection, 119
Churg-Strauss syndrome, 309
autoantibody, 115
as granulomatous disease, 214
labs/findings, 676
Chvostek sign, 575
hypoparathyroidism, 339
Chylomicrons, 92, 94
Chylothorax, 662
Chymotrypsin, 367
Cidofovir, 202
Cigarette smoke (carcinogen), 223
Ciguatoxin, 242
Cilastatin
imipenem and, 190
seizures with, 246
Ciliary body, 518
Ciliary ganglia, 523
Cilia structure, 49
Ciliated cells, 644
Cilostazol, 425
Cimetidine, 392
cytochrome P-450 and, 247
gynecomastia from, 631
Cinacalcet, $\mathbf{3 5 0}$
Cinchonism
antiarrhythmic causing, 315
neurologic drug reaction, 246
Cingulate gyrus
limbic system, 482
Cingulate herniation, 513
Ciprofloxacin
for Crohn disease, 376
cytochrome P-450 and, 247
fluoroquinolones, 195
mechanism (diagram), 187
meningococci, 142
Mycobacterium aviumintracellulare, 196
prophylaxis, 198
Pseudomonas aeruginosa, 143
Circadian rhythm
hypothalamic control, 480
sleep physiology, 481
Circle of Willis, 487
saccular aneurysms, 500
Circulatory system
kidneys and, 564
Circulatory system (fetal), 276
Circumflex femoral artery, 450
Cirrhosis, 383
$\alpha_{1}$-antitrypsin deficiency, 386
alcoholic, 71, 385
bacterial peritonitis (spontaneous), 384
cholelithiasis and, 390
cystic fibrosis, 60
encephalopathy with, 385
esophageal varices and, 371
fructose intolerance, 80
granulomatous disease, 214
gynecomastia, 631
hemochromatosis, 389
hepatocellular carcinomas, 386
hyperbilirubinemia in, 387
loop diuretics for, 590
non-alcoholic fatty liver disease, 385
pleural effusion, 662
portal hypertension, 383
serum markers for, 384
Wilson disease, 389
Cisplatin, 429
acute tubular necrosis, 587
in cell cycle, 426
targets of, 426
toxicities of, 246, 431
Citalopram, 559
Citrate synthase, 74
Citrobacter spp.
Gram-negative algorithm, 141
lactose fermentation, 144
Citrulline, 82
c-KIT gene, 222
CKK hormone, 333
CK-MB, 299, 301
Cladribine, 427
in cell cycle, 426
for hairy cell leukemia, 420
Clara cells, 643, 644
Clarithromycin
Helicobacter pylori, 146
HIV prophylaxis, 198
macrolides, 193
mechanism (diagram), 187
Mycobacterium aviumintracellulare, 196
pregnancy use, 204
Clasp knife spasticity, 513
Classical (Pavlovian) conditioning,

## 538

Class switching
CD40, 103
thymus-dependent antigens, 105
Clathrin, 47
Claudication
atherosclerosis, 298
Buerger disease, 308
cilostazol/dipyridamole for, 425
giant cell arteritis, 308
Clavulanate
Haemophilus influenzae, 142
Clavulanic acid, 188
"Clawing" (hand), 439
Klumpke palsy, 438
Clearance (CL) of drugs, 229
Clear cell adenocarcinoma, 626
DES and, 637
Cleft lip, 603
Cleft palate, 603
22q11 deletion syndromes, 65 Patau syndrome, 63
Pierre Robin sequence, 602
teratogens for, 596
Clevidipine, 311
for hypertensive emergency, 311
Clindamycin
bacterial vaginosis, 148
Clostridium difficile and, 138
endometritis, 630
lung abscesses, 666
mechanism and use, 192
mechanism (diagram), 187
metronidazole vs, 192
protein synthesis inhibition, 191
pseudomembranous colitis with 244
Clinical reflexes, 494
Clinical trials, 252
Clinical vignette strategies, 24
Clitoris
genital homologs, 605
"Clock-face" chromatin, 399, 419

Clofazimine
Hansen disease, 141
Mycobacterium leprae, 196
Clomiphene
estrogen receptor modulators, 637
hot flashes with, 244
PCOS, 627
reproductive hormones and, 636
Clomipramine, 559
obsessive-compulsive disorder, 547
Clonidine, 239
Tourette syndrome, 541
Cloning methods (laboratory technique), $\mathbf{5 5}$
Clonorchis sinensis
cholangiocarcinoma, 223
diseases association, 161
trematodes, 160
Clopidogrel, 425
acute coronary syndromes, 302
for ischemic stroke, 496
thrombogenesis and, 403
Closed-angle glaucoma, 520
pilocarpine for, 236
Clostridium spp., 138
anaerobic organism, 127
exotoxins, 138
Gram-positive algorithm, 134
taxonomy, 125
Clostridium botulinum, 138
exotoxin production, 132
food poisoning, 178
spore formation, 131
therapeutic uses, 138
Clostridium difficile, 138
antibiotic use and, 138, 185
metronidazole, 195
nosocomial infection, 185
presentation of, 671
proton pump inhibitor use, 392
spore formation, 131
vancomycin, 190
watery diarrhea, 179
Clostridium perfringens, 138
clindamycin, 192
exotoxin production, 133
food poisoning, 178
spore-formation, 131
traumatic open wound, 186
watery diarrhea, 179
Clostridium tetani, 138
exotoxin production, 132
spore formation, 131
Clotrimazole, 198, 199
Clotting factors, 71
Clozapine, 557
agranulocytosis with, 245
Clubbing, 657, 665
Eisenmenger syndrome, 295
Clubbing (nails)
cystic fibrosis, 60
Club cells, 643
Clue cells, 675
bacterial vaginosis, 148, 181
Cluster A personality disorders, 549
Cluster B personality disorders, 549
Cluster C personality disorders, 549
Cluster headaches, 502, 530
c-MYC gene, 222
CNS (central nervous system)
cancer epidemiology, 226
CNS lymphomas
HIV-positive adults, 177
oncogenic microbes and, 223

Coagulation, 71
Coagulation cascade components, 402
Coagulation disorders, 414
hemophilia, 414
hereditary thrombosis syndromes, 416
mixed platelet/coagulation, 416
Coagulation pathways, 401
Coagulative necrosis, 209
MI, 300
Coagulopathy
postpartum hemorrhage, 624
preeclampsia, 625
uterine bleeding with, 614
Coal workers' pneumoconiosis, 659
CoA production, 67, 72
Coarctation of aorta, 295, 296
Turner syndrome, 620
Cobblestone mucosa, 376
Cocaine, 533
$\beta$-blockers and, 241
cardiomyopathy, 303
coronary vasospasm, 243
intoxication and withdrawal, 554
liver processing of, 361
as noradrenergic drug, 235
placental abruption, 623
pulmonary arterial hypertension, 661
sympathomimetic action, 238
teratogenicity, 596
"Cocaine crawlies," 543
Coccidioides spp.
silver stain, 126
treatment, 199
Coccidioidomycosis, 151
erythema nodosum and, 468
HIV-positive adults, 177
Coccobacilli, 141
Coccus bacteria
antibiotic tests, 134
Gram stain identification, 134
taxonomy, 125
Cochlea
CN VIII, 490
inner ear, 517
presbycusis, 517
Codeine, 534
Codman triangle, 677
Codman triangle (X-ray), 452
Codominance, 56
Codominant coronary circulation, 277
Codons
genetic code features, 37
start and stop, 40
Cofactors
apolipoproteins, 93
biotin, 68, 73
cobalamin, 69
copper, 52
Menkes disease, 52
pantothenic acid, 67
phenylketonuria, 84
precursors to organic, 65
pyridoxine, 67
pyruvate dehydrogenase complex, 76
riboflavin, 67
TCA cycle, 77
thiamine, 74
vitamin K, 71
"Coffee bean" nuclei, 628
Coffee bean sign (X-ray), 379

Cognitive behavioral therapy (CBT), 541
acute stress disorder, 548
ADHD, 541, 681
adjustment disorder, 547
for anxiety disorders, 546
for atypical depression, 545
binge eating disorder, 550
body dysmorphic disorder, 547
conduct disorder, 541
generalized anxiety disorder, 547
major depressive disorder, 545
obsessive-compulsive disorder, 547
oppositional defiant disorder, 541
panic disorder, 547
phobias, 547
postpartum depression, 546
PTSD, 548
Cohort studies, 252
relative risk and, 254
Coin lesion (X-ray), 665
Cola-colored urine, 581
Colchicine
acute gout attack, 681
agranulocytosis, 245
calcium pyrophosphate deposition disease, 455
diarrhea with, 244
gout, 455, 472
microtubules and, 48
myopathy with, 245
Cold agglutinin disease, 673
Cold agglutinins, 150
Cold autoimmune hemolytic anemia, 411
Colectomy
adenomatous polyposis, 381
inflammatory bowel disease, 376
Colesevelam, 313
Colestipol, 313
Colistin B, 143
Colitis
Clostridium difficile, 138
HIV-positive adults, 177
oral vancomycin, 190
pseudomembranous, 131, 179, 188, 192
Collagen
decreased/faulty production, 51
osteoblasts and, 448
scar formation, 216
synthesis/structure, $\mathbf{5 0}$
vitamin C, 69
wound healing, 217
Collagenase in neutrophils, 396
Collapsing pressure (alveoli), 643
Collecting tubules, 570
diuretics and, 589
nephron physiology, 569
potassium-sparing diuretics and, 591
Colles fracture, 449
Colliculi, 488
Colon
histology of, 356
ischemia in, 210
Colon cancer
5-fluorouracil for, 427
irinotecan/topotecan for, 429
labs/findings, 675
metastases of, 226
oncogenes and, 222
Staphylococcus gallolyticus and, 137
tumor suppressor genes and, 222

Colonic ischemia, 380
Colonic polyps, 381
Colony stimulating factor, 121
Colorado tick fever, 167
Color blindness, 197
Colorectal cancer, $\mathbf{3 8 2}$
adenomatous polyposis and, 381
bevacizumab for, 430
cetuximab for, 430
incidence/mortality in, 226
labs/findings, 676
Lynch syndrome, 40 molecular pathogenesis of, $\mathbf{3 8 3}$
therapeutic antibodies, 122
tumor suppressor genes and, 222
Colovesical fistulas, 377
Coltivirus, 167
Coma
benzodiazepine adverse effect, 529
hepatic encephalopathy, 385
herniation syndromes, 513
hyperosmolar hyperglycemia nonketotic syndrome, 346
hyponatremia, 575
rabies, 171
reticular activating system, 495
Reye syndrome, 384
thyroid storm, 337
Toxocara canis, 159
Trypanosoma brucei, 156
Combined pathway for coagulation, 401
Comedocarcinoma, 632
Commaless genetic code, 37
Comma-shaped rods, 141
Common bile duct, 355, 362
Common cold, 168
Common iliac artery, 357
Common peroneal nerve, 442
Common variable immunodeficiency (CVID), 116
Communicating hydrocephalus, 506
Communication with patient, 262
Compartment syndrome, 444
Competence (bacterial genetics), 130
Competitive agonists, 230
Competitive inhibitors, 228
Complement, 106
activation inhibition, 135
binding of, 104
disorders of, 107
eculizumab, 122
endotoxin activation, 133
immunodeficiency infections, 118
immunoglobulin isotypes, 105
innate immunity, 99
splenic dysfunction, 98
transplant rejection, 119
Complement activation pathways, 106
Complementation (viral), 162
Complete (third-degree) AV block, 290
Complex partial seizures, 501
Complex renal cysts, 588
Compliance (lungs), 647
Complications of pregnancy, 623-624
Comprehensive Basic Science Examination (CBSE), 11
Comprehensive Basic Science SelfAssessment (CBSSA), 11
Compulsions, 547
Computer-Based Test (CBT)
environment of, 3-4
exam schedule for, 7-8
structure of, 3
COMT inhibitors, 531
Conditioning (psychological), 538
Conduct disorder, 541
early onset disorder, 549
Conducting zone (respiratory tree), 644
Conduction aphasia, 500
Conductive hearing loss, 517
Condylomata acuminata, 464
sexual transmission, 184
Condylomata lata
syphilis, 147, 184
Confidence intervals, 258
Confidentiality, 264
behavioral science ethics, 260
exceptions to, 264
Confluence of the sinuses, 487
Confounding bias, 256
Congenital adrenal enzyme deficiencies, 326
Congenital adrenal hyperplasias, 326
Congenital heart disease, 294-296
autosomal trisomies, 63
defect associations, 296
maternal phenylketonuria, 84
pulmonary arterial hypertension, 661
rubella, 182
Turner syndrome, 674
Congenital hydrocele (scortal), 634
Congenital hypothyroidism, 336
Congenital long QT syndrome, 289
Congenital lung malformations, 642
Congenital malformation mortality, 266
Congenital nevus, 462
Congenital rubella
cardiac defect associations, 296
heart murmur, 285
Congenital solitary functioning kidney, 563
Congenital syphilis, 147
Congestion (respiratory)
inhalation injury, 658
nasal, 667
with lobar pneumonia, 664
Congo red stain, 218
Conivaptan
ADH antagonists, 342 SIADH, 350
Conjoined tendon, 363
Conjugate vaccines, 128
Conjugation (bacterial genetics), 130
Conjunctival infections
Kawasaki disease, 308
Conjunctivitis, 518
adenoviridae, 164
chlamydia, 148, 184
gonococcal prophylaxis, 198
gonococci, 142
Haemophilus influenzae, 142
reactive arthritis, 457
rubeola, 170, 183, 186
urethritis and, 671
Zika virus, 171
Connective tissue diseases aortic dissection and, 299
pulmonary arterial hypertension, 661
thoracic aortic aneurysms and, 298
Connective tissue drug reactions, 245
Conn syndrome, 332, 575

Consent
healthcare proxy, 263
minors, 260, 262
Consolidation (lung finding), 662
lobar pneumonia, 664
Constipation, 534
aluminum hydroxide use, 393
anal fissures, 360
calcium channel blockers, 311
Hirschsprung disease, 378
irritable bowel syndrome, 377
loperamide, 393
ondansetron, 394
ranolazine, 312
vincristine, 429
Constrictive pericarditis
jugular venous pulse in, 282
Kussmaul sign, 310
Contact activation pathway for coagulation, 401
Contact dermatitis, 113
Contemplation stage, 552
Continuous heart murmurs, 285
Contraception
isotretinoin teratogenicity, 596
methods for, 638
parental consent for minors and, 260
progestins for, 638
Contractility in cardiac output, 279
Contraction alkalosis, 60, 569, 572, 591
Coombs hemolysis, 239
Coombs-positive hemolysis
$\alpha$-methyldopa, 239
anemia with, 245
Coombs-positive hemolytic anemia, 411
Coombs test, 112, 411
Cooperative kinetics, 228
COPI/COPII, 47
Copper deficiency, 407
Copper intrauterine device, 638
Copper metabolism
Wilson disease, 389
Copper toxicity, 243
Coprolalia, 541
Copy number variations (CNV), 54
Cord factor, 140
Cori cycle, 82
Cori disease, 87
Corkscrew fibers, 512
"Corkscrew" hair, 69
Cornea, 518
collagen in, 50
Corneal arcus
familial hypercholesterolemia, 94
hyperlipidemia, 297
Corneal reflex, 490
Corneal vascularization, 67
Corniculate cartilage, 602
Coronary aneurysms, 672
Coronary arteries
anatomy of, 277
atherosclerosis in, 298
occlusion of, 277
Coronary artery
atherosclerosis in, 683
Coronary artery disease
atrial fibrillation and, 290
diabetes mellitus and, 344
HMG-CoA reductase inhibitors for, 313
hormonal contraception with, 638

Coronary artery disease (continued) hypertension and, 296 menopause and, 617 sudden cardiac death, 299
Coronary sinus
anomalous pulmonary return, 294 development, 274
Coronary steal syndrome, 299
Coronary vasospasm, 243
Coronaviruses
characteristics of, 167
genomes of, 162
Cor pulmonale, 304, 650, 686
from obstructive lung disease, 656
penumonoconioses, 659
pulmonary hypertension, 661
right ventricular failure, 650
Corpus albicans, 613
Corpus cavernosum
female homolog of, 605
lymphatic drainage of, 606
Corpus luteum, 613
hCG and, 614
progesterone production, 611
Corpus spongiosum, 605
Correct results (statistical hypothesis testing), 258
Correlation coefficient, 259
Corticopapillary osmotic gradient, 572
Corticosteroid-binding globulin, 327
Corticosteroids
asthma, 668
cataracts, 519
Crohn disease, 376
Cushing syndrome, 331
giant cell arteritis, 308
hyperglycemia with, 244
hypopituitarism, 343
lymphopenia with, 412
microscopic polyangiitis, 308
neutrophilia from, 412
osteonecrosis, 450
osteoporosis with, 245
pancreatitis with, 244
polyarteritis nodosa, 308
for polymyalgia rheumatica, 458
Takayasu arteritis, 308
targets of, 121
thyroid storm, 337
Wegener granulomatosis, 308
Corticotropin-releasing hormone (CRH), 323
adrenal cortex regulation of, 320
cortisol regulation, 327
Cushing syndrome and, 331
signaling pathways of, 330
Cortisol, 327
adrenal cortex secretion, 320 congenital adrenal hyperplasias, 326 in Cushing syndrome, 331 primary adrenal insufficiency, 332 signaling pathways for, 330
Cortisone, 470
Corynebacterium spp.
Gram-positive algorithm, 134 taxonomy, 125
Corynebacterium diphtheriae, 139 culture requirements for, 127 exotoxin production, 132 unvaccinated children, 186
Costovertebral angle tenderness, 587
Cough, 150, 534
ACE inhibitors, 246, 592
asthma, 656
chronic bronchitis, 656
gastroesophageal reflux disease, 371
guaifenesin, 667
hypersensitivity pneumonitis, 657
lung cancer, 665
nonproductive, 140, 150
staccato, 149
Wegener granulomatosis, 308
whooping, 132, 143
Councilman bodies
yellow fever, 168
Countertransference, 538
Courvoisier sign
pancreatic cancer, 391
Cowper gland, 608
Cowpox, 164
Coxiella spp., 128
Coxiella burnetii
animal transmission, 149
Q fever, 150
spore formation, 131
Coxsackievirus
acute pericarditis, 306
picornavirus, 168
presentation, 167
type A rash, 183
Coxsackievirus type B
cardiomyopathy, 303
C-peptide
insulin and, 322
in insulinomas, 346
Crackles (physical findings), 656, 662
Cranial nerve palsies
osteopetrosis, 449
Cranial nerves, 291, 490
branchial arch derivation, 602
common lesions, 516
locations of, 488
nerve and vessel pathways, 489
nuclei of, 489
reflexes of, 490
Craniopharyngiomas, 512, 595
hypopituitarism with, 343
Craniotabes, 450
C-reactive protein (CRP), 211
innate immunity and, 99
Creatine, 83
Creatine kinase, 203
Creatinine
ACE inhibitor effects, 592
acute renal failure, 586
glomerular filtration rate and, 566
nephritic syndrome, 579
proximal convoluted tubules, 571
Creatinine clearance, 566
Cre-lox system, 56
Cremaster, 442
Cremasteric muscle and fascia inguinal canal and, 363
Cremasteric reflex, 442, 494
Crepitus in necrotizing fasciitis, 466
Crescentic glomerulonephritis, 581
CREST syndrome, 460
biliary cirrhosis and, 389
CREST syndrome (limited scleroderma)
autoantibody, 115
Cretinism, 336
Creutzfeldt-Jakob disease, 178, 505
"Crew cut" (skull X-ray), 407, 410
CRH. See Corticotropin-releasing hormone (CRH)
Cribriform plate, 489
Cricoid cartilage, 602

Cricothyroid muscle, 602
Cri-du-chat syndrome, 64
Crigler-Najjar syndrome, 387, 388
presentation, 672
Crimean-Congo hemorrhagic fever, 167
Crohn disease, 376
azathioprine, 120
$\mathrm{B}_{12}$ deficiency, 408
cholelithiasis and, 390
as granulomatous disease, 214
lesions in, 684
natalizumab, 122
spondyloarthritis and, 457
sulfasalazine for, 393
vitamin $\mathrm{B}_{12}$ deficiency, 69
Cromolyn, 668
Cross-dressing, 551
Crossover studies, 256
Cross-sectional studies, 252
Croup, 170
labs/findings, 675
paramyxoviruses, 167, 170
pulsus paradoxus in, 307
CRP and ESR, 212
Crust (skin), 462
basal cell carcinoma, 469
impetigo, 466
varicella zoster virus, 466
Cryoprecipitate, 417
Crypt hyperplasia, 375
Cryptococcal meningitis, 199
Cryptococcosis, 153
Cryptococcus spp.
meningitis, 180
treatment, 199
urease-positive, 128
Cryptococcus neoformans, 153
HIV-positive adults, 177 stains for, 126
Cryptogenic organizing pneumonia, 664
Cryptorchidism, 633
hypospadias, 606
Sertoli cells and, 610
testicular tumors, 634
Cryptosporidium spp., 155
HIV-positive adults, 177
hyper-IgM syndrome and, 117
watery diarrhea, 179
Crypts of Lieberkühn, 356
C-section deliveries
neonatal flora, 178
neonatal respiratory distress syndrome, 643
Culture requirements bacteria, 127
Cuneiform cartilage, 602
Curling ulcers gastritis, 373
"Currant jelly" sputum Klebsiella spp., 186
Currant jelly sputum, 145, 186 Klebsiella pneumonia, 671
"Currant jelly" stools, 379, 380
Curschmann spirals, 656
Cushing disease, 331
Cushing-like symptoms protease inhibitors, 203
Cushing reflex, 291
Cushing syndrome, 331 acanthosis nigricans and, 468 anovulation with, 627
corticosteroids, 120
hirsutism, 331
paraneoplastic syndrome, 221
small cell lung cancer, 665
Cushing ulcers
gastritis, 373
Cutaneous anthrax, 137
edema toxin, 132
Cutaneous flushing
carcinoid syndrome, 346
drugs causing, 243
Cutaneous larva migrans, 159
Cutaneous leishmaniasis, 158
Cutaneous mycoses, 152
Cutaneous paraneoplastic syndromes, 221
Cutis aplasia
Patau syndrome, 63
CXCR4
viral receptor, 166
CXCR4/CCR5 protein
presence on cells, 110
Cyanide electron transport chain, 78
Cyanide poisoning
induced methemoglobinemia, 648
inhalation injury, 658
nitroprusside, 311
treatment for, 243
Cyanopia, 639
Cyanosis
"blue babies," 294
"blue kids," 295
bronchitis, 656
Eisenmenger syndrome, 295
esophageal atresia, 352
methemoglobinemia, 648
patent ductus arteriosus, 295
pulmonary hypertension, 661
tetralogy of Fallot as cause, 294
Cyclin-CDK complexes, 46
Cyclin-dependent kinases (CDKs), 46
Cyclins, 46
Cyclobenzaprine, 534
Cyclooxygenase
aspirin effect on, 403
Cyclooxygenase inhibition
irreversible, 471
reversible, 470, 471
selective, 471
Cyclophilin targets, 121
Cyclophosphamide, 428
hemorrhagic cystitis with, 244
microscopic polyangiitis, 308
polyarteritis nodosa, 308
SIADH caused by, 342
SIADH with, 244
toxicities of, 431
transitional cell carcinoma and, 584
Wegener granulomatosis, 308
Cycloplegia
atropine, 237
muscarinic antagonists for, 237
Cyclosporine
gingival hyperplasia, 245
gout, 245
immunosuppressant, 120
targets of, 121
Cyclothymic disorder, 545
Cyproterone, 636
Cystathionine, 67
Cystathionine synthase deficiency, 84
Cyst disorders
renal, 588

Cysteine, 85
Cystic duct, 362
Cystic fibrosis, $\mathbf{6 0}$
Aspergillus fumigatus, 153
bronchiectasis, 657
chromosome association, 64
common organisms, 179
meconium ileus in, 380
N -acetylcysteine, 667
pancreatic insufficiency, 375
vitamin deficiencies and, 65
Cystic hygromas, 465
Turner syndrome, 620
Cystine, 582
Cystine (kidney stones), 582
Cystinuria, 85
Cystitis
acute bacterial, 578, 585
squamous cell carcinoma risk, 584
Cytarabine, 427
in cell cycle, 426
Cytochrome C, 208
Cytochrome P-450
azoles, 199
barbiturates and, 529
cimetidine and, 392
griseofulvin, 200
interactions with, 247
macrolides, 193
phenobarbital effect on, 528
porphyria, 413
rifamycins, 196
ritonavir, 203
Cytokeratin, 225
cytoskeletal element, 48
in epithelial cells, 461
Cytokine receptor, 222
Cytokines, 101, 108
corticosteroids and, 120
Graves disease and, 337
rejection reactions, 119
type IV hypersensitivity, 113
Cytokinesis, 46
Cytomegalovirus (CMV)
AIDS retinitis, 165
cholecystitis and, 390
clinical significance, 165
esophagitis and, 371
HIV-positive adults, 177
hyper-IgM syndrome and, 117
immunodeficient patients, 118
pneumonia, 664
retinitis and, 522
ToRCHeS infection, 182
treatment, 202
viral receptor, 166
Cytoplasm
cell cycle phase, 46
cytoskeletal elements, 48
glycolysis, 76
HMP shunt, 79
metabolism in, 72
Cytoplasmic membrane (bacterial), 124
Cytoplasmic processing bodies (P-bodies), 41
Cytosine methylation, 34
Cytoskeletal elements, 48
Cytosol, 446
Cytotoxic T cells, 102
cell surface proteins, 110
MHC I and II, 100
Cytotrophoblast, 599
choriocarcinomas and, 622

D
$\mathrm{D}_{2}$ antagonists, 557
Daclizumab
immunosuppression, 120
targets of, 121, 122
Dacrocytes, 404
Dactinomycin, 428
RNA polymerase inhibition, 41
targets of, 426
Dactylitis
seronegative spondyloarthritis, 457
sickle cell anemia, 410
Dalfopristin
mechanism (diagram), 187
VRE, 198
Dalteparin, 423
Danazol, 638
endometriosis, 630
pseudotumor cerebri, 505
reproductive hormones and, 636
"Dancing eyes, dancing feet," 221
Dandy-Walker syndrome, 476
Dantrolene, 533, 534
Dapagliflozin, 349
Dapsone, 194
dermatitis herpetiformis, 467
Hansen disease, 141
hemolysis in G6PD deficiency, 245
Mycobacterium leprae, 196
Pneumocystis jirovecii, 154
Daptomycin, 195
MRSA, 198
Dark-field microscopy, 146
Darunavir
HIV therapy, 203
mechanism, 201
Datura, 237
Daunorubicin, 428
dilated cardiomyopathy, 243
DCC gene, 222
D-dimer lab, 653
Dead space (lung), 646
Deafness
Alport syndrome, 581
congenital long QT syndrome, 289
congenital syphilis, 147
rubella, 182
syphilis, 182
Deamination
base excision repair, 40
Death
aortic dissection in, 299
children, explaining to, 263
common causes, 266
hyperosmolar hyperglycemia nonketotic syndrome, 346
sudden cardiac death, 299
thyroid storm, 337
Death receptor pathway, 208
Debranching enzyme
Cori disease, 87
glycogen metabolism, 86
Decay-accelerating factor (DAF), 106
Deceleration injury, 298
Decidua basalis, 599
Decision-making capacity, 261
Decompression sickness, 654
Decussation
in spinal tracts, 493
Deep brachial artery, 445
Deep inguinal lymph nodes, 606
Deep inguinal ring, 363
Deep venous thrombosis (DVT), 653
direct factor Xa inhibitors for, 425
embolic stroke and, 496
glucagonomas and, 346
heparin for, 423
labs/findings, 676
tamoxifen/raloxifen and, 431
Deer flies (disease vectors), 159
Defense mechanisms
immature, 538-539
mature, 539
Defensins, 99
Deferasirox
hemochromatosis, 389
for iron poisoning, 243, 414
Deferiprone
hemochromatosis, 389
for iron poisoning, 243
Deferoxamine
hemochromatosis, 389
for iron poisoning, 243, 414
Deformation, 595
Degenerate/redundant genetic code, 37
Degmacytes, 404
G6PD deficiency, 79
Dehydration
diabetic ketoacidosis, 345
filtration changes and, 567
gout exacerbation, 455
hyperosmolar hyperglycemic state, 346
loop diuretics and, 590
mannitol and, 590
osmotic laxatives, 394
relative polycythemia with, 421
salivary stones with, 370
shock, 305
in sickle cell anemia, 405
Dehydrogenases, 73
Delavirdine
HIV therapy, 203
mechanism, 201
Delirium, 542
barbiturate withdrawal, 554
diabetic ketoacidosis, 345
PCP, 555
thyroid storm, 337
Delirium tremens (DTs), 553, 554, 555
$\Delta$ cells
endocrine pancreas, 321
somatostatinomas of, 346
somatostatin production, 365
Delta rhythm (EEG), 481
Delta virus, 167
Deltoid muscle
axillary nerve injury, 437
Erb palsy, 438
Delusional disorder, 544
Delusions, 543
mesolimbic pathway, 482
schizophrenia, 544
Demeclocycline, 350. See also Tetracyclines
diabetes insipidus and, 244, 342
for SIADH, 342
Dementia
common brain lesions, 495
frontotemporal, 495
HIV-positive adults, 177
metachromatic leukodystrophy, 88
neurodegenerative disorders,

## 504-505

Pick disease, 677
prion disease, 178
splice site mutations, 39
vitamin $\mathrm{B}_{3}$ deficiency, 67
Demyelination
lead poisoning (adult), 413
metachromatic leukodystrophy, 88
vitamin E deficiency, 70
Demyelination/dysmyelination
progressive multifocal
leukoencephalopath, 508
vitamin $\mathrm{B}_{12}$ deficiency, 514
Dendritic cells, 398
IL-10, 108
innate immunity, 99
Langerhans cell histiocytosis and, 422
T- and B-cell activation, 101, 103
Dengue, 167
Denial, 538
Denosumab, 122
for osteoporosis, 449

De novo pyrimidine and purine synthesis, 36
rate-determining enzyme, 73
Dense deposit disease, 581
Dental plaque
normal flora, 178
viridans streptococci, 129
Dentate nucleus, 483
Dentin
collagen in, 50
osteogenesis imperfecta, 51
Dentinogenesis imperfecta, 51
Denys-Drash syndrome, 584
Dependent personality disorder, 549
Dependent personality disorder, 549
Depersonalization/derealization disorder, 542
panic disorder, 547
Depression
atypical antipsychotics for, 557
atypical features in, 545
benzodiazepine withdrawal, 554
dissociative identity disorder, 542
drug therapy, 556
electroconvulsive therapy, 546
glucagonomas, 346
hyperparathyroidism, 340
marijuana withdrawal, 555
MDMA withdrawal, 555
metoclopramide, 394
mirtazapine for, 240
neurotransmitters for, 479
postpartum, 546
seasonal pattern with, 545
serotonin-norepinephrine reuptake inhibitors (SNRIs) for, 559
sexual dysfunction caused by, 551
SSRIs for, 559
stimulant withdrawal, 554
suicide and, 546
Deprivation effects (infants), 540
De Quervain tenosynovitis, 444
De Quervain thyroiditis, 336
Dermacentor tick (disease vector), 149
Dermatitis
B-complex deficiency, 65
glucagonomas, 346
IPEX syndrome, 102
type IV hypersensitivity reaction, 113
vitamin $B_{5}$ deficiency, 67
vitamin $B_{7}$ deficiency, 68
Dermatitis herpetiformis, 467
celiac disease and, 375
Dermatomes
landmarks, 494

,

$\square$
-





Depression

$$
4
$$

[^12]

0


IPEX syndrome, 102
type IV hypersensitiv

Dermatomyositis, 221
autoantibody, 115
Dermatomyositis/polymyositis, 459
Dermatophytes, 152
Dermatophytoses, 199
Dermis, 461
Dermoid cyst, 628
Descending colon, 354
Desert bumps, 151
Desflurane, 533
Desipramine, 559
Desloratadine, 667
Desmin, 48
DesMin, 225
Desmoplakin, 461
Desmopressin for hemophilia, 414
Desmopressin acetate
central DI, 325, 350
DI treatment, 342
Desmosome, 461
Desquamation, 135
Desvenlafaxine, 559
Detached retina, 521
Detemir insulin. See also Insulin
Detrusor instability, 584
Developmental delay
fetal alcohol syndrome, 597
low birth weight and, 616
renal failure and, 586
Dexamethasone. See also Glucocorticoids arachidonic acid pathway, 470 Cushing syndrome diagnosis, 331
Dexlansoprazole, 392
Dexrazoxane, 428
dilated cardiomyopathy prevention, 243
Dextroamphetamine, 556
Dextrocardia, 274
Dextrocardia (X-ray), 49
Dextromethorphan, 534, 667
DHT (dihydrotestosterone), 604, 617, 621
Diabetes insipidus, 342
antidiuretic hormone in, 325
demeclocycline and, 350 desmopressin acetate for, 350
drug reaction and, 244
lithium, 558
lithium toxicity, 553
potassium-sparing diuretics for, 591 thiazides for, 591
Diabetes mellitus, 344-345. See also Hyperglycemia acanthosis nigricans, 468 atherosclerosis and, 298 atypical antipsychotics, 557
$\beta$-blockers and, 241
binge eating disorder, 550
carpal tunnel syndrome, 435
cataracts and, 519
chronic renal failure and, 586
CN III damage, 525
diabetic ketoacidosis, 345
diabetic retinopathy, 521
endometrial cancer risk, 630
Friedreich ataxia, 515
fungal infections, 186
glaucoma and, 520
glucagonomas, 346
glucosuria in, 568
hemochromatosis, 389
hepatitis C, 173
hypertension and, 296, 310
Klebsiella, 145
neonatal respiratory distress syndrome, 643
nephropathy with, 578, 580
neural tube defect association, 475
opportunistic infections, 153
pancreatic cancer, 391
polyhydramnios and, 624
preeclampsia and, 625
in pregnancy, 296
pyelonephritis and, 585
readmissions with, 266
renal papillary necrosis and, 587
sexual dysfunction, 551
tacrolimus and, 120
teratogenic potential, 596
type 1 vs type 2,345
urinary incontinence with, 584
urinary tract infections, 181
UTIs and, 585
Diabetes mellitus management,

## 348-349

Diabetes mellitus type 1, 345
autoantibody, 115
HLA subtypes with, 100
Diabetes mellitus type 2, 345
amyloidosis, 218
hyperosmolar hyperglycemia nonketotic syndrome, 346
Diabetic glomerulonephropathy, 580
Diabetic ketoacidosis (DKA), 345
black eschar, 671
DM type 1 and, 344
ketone bodies, 90
metabolic acidosis, 576
Diabetic nephropathy
ACE inhibitors for, 592
angiotensin II receptor blockers for, 592
Diabetic neuropathy, 559
Diabetic retinopathy, 521
Diagnosis errors, 268
Diagnostic criteria
adjustment disorder, 547
grief, 546
major depressive disorder, 545
manic episode, 544
panic disorder, 547
post-traumatic stress disorder, 548
schizophrenia, 544
substance use disorder, 552
symptom duration and, 548
Diagnostic maneuvers/signs
Gower sign, 61
Diagnostic test evaluation, 253
Dialectical behavior therapy, 549
Dialysis-related amyloidosis, 218
Diamond-Blackfan anemia, 408
Diapedesis, 213
Diaper rash
Candida albicans, 153
nystatin, 199
Diaphoresis, 300
acromegaly, 341
Diaphragmatic hernias, 364
Diaphragm structures, 645
Diaphysis, 453
Diarrhea
Bacillus cereus, 138
B-complex deficiency, 65
bismuth/sucralfate for, 393
bronchial carcinoid tumor, 665
Campylobacter jejuni, 145

Celiac disease, 676
cholera toxin, 132
cholinesterase inhibitor poisoning, 236
clindamycin, 192
Clostridium difficile, 138, 671
Cryptosporidium, 155
as drug reaction, 244
ezetimibe, 313
giardiasis, 155
graft-versus-host disease, 119
HIV-positive adults, 177
inflammatory bowel diseases, 376
irritable bowel syndrome, 377
lactase deficiency, 81
lactose intolerance, 375
leflunomide, 471
loperamide for, 393
magnesium deficiency from, 328
magnesium hydroxide, 393
malabsorption syndromes, 375
metabolic acidosis from, 576
metoclopramide, 394
misoprostol, 393
opioids for, 534
opioid withdrawal, 554
organisms causing, 179
pellagra, 67
rotavirus, 168
Salmonella, 144
SCID, 117
Shigella, 144
thyroid storm and, 337
Vibrio cholerae, 146
VIPomas, 365
vitamin C toxicity, 69
Whipple disease, 672
Yersinia enterocolitica, 144
Diastole
cardiac cycle, 282
coronary blood flow, 277
heart failure and, 304
heart murmurs of, 284, 285
heart sounds of, 282, 284
increased heart rate and, 278
Diastolic pressure, 278
Diazepam, 529
alcohol withdrawal, 556
flumazenil and, 230
tetanus, 138
Diclofenac, 471
arachidonic acid pathway and, 470
Dicloxacillin
mechanism and use, 188
mechanism (diagram), 187
Dicrotic notch, 282
Dicyclomine, 237
Didanosine
HIV therapy, 203
mechanism, 201
pancreatitis, 244
Diencephalon, 474
Diethylcarbamazine
antihelminthic, 200
nematode infections, 159
Diethylstilbestrol (DES), 637
teratogenicity, 596
vaginal tumors, 626
Differential media, 126
Diffuse cortical necrosis, 587
Diffuse glomerular disorders, 578
Diffuse large B-cell lymphoma
(DLBCL), 418, 420

Diffuse proliferative
glomerulonephritis
(DPGN), 581, 678
Diffuse scleroderma, 460
Diffuse stomach cancer, 373
Diffuse systemic scleroderma, 677
Diffusion-limited gas exchange, 650
DiGeorge syndrome, 98, 603
Digestion
malabsorption syndromes, 375
secretory products for, 366-368
ulcerative colitis and, 376
Digestive tract
anatomy and histology, 356
ligaments of, 366
Digitalis
arrhythmias induced by, 315
contractility effects, 279
hyperkalemia and, 574
toxicity treatment for, 243
Digitoxin
sodium-potassium pump inhibition, 49
Digoxin, 314
antidote for, 122
contractility effects of, 280, 281
for dilated cardiomyopathy, 303
sodium-potassium pump inhibition, 49
therapeutic index of, 232
toxicity treatment, 317
Digoxin immune Fab, 122
Dihydroergotamine, 502
Dihydrofolate reductase, 36
Dihydrofolic acid, 194
Dihydroorotate dehydrogenase
leflunomide effect on, 36, 471
Dihydropyridine calcium channel blockers, 248
Dihydropyridine receptor, 446
Dihydrorhodamine test, 117
Dihydrotestosterone (DHT)
finasteride, 639
$5 \alpha$-reductase deficiency, 621
function, 617
genital development, 605
pharmacologic control of, 636
sexual determination, 604
Dihydroxyacetone-P, 80
Dilated cardiomyopathy, 303, 304, 307
doxorubicin, 428
as drug reaction, 243
hemochromatosis, 389
muscular dystrophy, 61
wet beriberi, 66
Diltiazem, 311, 317
Dimenhydrinate, 667
Dimercaprol
for arsenic toxicity, 243
for lead poisoning, 243, 407
for mercury poisoning, 243
Dinitrophenol, 78
Dipalmitoylphosphatidylcholine
(DPPC), 643
Diphenhydramine, 667
Diphenoxylate, 534
Diphtheria
Corynebacterium diptheriae, 139
exotoxins, 130, 131, 132
unvaccinated children, 186
vaccine for, 139
Diphyllobothrium latum
$\mathrm{B}_{12}$ deficiency, 408
disease association, 161
presentation, 160
vitamin $\mathrm{B}_{12}$ deficiency, 69
Diplococci, 141
Diplopia
drug toxicity, 528
intracranial hypertension, 505
myasthenia gravis, 459
osmotic demyelination syndrome, 508
Dipyridamole, 425
for coronary steal syndrome, 299
Direct bilirubin, 369
Direct cholinomimetic agonists, 236
Direct Coombs test, 112
Direct factor Xa inhibitors, 425
Direct hernias, 363
Direct inguinal hernias, 364
Direct sympathomimetics, 238
Direct thrombin inhibitors, 423
Disc herniation, 445
Discounted fee-for-service, 265
Disease prevention, 265
Disease vectors
Aedes mosquitoes, 168
Anopheles mosquito, 157
armadillos, 149
birds, 148, 149
black flies, 159
cats, 149
dogs, 145, 149
fleas, 149, 150
flies, 144, 149
horse flies, 159
Ixodes ticks, 146
rodents, 167
ticks, 146, 150
zoonotic bacteria, 149
Disinhibited social engagement, 540
Disopyramide, 315
Disorganized speech, 544
Disorganized thought, 543
Dispersion measures, 257
Displacement, 538
Disruption (morphogenesis), 595
Disruptive mood dysregulation disorder, 541
Disseminated candidiasis, 153
Disseminated intravascular coagulation (DIC), 416
acute myelogenous leukemia, 420
amniotic fluid emboli, 654
Ebola, 171
endotoxins, 131, 133
meningococci, 142
microangiopathic anemia, 411
placental abruption, 623
schistocytes in, 405
Waterhouse-Friderichsen syndrome, 332, 671
Dissociation, 538
Dissociative amnesia, 542
Dissociative disorders, 542
Dissociative fugue, 542
Dissociative identity disorder, 542
Distal convoluted tubules, 564
diuretics and, 589
filtration, 567
nephron physiology, 569
Distal humerus, 445
Distal interphalangeal (DIP) joints, 439
Distal renal tubular acidosis (type 1), 577

Distortions of hand, 439
Distribution, statistical, 257
Distributive shock, 305
Disulfiram
alcoholism, 681
alcoholism treatment, 555
ethanol metabolism and, 72
Disulfiram-like reaction, 246
Diuresis
atrial naturiuretic peptide, 291
for shock, 305
Diuretics
acute interstitial nephritis with, 587
dilated cardiomyopathy, 303
electrolyte changes, 591
glaucoma treatment, 535
in gout, 472
heart failure, 304
hypertension treatment, 310
magnesium levels and, 328
pancreatitis, 244
for SIADH, 342
site of action, 589
Diverticula, 377, 684
Diverticulitis, 377
Diverticulosis, 377
Diverticulum, 377
Dizygotic ("fraternal") twins, 598
Dizziness, 518
calcium channel blockers, 311
cholesteatoma, 518
drug side effects, 530, 532
nitrates, 311
ranolazine, 312
DMPK gene, 61
DNA
cloning methods, 55
free radical effect on, 216
introns vs exons, 43
laddering in apoptosis, 208
methylation of, $\mathbf{3 4}$
mutations in, 39
repair of, $\mathbf{4 0}$
replication of, $\mathbf{3 8}$
DNA ligase, 38
DNA polymerase inhibitors, 248
DNA polymerases, 38
DNA topoisomerases, $\mathbf{3 8}$
DNA viruses, 164
characteristics, 163
genomes, 162
Dobutamine, 238
Dofetilide, 316
Dogs (disease vectors), 145, 149, 152, 160, 186
Dolutegravir, 203
Dominant inheritance, 59
Dominant negative mutations, 56
Donepezil, 236
Do not resuscitate (DNR) order, 261
DOPA
tyrosine catabolism, 83
Dopamine, 238, 323
agonists, 531
atypical antipsychotic effects, 557
basal ganglia, 484
bupropion effect, 560
changes with disease, 479
derivation of, 83
Huntington disease, 504
kidney functions and, 573
lactation and, 324
L-DOPA, 532
MAO inhibition, 532

MAO inhibitor effects, 559
in noradrenergic drugs, 235
Parkinson disease, 531
PCT secretion of, 573
pheochromocytoma secretion, 334
receptors, 484
vitamin $\mathrm{B}_{6}$ and, 67
Dopamine agonists
prolactin and, 324
Dopamine antagonists, 324
Dopamine receptors, 234
Dopaminergic pathways, 482
in schizophrenia, 544
Doripenem
mechanism (diagram), 187
Dornase alfa (DNAse), 60
Dorsal columns (spinal cord), 492, 493
thalamic relay for, 482
Dorsal interossei muscle, 436
Dorsal motor nucleus, 490
Dorsal optic radiation, 526
Dorsal pancreatic bud, 353
Dorsiflexion
common peroneal nerve injury, 442
lumbosacral radiculopathy, 445
Dosage calculations, 229
Double-blinded studies, 252
"Double bubble" sign (X-ray), 353
Double stranded viruses, 163
Double Y males, 620
Down syndrome, 63
ALL and AML in, 420
cardiac defect association, 296
cataracts and, 519
chromosome associated with, 64
duodenal atresia and, 353
hCG in, 614
Hirschsprung disease and, 378
presentation, 670
Down syndrome (trisomy 21)
horseshoe kidney and, 563
Doxazosin, 240
Doxepin, 559
Doxorubicin, 428
cardiomyopathy from, 303
dilated cardiomyopathy, 243
targets, 426
toxicities, 431
Doxycycline
chlamydiae, 148
Chlamydia trachomatis, 679
lymphogranuloma venereum, 149
mechanism (diagram), 187
MRSA, 198
Mycoplasma pneumoniae, 150
rickettsial/vector-borne disease, 150
tetracyclines, 192
DPP-4 inhibitors, 349
Dressler syndrome, 300, 302, 306
presentation, 671
Drooling treatment, 237
"Drop" seizures, 501
Drug clearance, 687
Drug name conventions, 248-249
Drugs
autonomic, 235
cholinomimetic agents, 236
dosage calculations, 229
efficacy vs potency, 232
elimination of, 230, 231
errors in, 268
interactions, 229
metabolism of, 231
patient difficulty with, 262
reactions to, 243-246
therapeutic index, 232
toxic dose, 232
toxicities, 243
Drug trials, 252
Dry beriberi, 66
Dry cough with ACE inhibitors, 246
Dry mouth
Lambert-Eaton myasthenic syndrome, 459
tricyclic antidepressants, 559
Dry skin, 66
Dubin-Johnson syndrome, 387, 388
Duchenne muscular dystrophy, 61
frameshift mutation, 39
inheritance, 60
Ductal adenocarcinomas, 362
Ductal carcinoma in situ (DCIS), 632
Ductal carcinomas
terminal lobular unit, 631
Ductal carcinomas (invasive), 632
Ductus arteriosus, 276, 601
Ductus deferens
embryology, 604
ureter and, 564
Ductus venosus, 276
Duloxetine, 559
Duodenal atresia, 63, 353
Duodenal ulcers, 374
Duodenum
basal electric rhythm, 356
biliary structures and, 362
histology of, 356
location, 354
secretory cells, 367
Duplex collecting system, 563
Dural venous sinuses, 487
Dura mater, 479
Duret hemorrhage, 513
Dwarfism, 341
achondroplasia, 448
D-xylose test, 375
Dynein, 48
Dynein motors, 171
Dysarthria, 500
cerebellar vermis lesions, 495
Friedreich ataxia as, 515
osmotic demyelination syndrome, 508
Dysbetalipoproteinemia, 94
Dyschezia, 630
Dysentery
Entamoeba histolytica, 179
Escherichia coli, 145
Shigella spp., 132, 144, 179
Dysgerminomas, 629
Dysgeusia, 71
Dyslipidemia
$\beta$-blocker adverse effects, 316
$\beta$-blockers, 241
familial, 94
renal failure and, 586
vitamin $B_{3}$ for, 67
Dysmenorrhea
adenomyosis, 630
copper IUD, 638
defined, 613
endometriomas, 628
endometriosis, 630
Dysmetria
stroke and, 498

Dyspareunia, 551
endometriomas, 628
endometriosis, 630
Dyspepsia, 639
Dysphagia
achalasia, 370
esophageal pathologies and, 371-372
heart enlargement and, 277
osmotic demyelination syndrome, 508
Plummer-Vinson syndrome, 406
stroke effects, 498
Zenker diverticulum, 378
Dysplasia, 206, 216, 219
Dysplastic kidney
multicystic, 562, 563
Dyspnea
$\alpha_{1}$-antitrypsin deficiency, 386
aortic stenosis, 285
asthma, 656
emphysema, 675
heart failure, 304
hypersensitivity pneumonitis, 657
hypertriphic cardiomyopathy, 303
late-onset, 656
sudden-onset, 654
Wegener granulomatosis, 308
Dysthymia, 545
Dystonia
antipsychotics/anticonvulsants, 553
benztropine for, 237
Lesch-Nyhan syndrome, 37
movement disorders, 503
nigrostriatal pathway and, 482
Dystrophic calcification, 215, 224
Dystrophin gene, 61
Dysuria, 635
cystitis, 181
urinary catheterization, 185
UTIs causing, 585

## E

Ear
branchial pouch derivation, 603
Eardrum, 517
Early-onset Alzheimer disease, 63
Eastern equine encephalitis, 167
Eating disorders, 550
Eaton agar
culture requirements, 127
Mycoplasma pneumoniae, 150
Ebola virus, 167, 171
Ebstein anomaly, 275, 294, 296
fetal lithium exposure, 596
lithium, 558
E-cadherin, 461
in neoplastic progression, 219
Echinocandins, 198, 200
Echinococcus granulosus
cestodes, 160
disease association, 161
Echinocytes, 404
Echothiophate
glaucoma, 535
Echovirus
picornavirus, 167, 168
Eclampsia, 296, 625
benzodiazepines for, 529
Ecthyma gangrenosum, 143
Ectocervix, 608
Ectoderm
branchial clefts, 601
derivatives of, 595

Ectoparasites, 161
Ectopic pregnancy, 624
appendicitis differential diagnosis, 377
Chlamydia trachomatis, 149
hCG in, 614
Kartagener syndrome, 49
methotrexate for, 427
salpingitis and, 185
Eculizumab, 122
for paroxysmal nocturnal hemoglobinuria, 410
Eczema
hyper-IgE syndrome, 116, 671
phenylketonuria, 84
type I hypersensitivity, 112
Wiskott-Aldrich syndrome, 117, 675
Eczema (atopic dermatitis)
atopic dermatitis, 464
skin scales in, 462
Eczematous dermatitis, 462
Edema
Arthus reaction, 113
calcium channel blockers as cause, 311
capillary fluid exchange and, 293
danazol, 638
diabetic ketoacidosis, 345
endotoxins, 133
fludrocortisone, 350
heart failure and, 304
with hyperaldosteronism, 332
hyperammonia, 82
immunosuppressants, 120
inhalational injury, 658
Kawasaki disease and, 308
kwashiorkor, 71
nephrotic syndrome, 674
pepripheral, 304
periorbital, 159, 161
pitting, 304
pseudoepherine/phenylephrine, 667
pulmonary, 114
pulmonary hypertension, 650
Trichinella spiralis, 159, 161
trichinosis, 159
wet beriberi, 66
Edema (generalized)
cirrhosis, 383
Ménétrier disease, 373
Edema (peripheral), 592
acute poststreptococcal glomerulonephritis, 581
glomerular filtration barrier and, 565
loop diuretics for, 590
nephrotic syndrome, 580
superior vena cava syndrome, 666
Edema toxin, 132
Edema (vasogenic), 480
Edinger-Westphal nuclei, 523
EDRF. See Endothelium-derived relaxing factor (EDRF)
Edrophonium, 236, 534
myasthenia gravis diagnosis, 459
Edwards syndrome, 63
cataracts and, 519
chromosome association, 64
Edwards syndrome (trisomy 18) horseshoe kidney and, 563
Efavirenz
HIV-positive adults, 203
mechanism, 201

Effective refractory period
Class IA antiarrhythmic effect, 315
Class IC antiarrhythmic effect, 315
myocardial action potential, 286
Effective renal plasma flow, 566, 688
Efferent/afferent nerves, 291
Efferent arteriole, 564
angiotensin II, 574
ANP/BNP, 572
constriction of, 567
dopamine and, 573
filtration, 567
Efficacy vs potency of drugs, 232
EGF. See Epidermal growth factor (EGF)
EGFR gene, 665
"Eggshell" calcification, 659
Ego defenses, 538, 539
Ego-dystonic behavior, 547
Egophony, 662
Ego-syntonic behavior, 547, 548, 549
Ehlers-Danlos syndrome, 51
aneurysm association with, 500
collagen deficiency in, 50
heart murmur with, 285
Ehrlichia chaffeensis, 149
Ehrlichiosis
animal transmission, 149
rickettsial/vector-borne, $\mathbf{1 5 0}$
Eisenmenger syndrome, 295
Ejaculation
innervation of, 609
sperm pathway in, 608
Ejaculatory ducts, 608
embryology of, 604
Ejection fraction, 279, 688
Ejection murmur, 671
Elastase, 367
activity in emphysema, 656
Elastic recoil, 647
Elastin, 52
Elbow injuries, 434
Electrocardiogram (ECG) with pulmonary embolism, 654
Electrocardiograms (ECGs), 288
acute pericarditis on, 306
cardiac tamponade on, 307
low-voltage, 303, 307
MI diagnosis with, 301
tracings of, 290
Electroconvulsive therapy (ECT), 546
major depressive disorder, 545
postpartum psychosis, 546
Electroencephalogram (EEG)
Creutzfeldt-Jakob disease, 505
sleep stages, 481
Electrolytes
disturbances in, $\mathbf{5 7 5}$
diuretic effects on, 591
Electron acceptors (universal), 75
Electron transport chain, 78
Electron transport inhibitors, 78
Electrophoresis
hemoglobin, 401
Elek test, 139
Elementary bodies (chlamydiae), 148
Elephantiasis, 159
11ß-hydroxylase, 326
11-deoxycorticosterone, 326
11-deoxycortisol, 326 metyrapone and, 332
Elfin facies, 64
Elimination of drugs, 230
urine pH and, 231

ELISA (enzyme-linked
immunosorbent assay), 54
Elliptocytes, 404
Elliptocytosis, 404
Elongation of protein synthesis, 45
eltrombopag (TPO receptor agonist), 121
Elvitegravir, 203
Emancipated minors, 260
EMB agar
Escherichia coli, 181
lactose-fermenting enterics, 144
special culture, 127
Emboli
atherosclerosis, 298
atrial fibrillation, 290
atrial septal defect, 295
patent foramen ovale, 274
pulmonary, 305
Embolic stroke, 496
Emboliform nucleus, 483
Embolism
pulmonary, 576
Embryogenesis
genes involved in, 594
intrinsic pathway and, 208
Embryologic derivatives, 595
Embryology
cardiovascular, 274-276
derivatives, $\mathbf{5 9 5}$
erythropoiesis, 399
gastrointestinal, 352-353
genital, 604
gland derivations in, 603
neurological, 474-476
pancreas and spleen, 353
renal, 562-563
reproductive, 594-605
respiratory, 642-643
thyroid development, 320
USMLE Step 1 preparation, 270
Embryonal carcinoma, 634
Embryonic age calculation, 614
Embryonic development, 594
Embryonic morphogenic, errors, 595
Embryonic stage (development), 642
Emergent care proxy, 263
Emission
innervation of, 609
Emotion
neural structures and, 482
Emotionally distraught patients, 262
Emotional/social development
neglect and deprivation effects, 540
Empagliflozin, 349
Emphysema, 656
$\alpha_{1}$-antitrypsin deficiency, 386
compliance in, 647
diffusion in, 650
diffusion-limited gas exchange, 650
elastin in, 52
panacinar, 386
presentation, 675
"Empty/full can" test, 434
Empty sella syndrome, 343
Emtricitabine
HIV-positive adults, 203
mechanism, 201
Enalapril, 592
Encapsulated bacteria, 128
Encephalitis
anti-NMDA receptor, 221
Cryptococcus neoformans, 153
cytomegalovirus, 177
guanosine analogs, 201
herpesviruses, 164, 180
HIV-positive adults, 177
HSV identification, 166
Lassa fever, 167
neonatal, 182
rubeola, 170
small cell lung cancer, 665
togaviruses, 167
West Nile virus, 180
Encephalomyelitis paraneoplastic syndrome, 221
Encephalopathy
hepatic, 359, 385
hypertensive emergency, 296
lead poisoning, 407
Lyme disease, 146
prion disease, 178
renal failure, 586
Reye syndrome, 384
Wernicke, 66
End-diastolic volume, 278
Endemic typhus, 149
Endocannabinoids, 325
Endocardial cushion, 274
Endocardial fibroelastosis, 303
Endocarditis
bacterial, 305
Candida albicans, 153
coarctation of aorta, 295
Coxiella burnetii, 150
daptomycin, 195
enterococci, 137
heart murmurs, 285
heroin addiction and, 560
nonbacterial thrombotic, 221
prophylaxis, 198
Staphylococcus aureus, 135
Streptococcus bovis, 137
viridans streptococci, 129
Endocervix, 608
Endochondrial ossification, 447
Endocrine disorders paraneoplastic syndromes, 221
Endocrine functions
kidney, 573
Endocrine hormone signaling pathways, $\mathbf{3 3 0}$
Endocrine pancreas cell types, 321
Endocrine system, 320-350
anatomy, 320-321
embryology, 320
hormones acting on kidney, 574
pathology, 331-347
pharmacology, 348-350
physiology, 322-330
Endocrin/reproductive drug reactions, 244
Endoderm
branchial pouch derivation, 601
derivatives of, 595
Endodermal tubules, 642
Endometrial abnormal uterine bleeding, 614
Endometrial artery, 599
Endometrial cancer
Lynch syndrome and, 382
tamoxifen and, 431
tumor suppressor genes and, 222
Endometrial carcimoma, 630
epidemiology of, 625
estrogens and, 637
PCOS and, 627
progestins for, 638

Endometrial conditions, 630-631
Endometrial hyperplasia, 630
follicular cysts, 628
progesterone and, 611
Endometrial vein, 599
Endometriomas, 628
Endometriosis, 630
danazol for, 638
endometriomas and, 628
ovarian neoplasms and, 628
Endometritis, 630
Endometrium, 607
Endoneurium, 479
Endoplasmic reticulum, 46, 47
Endosomes, 47
Endothelial cells
filtration and, 567
glomerulus, 564
leukocyte extravasation and, 213
in wound healing, 217
Endothelin, 661
Endothelin receptor antagonists, 667
Endothelium-derived relaxing factor
(EDRF), 330
Endotoxins, 131, 133
End-stage renal disease findings, 678
End-systolic volume, 278
Enflurane, 533
seizures with, 246
Enfuvirtide, 203
HIV-positive adults, 203
mechanism (diagram), 201
Enhancers (gene expression), 41
Enoxacin, 195
Enoxaparin, 423
deep venous thrombosis, 653
Entacapone, 531
Entamoeba histolytica amebiasis, 155
bloody diarrhea, 179
metronidazole, 195
Enteric nerves, 356, 394
Enteritis
vitamin $B_{5}$ deficiency, 67
vitamin $B_{7}$ deficiency, 68
vitamin $\mathrm{B}_{12}$ deficiency, 69
Enterobacter spp.
lactose fermentation, 144
nosocomial infection, 185
taxonomy, 125
Enterobacter aerogenes, 189
Enterobius spp.
diseases association, 161
infection routes, 158
Enterobius vermicularis, 159
Enterochromaffin-like cells, 333
Enterococci, 137
penicillins for, 188
vancomycin, 190
vancomycin-resistant (VRE), 137
Enterococcus spp.
Gram-positive algorithm, 134
UTIs, 181
Enterococcus faecalis, 137
Enterococcus faecium, 137
Enterocolitis (necrotizing), 380
Enterohemorrhagic Escherichia coli (EHEC), 132, 145, 179
hemolytic-uremic syndrome, 415
Enteroinvasive Escherichia coli
(EIEC), 145, 179
Enterokinase/enteropeptidase, 367
Enteropathogenic Escherichia coli
(EPEC), 145

Enterotoxigenic Escherichia coli
(ETEC), 132, 179
Enterovirus meningitis, 180
Entorhinal cortex, 482
Enuresis, 551
Enveloped viruses, 162
Envelopes (viral), 163
env gene, 175
Enzyme kinetics, 228
antagonists, 230
partial agonists, 230
Enzymes
glycolysis regulation, 76
lipid transport, 92
rate-determining, 73
terminology for, 73
Eosinopenias, 412
Eosinophilia
Aspergillus fumigatus, 153
Chlamydia trachomatis, 149
macrolides, 193
Eosinophilic casts (urine), 585
Eosinophilic esophagitis, 371
Eosinophilic granuloma, 657
Eosinophilic granulomatosis
autoantibody, 115
Eosinophils, 397
corticosteroid effects, 412
in esophagus, 371
Ependymal cells, 477
Ependymoma, 512
Ephedrine, 238
as noradrenergic drug, 235
Epicanthal folds
cri-du-chat syndrome, 64
Down syndrome, 63
Epidemics, 169
Epidemic typhus, 149
Epidemiology/biostatistics, 252-258
Epidermal growth factor (EGF)
signaling pathways for, 330
in wound healing, 217
Epidermis, 461
embryologic derivatives, 595
Epidermophyton, 152
Epididymis, 608
embryology of, 604
Epididymitis, 184
Epidural hematomas, 497
Epidural space, 479
Epigastric pain
chronic mesenteric ischemia, 380
Ménétrier disease, 373
pancreatitis, 391
Epigastric veins, 359
Epiglottitis
Haemophilus influenzae, 142
labs/findings, 675
unvaccinated children, 186
Epilepsy
drug therapy, 528-529
gustatory hallucinations in, 543
hallucinations in, 543
lung abscesses, 666
seizures, 501
splice site mutations, 39
Sturge-Weber syndrome, 509
Epileptic patients
confidentiality exceptions, 264
Epinephrine, 238. See also
Catecholamines
adrenal medulla secretion, 320
$\alpha$-blockade of, 240
for anaphylactic reaction, 114
glycogen regulation and, 85
in nervous system, 233
pheochromocytoma secretion, 334
tyrosine catabolism, 83
unopposed secretion of, 344
vitamin $\mathrm{B}_{6}$ and, 67
Epineurium, 479
Epiphyseal tumors, 453
Epiphysis
estrogen effects on, 448
slipped capital femoral, 444, 450
tumors in, 452
widening of, 450
Epiploic foramen of Winslow, 355
Episcleritis
inflammatory bowel disease, 376
Epispadias, 606
Epistaxis, 653
hereditary hemorrhagic
telangiectasia, 310
Osler-Weber-Rendu syndrome, 670
Epithelial cell junctions, 461
Epithelial cells
tumor nomenclature of, 220
Epithelial histology (female), 608
Epithelial hyperplasia, 631
Epithelium, 356
Eplerenone, 591
Epoetin alfa (EPO analog), 121
Epoprostenol
pulmonary hypertension, 667
Epstein-Barr virus (EBV), 165
aplastic anemia, 409
Burkitt lymphoma, 418
false-positive VDRL, 148
hairy leukoplakia and, 466
head and neck cancer, 653
HIV-positive adults, 177
Hodgkin lymphoma, 417
in immunodeficient patients, 118
labs/findings, 675, 676
oncogenesis of, 223
receptors for, 166
Eptifibatide, 425
thrombogenesis and, 403
Erb palsy, 438
Erectile dysfunction, 551
$\beta$-blockers and, 241, 316
cimetidine, 392
Lambert-Eaton myasthenic syndrome, 459
PDE-5 inhibitors for, 639
Peyronie disease, 633
sildenafil, 667
Erection
autonomic innervation, 609
ischemic priapism, 633
Ergosterol synthesis, 198
Ergosterol synthesis inhibitors, 248
Ergot alkaloids
coronary vasospasm, 243
Erlotinib, 430
Erosions (gastrointestinal), 356, 373
Errors (medical), 268
Ertapenem, 187
Erysipelas, 466
Streptococcus pyogenes, 136
Erythema
complicated hernias, 364
Kawasaki disease, 308
palmar, 383
Erythema marginatum, 306
Erythema migrans, 146
Erythema multiforme, 151, 467

Erythema nodosum, 151, 468, 658
inflammatory bowel disease, 376
Erythroblastosis fetalis, 400
type II hypersensitivity, 112
Erythrocytes, 396
blood types, 400
casts in urine, 578
Coombs test, 411
DAF deficiency and, 107
erythropoietin and, 573
glucose usage by, 322
hereditary spherocytosis, 410
macrophages and, 397
multiple myeloma, 419 myeloproliferative disorders, 421 pathologic forms of, 404-405 transfusion of, 417
Erythrocyte sedimentation rate (ESR), $\mathbf{2 1 2}$
subacute granulomatous thyroiditis, 336
Erythrocytosis, 396 oxygen-hemoglobin dissociation curve, 649
Erythrogenic toxin, 136
Erythromelalgia, 421
Erythromycin
macrolides, 193
mechanism (diagram), 187
prophylaxis, 198
protein synthesis inhibition, 191
reactions to, 244
Erythroplasia of Queyrat, 633
Erythropoiesis, 661
fetal, 399
Erythropoietin, 121
high altitude, 652
with pheochromacytoma, 334
polycythemia and, 221, 673
release of, 573
in renal failure, 586
signaling pathways for, 330
Erythropoietin (EPO)
anemia of chronic disease, 409
aplastic anemia, 409
with polycythemias, 421
Eschar, 132, 137, 153
Escherichia coli, 145
catalase-positive organism, 128
cephalosporins, 189
culture requirements, 127
EMB agar, 144
encapsulation, 128
galactosemia as cause, 80
Gram-negative algorithm, 141 immunodeficiency infections, 118
Lac operon, 39
lactose fermentation, 144
meningitis, 180, 682
neonatal illness, 182
nosocomial infection, 185
penicillins for, 188
pneumonia, 179
prostatitis, 635
splenic dysfunction and, 98 spontaneous bacterial peritonitis, 384
taxonomy, 125
type III secretion system, 129
urinary tract infections, 585, 682 UTIs, 181
Escherichia coli Ol57:H7, 132, 145, 178, 179
E-selectin, 213

Esmolol, 241, 316
Esomeprazole, 392
Esophageal atresia, 352
Esophageal cancer, 372
achalasia and, 370
Esophageal dysmotility
CREST syndrome, 460
Esophageal squamous cell carcinomas, 371
Esophageal strictures, 371
Esophageal varices, 359, 371
Esophageal veins, 359
Esophageal webs, 371, 406
Esophagitis, 371
bisphosphonates, 471
as drug reaction, 244
HIV-positive adults, 177
Esophagus
blood supply and innervation, 357
diaphragm, 645
histology of, 356
pathologies of, $\mathbf{3 7 1}$
portosystemic anastomosis, 359
Essential amino acids, 81
Essential fructosuria, 80
Essential hypertension, 310
Essential mixed cryoglobulinemia, 173
Essential thrombocythemia, 421
Essential tremor, 503
Esters (local anesthetics), 533
Estradiol, 636
Estriol
pharmacologic control, 636
Estrogen, 611, 637
androgen conversion to, 617
androgen insensitivity syndrome, 621
benign breast tumors, 631
bone formation, 448
breast cancer, 632
contraception and, 638
endometrial carcinoma, 630
epiphyseal plate closure, 617
in genital development, 605
granulosa cell tumors, 629
gynecomastia, 631
Klinefelter syndrome, 620
lactation and, 617
leiomyomata, 630
menopause, 617
menstrual cycle, 613
osteoporosis, 449
ovulation, 612
pregnancy, 614
premature ovarian failure, 617, 627
progesterone and, 611
prolactin suppression of, 324
signaling pathways for, 330
thecoma, 628
Turner syndrome, 620
Estrogen receptor modulators
(selective), 637
Estrone, 636
Eszopiclone, 529
Etanercept, 472
Ethacrynic acid, 590
Ethambutol, 196, 197
Ethanol
as carcinogen, 223
metabolism, 72
Ethanol metabolism
zero-order elimination, 230
Ethics, 260-263
confidentiality, 264
consent, 260
core principles of, 260-262
directives, 261
religious beliefs and, 263
situations in, 262-263
Ethinyl estradiol, 637, 638
Ethosuximide, 528
absence seizures, 681
Ethylenediaminetetraacetic acid (EDTA), 407
Ethylene glycol
metabolic acidosis, 576
toxicity treatment, 243
Etonogestrel, 638
Etoposide, 429
in cell cycle, 426
targets of, 426
Etoposide/teniposide, 38
Euchromatin, 34
Eukaryotes
DNA replication, 38
functional gene organization, 41
mRNA start codons, 40
ribosomes in, 45
RNA processing, 41
Eustachian tubes
embryonic derivation, 603
Eversion, 442
Evolocumab, 313
Ewing sarcoma, 453
Ewing sarcomas
dactinomycin for, 428
labs/findings, 677
Exanthem subitum, 165
"Excision" event, 130
Excitatory pathway, 484
Exclusive provider organization plan, 265
Executioner caspases, 208
Exemestane, 637
Exenatide, 348
Exercise
blood flow autoregulation, 292
cardiac output, 278
peripheral resistance, 281
respiratory response, 652
syncope with, 303
Tetralogy of Fallot, 294
Exocrine glands, 233, 234
Exogenous corticosteroids, 327
Exons vs introns, 43
Exophytic mass (colorectal cancer), 382
Exotoxin A
Pseudomonas aeruginosa, 132
Streptococcus pyogenes, 133
Exotoxins
features of, 131
organisms with, 132-133
Expectorants, 667
Expiratory reserve volume (ERV), 646
Extension
hip, 443
knee, 445
leg, 442
External hemorrhoids, 360
External iliac arteries, 357
External iliac lymph nodes, 606
External inguinal ring, 364
External oblique muscle
inguinal canal and, 363
External rotation
arm (rotator cuff), 434
hip, 443

External spermatic fascia, 363
Extinction (conditioning), 538
Extracellular fluid (ECF), 565
volume measurement, 565
volume regulation, 572
Extragonadal germ cell tumors, 633
Extramammary Paget disease, 626
Extraperitoneal tissue, 363
Extravascular hemolysis, 409
Extrinsic hemolytic anemia, 411
Extrinsic pathway, 208
coagulation, 401
warfarin and, 424
Exudate
pleural effusion, 662
Exudate vs transudate, 217
Ex vacuo ventriculomegaly, 506
Eye disorders
AIDS retinitis, 165
aniridia, 584
cataracts, 519
conjunctivitis, 457, 518
corneal ulcers/keratitis, 143
episcleritis, 376
glaucoma, 520
keratoconjunctivitis, 164
keratoconjunctivitis sicca, 456
red-green color blindness, 197
retinal hemorrhage, 296
retinoblastoma, 222
retinopathy, 200, 216
retinopathy of prematurity, 216, 643
scleritis, 454
uveitis, 376
Eye disorders/diseases
Alport syndrome, 581
Eye movements, 524
bilateral movement of, 527
with stroke, 499
Eyes
anatomy of, 518
aqueous humor pathway, 519
cherry-red macular spot, 88
corneal arcus, 297
drugs affecting pupil size, 247
optic atrophy, 88
optic neuropathy, 59
periorbital edema, 335
scleral arcus, 94
subluxation of lenses, 52
Ezetimibe, 313
diarrhea, 244

## F

Fab region of antibodies, 104
Fabry disease, 60, 88
Facial dysmorphism, 596
Facial nerve (CN VII), 488, 490
brain stem location, 488
branchial arch derivation, 602
pathway for, 489
thalamic relay for, 482
in tongue, 477
Facial nerve palsy
Lyme disease, 146, 186
Facies
abnormal, 65
"chipmunk," 407
coarsening of features, 341
congenital syphilis, 147
dysmorphism, 595
elfin, 64
epicanthal folds, 63, 64
"facial plethora," 666
in fetal alcohol syndrome, 597
flat, 63
leonine (lion-like), 141
low-set ears, 562
moon, 331
retrognathia, 562
twisted face, 562
Factitious disorder, 550
Factor IX concentrate, 414
Factor VIII concentrate, 414
Factor V Leiden, 402, 416
venous sinus thrombosis and, 487
Factor Xa
direct inhibitors of, 425
heparin effect on, 423
Factor Xa inhibitors, 401, 425
Factor XI concentrate, 414
Facultative anaerobes
culture requirements, 127
Facultative intracellular organisms, 128
FADH (flavin adenine dinucleotide), 77
Failure mode and effects analysis, 268
Failure to thrive, 540
galactosemia, 80
orotic aciduria, 408
SCID, 117
Falciform ligament, 355
Fallopian tubes
anatomy, 607
epithelial histology, 608
fertilization, 614
False-negative rate, 253
False-positive rate, 253
Falx cerebri, 513
Famciclovir, 201
Familial adenomatous polyposis, 381
APC gene and, 383
chromosome association, 64
labs/findings, 676
Familial amyloid cardiomyopathy, 218
Familial amyloid polyneuropathies, 218
Familial dyslipidemias, 94
Familial hypercholesterolemia, 60, 94 presentation, 670
Familial hypocalciuric hypercalcemia, 340
Family discussions, 262
Family therapy
separation anxiety, 541
Famotidine, 392
Fanconi anemia, 409
nonhomologous end joining and, 40
presentation, 673
Fanconi syndrome, 570
drug reaction and, 246
presentation, 673
renal tubular acidosis, 577
Wilson disease, 389
Fascia
collagen in, 50
Fascia of Buck, 609
Fasciculations, 513
Fastigial nucleus, 483
Fasting plasma glucose test, 344
Fasting state, 76, 91
Fast twitch muscle fibers, 447
Fat emboli, 654
Fatigue
adrenal insufficiency, 332
adrenocortical insufficiency, 672
heart failure and, 304
MI signs, 300
Fat necrosis, 209, 631
Fat redistribution, 245
Fat-soluble vitamins, 65
Fatty acids
gluconeogenesis, 78
metabolism of, 47, 72, 89, 90
oxidation of, 72,73
synthesis, 73
Fatty acid synthase, 67
Fatty casts, 578, 580
Fatty liver
nonalcoholic, 385
Reye syndrome, 384
Fatty liver disease
hepatocellular carcinoma and, 386
labs/findings, 676
Fava beans and G6PD deficiency, 410
Fc region of antibodies, 104
Fear, 546, 547
Febrile nonhemolytic transfusion reaction, 114
Febrile pharyngitis, 164
Febrile seizures, 501
Febuxostat
gout, 455, 472, 681
Lesch-Nyhan syndrome, 37
Fecal elastase, 375
Fecal immunochemical testing (FIT), 382
Fecalith obstruction, 377
Fecal microbiota transplant, 138
Fecal occult blood testing (FOBT), 382
Fecal retention, 542
Feces
bilirubin excretion, 369
explosive expulsion of, 378
Federation of State Medical Boards (FSMB), 2
Fed state, 76, 91
Fee for service, 265
Felty syndrome, 454
Female genital embryology, 604
Female/male genital homologs, 605
Female reproductive anatomy, 607
Female reproductive epithelial histology, 608
Femoral artery, 362
Femoral head osteonecrosis, 450
Femoral hernias, 364
Femoral nerve, 362, 442
Femoral region, 362
Femoral ring, 362
Femoral sheath, 362
Femoral triangle, 362
Femoral vein, 362
Fenestrated capillaries, 480, 565
Fenofibrate, 313
Fenoldopam, 238, 311
Fentanyl, 534
Ferritin, 211
anemia, 412
anemia of chronic disease, 409
iron deficiency anemia, 406
lab values in anemia, 412
sideroblastic anemia, 407
Ferrochelatase, 413
Fertility
double Y males, 620
GnRH and, 323
menstrual cycle, 613

Fertilization, 612, 614
Fetal alcohol syndrome, 296, 596, 597
holoprosencephaly in, 475
Fetal circulation, 276
Fetal death
parvovirus, 164
Fetal development, 594
placental component, 599
Fetal distress
placental abruption, 623
vasa previa, 624
Fetal erythropoiesis, 399
Fetal hemoglobin, 647
Fetal hemorrhage, 596
Fetal hypothyroidism, 336
Fetal lung maturity, 643
Fetal movement, 594
Fetal-postnatal derivatives, 276
Fetal respiration, 642
Fetal tissue
collagen in, 50
Fetor hepaticus, 383
Fever
amphotericin B, 199
childhood rashes, 183
clindamycin, 192
complicated hernias, 364
endotoxins, 131
epiglottitis, 186
exotoxins, 133
following MI, 671
genital herpes, 184
high, 165, 168, 171, 183
with inflammation, 211
Jarisch-Herxheimer reaction, 148
Legionnaires' disease, 143
low-grade, 143, 171, 417
malaria, 157
mononucleosis, 165
neuroleptic malignant syndrome, 553
pulmonary anthrax, 137
recurring, 156
Rickettsia rickettsii, 150
Salmonella spp., 149
Salmonella typhi, 144
seizures with, 165
spiking, 158
Tetralogy of Fallot, 294
thyroid storm causing, 337
toxic shock syndrome, 135
Trichinella spiralis, 159
tuberculosis, 140
vasculitides, 308
Waterhouse-Friderichsen syndrome, 142
Weil disease, 147
Fexofenadine, 667
FGF. See Fibroblast growth factor (FGF)
FGF gene, 594
Fibrates, 313
hepatitis and, 244
myopathy and, 245
Fibrinogen, 211
in cryoprecipitate, 417
ESR and, 212
platelet plug formation, 403
receptor for, 396
thrombocytes, 396
thrombogenesis, 403
Fibrinoid necrosis, 209
Fibrinolysis, 402
Fibrinolytic system, 401

Fibrinous pericarditis, 300
Fibroadenoma, 631
Fibroblast growth factor (FGF)
signaling pathways for, 330
in wound healing, 217
Fibroblast growth factor receptor
(FGFR3), 448
Fibroblasts
cortisol and, 327
Graves disease, 337
in wound healing, 217
Fibrocystic breast disease, 631
"Fibro fog"), 458
Fibroid (leiomyoma), 630
leuprolide for, 637
Fibroma, 628
Fibromas
nomenclature for, 220
Fibromuscular dysplasia, 296
Fibromyalgia, 458
Fibronectin
cryoprecipitate, 417
thrombocytes, 396
Fibrosarcomas, 220
Fibrosis
diffusion-limited gas exchange, 650
silicosis, 659
Fibrous pericardium, 277
Fibrous plaque in atherosclerosis, 298
Fick principle, 278
Fidaxomicin, 138
Fifth disease
Bl9 virus, 164
rash, 183
50S inhibitors, 191
Filgrastim (G-CSF), 121
Filoviruses
characteristics of, 167
Ebola, 171
negative-stranded, 168
Filtration, 567
Filtration fraction, 688
glomerular dynamics, 567
Fimbria, 124, 607
Financial considerations in treatment, 262
Finasteride, 639
reproductive hormones and, 617, 636
Finger agnosia, 495
"Finger drop," 437
Finger movements, 436
upper extrmity nerve injury, 437
Fingernails
glomus tumors under, 465
Finkelstein test, 444
lst branchial arch, 602
lst branchial pouch, 603
First-degree AV block, 290
First-order elimination, 230
Fishy smell, 148
Fitz-Hugh-Curtis syndrome, 142, 185
5-aminosalicylic drugs, 376, 393
$5 \alpha$-reductase
inhibitors for BPH, 635
deficiency, 604, 621
testosterone conversion, 617
$5 \alpha$-reductase inhibitors
benign prostatic hyperplasia, 682
5-fluorouracil, 427
in cell cycle, 426
photosensitivity, 245
pyrimidine synthesis, 36
targets of, 426
toxicities of, 431

5-HT
MAO inhibitor effect on, 559
mechanism of, 558
opioid effects, 534
tramadol effect, 535
trazodone effects, 560
5-HT $1 \mathrm{~B} / 1 \mathrm{D}$ agonists
naming convention for, 248
5-HT agonists, 530
5-hydroxyindoleacetic acid (5-HIAA) in carcinoid syndrome, 346
neuroendocrine tumors, 333
Fixation, 539
Fixed splitting, 283
Flaccid paralysis botulinum toxin, 138
LMN lesion, 515
motor neuron signs, 513
Flagellin, 99
Flagellum, 124
Flat affect, 482
Flat facies, 63
Flavin nucleotides, 75
Flaviviruses, 162, 167
Fleas (disease vectors), 149, 150
Flecainide, 315
Flexion
foot, 442
hand, 436
hip, 443
thigh, 442
Flexor digiti minimi muscle, 436
Flexor pollicis brevis muscle, 436
Flies (disease vectors), 144, 159
"Floppy baby" syndrome
Clostridium botulinum as cause, 138 spinal cord lesions, 514
Flow cytometry, 54
Flow volume loops, 655
Fluconazole
Candida albicans, 679
mechanism and use, 199
mechanism (diagram), 198 opportunistic fungal infections, 153 systemic mycoses, 151
Flucytosine, 199
Fludrocortisone, 350. See also Glucocorticoids
Fluid compartments, 565
Flumazenil
benzodiazepine overdose, 243, 529, 554
diazepam and, 230
nonbenzodiazepine hypnotics, 529
Fluorescence in situ hybridization, 55
Fluorescent antibody stain, 126
Fluoroquinolones, 38
mechanism and use, 195
mechanism (diagram), 187
Mycoplasma pneumoniae, 150 pregnancy contraindication, 204
Pseudomonas aeruginosa, 143
tendon/cartilage damage with, 245
typhoid fever, 144
Fluoxetine, 559
Fluphenazine, 557
Tourette syndrome, 541, 556
Flutamide, 639
reproductive hormones and, 636
Fluticasone, 668
FMR1 gene, 62
Foam cells
in atherosclerosis, 298
Niemann-Pick disease, 88

Focal glomerular disorders, 578
Focal hepatic necrosis, 244
Focal necrotizing vasculitis, 308
Focal neurological deficits
hyperosmolar hyperglycemia nonketotic syndrome as cause, 346
pituitary apoplexy, 343
Focal segmental glomerulosclerosis, 580
Focal seizures, 501
Folate antagonist
teratogenicity, 596
Folate synthesis
inhibition/block, 187, 194
Folic acid
antimicrobials and, 187
neural tube defects and, 475
in pregnancy, 68
Follicles (lymph), 96
Follicle-stimulating hormone (FSH)
clomiphene effect, 637
cryptorchidism, 633
hCG and, 614
Kallmann syndrome, 621
Klinefelter syndrome, 620
leuprolide, 637
menopause, 617
ovulation/spermatogenesis and, 324
PCOS, 627
pharmacologic control of, 636
premature ovarian failure, 617, 627
progesterone and, 611
secretion of, 321
signaling pathways of, 330
spermatogenesis, 610
Turner syndrome, 620
Follicular conjunctivitis, 148
Follicular cysts, 628
Follicular lymphomas, 208, 418, 422, 685
chromosomal translocations and, 422
Follicular phase (menstrual cycle), 613
Follicular thyroid carcinomas, 338
Fomepizole
ethanol metabolism and, 72
toxicity treatment with, 243
Fondaparinux, 401
Food allergies and eczema, 464
Food poisoning
Bacillus cereus, 138
causes of, 131, 178
Staphylococcus aureus, 135
toxic shock syndrome toxin, 133
Food toxins, 242
Foot drop, 442
lead poisoning, 407
Foramen cecum, 320
Foramen magnum, 489
Foramen of Magendie, 488
Foramen of Monro, 488
Foramen ovale
atrial septal defect, 295
embryology, 274
fetal circulation, 276
retained patency of, 294
Foramen ovale (skull), 489
Foramen primum, 274
Foramen rotundum, 489
Foramen secundum, 274
Foramen spinosum, 489
Foramina of Luschka, 488

Forced expiratory volume (FEV) in elderly, 647
flow volume loops, 655
obstructive lung disease, 656
restrictive lung disease, 657
Forced vital capacity (FVC)
in elderly, 647
Forebrain, 474
Foregut
blood supply/innervation of, 357
development of, 352
Foreign body inhalation, 645
Formoterol, 668
Fornix, 482
Fornix (uterus), 607
45,XO, 620
47,XXY, 620
46,XX/46,XY DSD, 621
Fosamprenavir
HIV-positive adults, 203
mechanism, 201
Foscarnet, 202
Fosphenytoin, 528
Fossa ovalis, 276
4th-6th branchial arches, 602
4th branchial pouch, 603
Fovea, 518
cherry-red spot, 522
FOXP3 protein, 102
Fractures
chalk-stick, 450
common pediatric, 436
compartment syndrome with, 444
humerus, 437
in child abuse, 540
pathologic, 452
scaphoid, 435
vertebral compression, 449
Fragile X syndrome, 62
chromosome association, 64
dominant, inheritance of, 59
Frameshift mutations, 39
muscular dystrophy and, 61
Francisella spp.
intracellular organism, 128
taxonomy, 125
Francisella tularensis
animal transmission, 149
Gram-negative algorithm, 141
Frataxin, 515
Free fatty acids
diabetic ketoacidosis and, 345
fast/starvation states, 91
lipid transport and, 92
Free nerve endings, 478
Free radical injury, 210, 216
Fremitus (tactile), 662, 663
Fresh frozen plasma, 417
warfarin reversal, 681
for warfarin toxicity, 243
"Fried egg" appearance, 478
"Fried egg" cells, 629
"Fried egg" plasma cell, 419
Friedreich ataxia, 515
chromosome association, 64
hypertrophic cardiomyopathy, 303
inheritance of, 60
mechanism of, 62
Frontal bossing, 341
Frontal eye fields cortical functions, 485
lesions in, 495
Frontal lobe
lesions in, 495
stroke effects, 498

Frontotemporal dementia, 504, 506
Fructokinase, 80
Fructose-1,6-bisphosphatase, 73
gluconeogenesis, 78
in metabolic pathways, 74
Fructose-2,6-bisphosphate, 76
Fructose intolerance, 80
Fructose metabolism
disorders, 80
pathways, 74
Fructosuria, 80
FSH. See Follicle-stimulating hormone (FSH)
FTA-ABS test, 147
Fumarate, 82
Functional neurologic symptom disorder, 550
Functional residual capacity (FRC), 646
chest wall and, 647
Fundus, 607
Fungal infections
IL-12 receptor deficiency, 116
thymic aplasia, 116
Fungi
culture requirements, 127
immunocompromised patients, 179
infections with immunodeficiencies, 118
necrosis and, 209
opportunistic infections, 153
silver stain, 126
topical infections, 199
Funny current, 287, 317
Furosemide, 247, 590
gout with, 245
interstitial nephritis, 246
pancreatitis, 244
Fusion inhibitors, 203
Fusion protein EWS-FLIl, 453
Fusobacterium spp.
alcoholism, 179
anaerobic metabolism, 127
lung abscesses, 666
G
G6PD
deficiency, 60, 79
HMP shunt and, 73
in respiratory burst, 109
G6PD deficiency, 410
in anemia taxonomy, 406
degmacytes in, 404
Heinz bodies in, 405
GABA, 479
barbiturate effects, 529
basal ganglia and, 484
benzodiazepine effect, 529
changes with disease, 479
derivation of, 83
epilepsy drugs, 528
Huntington disease, 504
vitamin $\mathrm{B}_{6}$ and, 67
GABA channels, 200
Gabapentin, 528
$\mathrm{GABA}_{\mathrm{B}}$ receptor agonists, 507
gag gene, 175
Gag reflex, 490
Gait disorders
"steppage," 442
Trendelenburg sign/gait, 443
Gait disturbance
cerebellar lesions and, 483
Friedreich ataxia, 515

Parkinson disease, 504
vitamin $\mathrm{B}_{12}$ deficiency, 514
waddling, 61
Gait disturbances
Parkinson disease, 674
Galactocerebrosidase, 88
Galactocerebroside, 88
Galactokinase, 74
Galactokinase deficiency, 80 cataracts and, 519
Galactorrhea
antipsychotic drugs and, 323
pituitary prolactinomas, 323
tuberoinfundibular pathway, 482
Galactose-l-phosphate, 74
Galactose-1-phosphate uridyltransferase, 80
Galactose metabolism
diagram, 74
disorders of, $\mathbf{8 0}$
Galactosemia, 80
cataracts and, 519
Galantamine, 236
for Alzheimer disease, 532
Galant reflex, 494
Gallbladder
biliary structures, 362
blood supply and innervation of, 357
regulatory substances, 365
Gallbladder cancer
porcelain gallbladder and, 390
sclerosing cholangitis and, 389
Gallstone ileus, 390
Gallstones. See Cholelithiasis
$\gamma$-glutamyltransferase (GGT)
alcohol use, 554
$\gamma$-glutamyl transpeptidase (GGT), 384
$\gamma$-interferon, 397
Ganciclovir, 202
agranulocytosis, 245
Ganglion cyst, 444
Ganglioneuromatosis, 672
oral/intestinal, 347
Gangrene
Buerger disease, 308
diabetes mellitus, 344
Gangrenous necrosis, 209
Gap junctions, 461
Gardener's pupil, 237
Gardnerella spp., 125
Gardnerella vaginalis, 148
labs/findings, 675
Gardner syndrome, 381
Gargoylism, 88
Gas gangrene
alpha toxin, 133
Clostridium perfringens, 131, 138, 179
Gastrectomy, 408
Gastric acid, 366 histamine receptors and, 234 regulatory substances and, 365
Gastric adenocarcinomas acanthosis nigricans and, 468 Helicobacter pylori, 146
Gastric arteries
celiac trunk, 358
intraligmental, 355
Gastric bypass surgery
ghrelin and, 365
vitamin $\mathrm{B}_{12}$ deficiency, 69
Gastric cancer, 373
carcinogens causing, 223
metastases of, 226
oncogenes and, 222
oncogenic microbes and, 223
sign of Leser-Trélat and, 221
trastuzumab for, 431
types of, 373
Gastric outlet obstruction, 353, 374
Gastric sclerosis, 460
Gastric ulcers, 374
NSAID toxicity, 471
Gastric vessels, 355
Gastrin, 365, 367
signaling pathways for, 330
somatostatinomas and, 346
Gastrinomas, 350, 365
Gastritis, 373
associations, 682
gastrin in, 365
$\mathrm{H}_{2}$ blockers for, 392
Helicobacter pylori, 146
proton pump inhibitors for, 392
stomach cancer and, 373
Gastrocolic ligament, 355
Gastroduodenal artery, 358
Gastroenteritis
calciviruses, 167
Listeria monocytogenes, 139
rotavirus, 168
Salmonella spp., 144
Gastroepiploic arteries, 355, 358
Gastroesophageal reflux disease (GERD)
esophageal cancer and, 372
presentation, 371
Gastrohepatic ligament, 355
Gastrointestinal bleeding
hereditary hemorrhagic telangiectasia, 310
iron poisoning, 414
Osler-Weber-Rendu syndrome, 670
Gastrointestinal drug reactions, 244
Gastrointestinal ligaments, 355
Gastrointestinal regulatory substances, $\mathbf{3 6 5}$
Gastrointestinal secretory cells, 367
Gastrointestinal secretory products, 366
Gastrointestinal stromal tumors (GISTs), 222
Gastrointestinal system, 352-391
anatomy, 354-363
blood supply to, 357
embryology, 352-353
innervation of, $\mathbf{3 5 7}$
pathology, 370-391
pharmacology, 392-394
physiology, 365-369
Gastroschisis, 352
Gastrosplenic ligament, 355
Gastrulation, 594
Gaucher disease, 88
osteonecrosis, 450
osteonecrosis in, 450
Gaussian distribution, 257
G cells, 365
G-CSF. See Granulocyte-colony stimulating factor (G-CSF)
Gemfibrozil, 313
Gemifloxacin, 195
Gender dysphoria, 551
Gender identity, 616
Gene expression
modifications, 56
regulation, 41

Gene inheritance modes, 59
General anesthetic, 248
Generalized anxiety disorder (GAD), 546, 547
buspirone, 558
drug therapy for, 556
selective serotonin reuptake inhibitors (SSRIs) for, 559
serotonin-norepinephrine reuptake inhibitors (SNRIs) for, 559
Generalized seizures, 501
Genes
introns vs exons, 43
Genetic anticipation, 62
Genetics, 56-65
22qll deletion syndromes, 65 autosomal dominant diseases, 60 autosomal recessive diseases, 60
autosomal trisomies, 63
bacterial, 130, 131
chromosome disorders, 64
code features, 37
genetic terms, 56-57
inheritance modes, 59
muscular dystrophies, 61
trinucleotide repeat expansion

$$
\text { diseases, } 62
$$

viral, 162-163
X-linked recessive disorders, 60
Genetic shift/drift, 169
Geniculate nuclei (thalamus), 482
Genital herpes, 184
Genitalia
ambiguous, 604, 620, 621
embryology of, 594, 604
estrogen and, 611
male/female homologs, 605
Genital tubercles, 605
Genital ulcers, 184
Genital warts, 184
Genitofemoral nerve, 442
Genitourinary/renal drug reactions, 246
Genotyping microarrays, 54
Gentamicin, 187, 191
endometritis, 630
Genu varum (bow legs), 450
Geriatric patients
atropine in, 237
Beers criteria in, 242
changes in, $\mathbf{2 6 4}$
colonic ischemia and, 380
colorectal cancer, 382
common cause of death, 266
drug metabolism in, 231
drug-related delirium in, 542
isolated systolic hypertension, 278
lipofuscin in, 215
Medicare for, 266
nosocomial infections, 185
osteoporosis, 449
PPI adverse effects, 392
respiratory system changes in, 647
vascular skin tumors, 465
volvulus in, 379
Zenker diverticulum, 378
Germ cell tumors
cryptorchidism risk for, 633
cystic teratoma, 628
ovarian, 629
testicular, 633
Germinal centers of lymph nodes, 96
Germinal center (spleen), 98
Gerstmann syndrome, 495

Gestational age calculation, 614
Gestational diabetes, 615
Gestational hypertension, 625
GFAP, 225
GFAP (glial fibrillary acid proteins), 48
astrocyte marker, 477
GH. See Growth hormone (GH)
Ghon complex
tuberculosis, 140
Ghon focus, 140
Ghrelin, 325, 365
hunger and, 480
GHRH. See Growth-hormone-
releasing hormone (GHRH)
Giant cell pneumonia, 170
Giant cell (temporal) arteritis, 308,

$$
502
$$

ESR in, 212
granulomas in, 214
as granulomatous disease, 214
Giant cell tumor, 452
Giant cell tumors of bone, 677
Giardia spp.
watery diarrhea, 179
Giardia lamblia, 155
Giardiasis, 155
Giemsa stain, 126
Borrelia, 146
chlamydiae, 148
Gigantism, 325, 341
Gilbert syndrome, 387, 388
Gingival blue line, 673
Gingival hyperplasia calcium channel blockers, 311
cyclosporine, 120
as drug reaction, 245
Gingivostomatitis, 164
Gitelman syndrome, 570
markers in, 575
Glans penis, 608
cancer of, 633
lymphatic drainage of, 606
Glanzmann thrombasthenia, 403, 415
Glargine insulin. See also Insulin
Glaucoma, 520
acetazolamide for, 590
atropine, 237
$\beta$-blockers for, 241
carbachol for, 236
diabetes mellitus and, 344
diagnosing, 236
drugs for, 534
epinephrine for, 238
pilocarpine for, 236
Sturge-Weber syndrome, 509
Glimepiride, 348
Glioblastoma multiforme, 510
associations, 686
labs/findings, 677
nitrosoureas for, 428
Glipizide, 348
Glitazones/thiazolidinediones, 349
Global aphasia, 500
Global payment, 265
Globoid cells
Krabbe disease, 88
Globose nucleus, 483
Globus pallidus externus, 484
Glomerular disorders/disease, 579
nomenclature, 578
Glomerular filtration barrier, $\mathbf{5 6 5}$
Glomerular filtration parameters, 567

Glomerular filtration rate (GFR),

## 566, 688

ACE inhibitor effects, 592
ANP effect on, 574
glomerular dynamics in, 567
juxtaglomerular apparatus, 573
prerenal azotemia, 586
Glomerulonephritis azathioprine for, 120
bacterial endocarditis, 305
labs/findings, 678
RBC casts in, 578
Streptococcus pyogenes, 133, 136
Wegener granulomatosis, 308
Glomerulus
anatomy of, 564
dynamics of, 567
Glomus tumors, 465
Glossitis
B-complex deficiency, 65
megaloblastic anemia, 408
Plummer-Vinson syndrome, 371
vitamin $B_{3}$ deficiency, 67
vitamin $\mathrm{B}_{9}$ deficiency, 68
Glossopharyngeal nerve (9th cranial nerve)
blood flow regulation, 291
Glossopharyngeal nerve (CN IX), 490
brain stem location, 488
branchial arch derivative, 602
pathway for, 489
tongue, 477
Glossoptosis, 602
Glucagon, 323
for $\beta$-blocker toxicity, 243, 316
fructose bisphosphatase-2, 76
glucagonomas and, 346
glycogen regulation, 85
insulin and, 322, 323
production of, 321
signaling pathways of, 330
somatostatin and, 365
somatostatinomas and, 346
Glucagon-like peptide l(GLP-1) analog for DM, 348
Glucagonomas, 346
MEN 1 syndrome, 347
somatostatin for, 350
Glucocerebrosidase
Gaucher disease, 88
Glucocerebroside, 88
Glucocorticoids
acute gout attack, 681
adrenal insufficiency, 332
adrenal steroids and, 326
arachidonic acid pathway, 470
calcium pyrophosphate deposition disease, 455
Cushing syndrome diagnosis, 331
diabetes mellitus, 344
fat redistribution with, 245
gout, 455, 472
myopathy, 245
rheumatoid arthritis, 454
Glucokinase
hexokinase vs, 75
metabolic pathways, 74
Gluconeogenesis, 78
cortisol and, 327
diagram, 74
ethanol metabolism and, 72
in insulin deficiency, 344
metabolic site, 72
pyruvate metabolism and, 77
rate-determining enzyme for, 73

Glucose
ATP production, 74
blood-brain barrier and, 480
clearance, $\mathbf{5 6 8}$
diabetic ketoacidosis, 345
GH secretion and, 325
glycogen metabolism, 86
insulin and, 322
metabolism of, 39
Neisseria fermentation, 142
for porphyria, 413
transporters, 322
Glucose-6-phosphatase
gluconeogenesis, 78
HMP shunt, 79
Von Gierke disease, 87
Glucose clearance, 568
Glucose-dependent insulinotropic peptide (GIP), 365
Glucosuria
glucose clearance, 568
in pregnancy, 568
threshold for, 568
Glulisine insulin. See also Insulin
Glutamate
ammonia transport, 82
derivatives of, 83
opioid effects, 534
Glutamic acid, 81
Glutathione, 83
acetaminophen and, 470
in G6PD deficiency, 410
Glutathione peroxidase, 109
free radical elimination by, 216
Glutathione reductase, 109
NADPH and, 75
Gluteus maximus muscle, 443
Gluteus minimus muscle, 443
GLUT transporters, 322
Glyburide, 348
Glyceraldehyde, 80
Glycerol, 80
Glycine
derivatives of, 83
Glycocalyx, 124
Glycogen, 86
insulin and, 322
periodic acid-Schiff stain, 126
regulation of, $\mathbf{8 5}$
Glycogenesis
diagram, 74
rate-determining enzyme for, 73
Glycogenolysis
diagram, 74
in insulin deficiency, 344
rate-determining enzyme for, 73
Glycogen phosphorylase
glycogen metabolism, 86
glycogenolysis, 73
Glycogen phosphorylase kinase, 85
Glycogen storage diseases, 87
Glycogen synthase, 73
glycogen metabolism, 86
glycogen regulation, 85
Glycolysis
arsenic and, 74
diagram, 74
hexokinase/glucokinase in, 75
metabolic site, 72
pyruvate metabolism and, 77
rate-determining enzyme for, 73
regulation of, $\mathbf{7 6}$
type 2 muscle fibers, 447
Glycopeptides
mechanism (diagram), 187

Glycoprotein IIb/IIa inhibitors, 425
Glycoproteins
bacterial pilus/fimbria, 124
HIV, 175
interferons, 204
Glycopyrrolate, 237
Glycosylation, 45
GNAQ gene, 509
GnRH. See Gonadotropin-releasing hormone (GnRH)
Goblet cells, 356, 644
Goiter
maternal hypothyroidism from, 336
maternal iodine deficiency, 596
in Riedel thyroiditis, 336
types and causes of, $\mathbf{3 3 7}$
Golfer's elbow, 434
Golgi apparatus, 47
in plasma cells, 399
Golimumab, 122
Gonadal drainage, 606
Gonadal mosaicism, 57
Gonadotropin, 628
Gonadotropin-releasing hormone (GnRH)
agonists, 630, 636
antagonists, 636
estrogen and, 611
hypothalamic-pituitary hormones, 323
Kallmann syndrome, 621
menopause, 617
menstrual cycle, 613
ovulation, 612
prolactin and, 324
signaling pathways for, 330
spermatogenesis, 610
Gonoccal arthritis, 456
Gonococci vs meningococci, 142
Gonorrhea
ceftriaxone, 189
gonococci, 142
prophylaxis, 198
STI, 184
Goodpasture syndrome, 50, 581
autoantibody, 115
HLA-DR2, 100
labs/findings, 678
restrictive lung disease, 657
type II hypersensitivity reactions, 112
Good syndrome, 221
Gottron papules, 221, 459

## Gout, 455

as drug reaction, 245
drug therapy for, 472
kidney stones and, 582
lab findings, 677
Lesch-Nyhan syndrome, 37
loop diuretics and, 590
presentation, 673
treatment, 681
Von Gierke disease, 87
Gower maneuver/sign, 61
Gp4l, 203
G-protein-linked 2nd messengers, 234
Gracilis, 442
Grafts, 118
Graft-versus-host disease, 119
type IV hypersensitivity, 113
Gram-negative lab algorithm, 141
Gram-negative organisms
cell wall structure, 124
cephalosporins, 189
examples of, 125
lab algorithm, 141
Gram-positive cocci antibiotic tests, 134
Gram-positive lab algorithm, 134
Gram-positive organisms
cell wall structure, 124
cephalosporins, 189
examples, 125
lab algorithm, 134
vancomycin, 190
Gram stain identification, 126
Granular casts, 578
acute tubular necrosis, 587
Granular ("muddy brown") casts (urine), 578
Granulocyte-colony stimulating factor
(G-CSF), 330
Granulocytes, 396
morulae, 150
Granulocytopenia
trimethoprim, 194
Granuloma inguinale, 184
Granulomas, 140, 147, 151
macrophages and, 397
TNF- $\alpha$ and, 110
Granulomatosis with polyangiitis, 308
Granulomatosis infantiseptica, 214
Listeria monocytogenes, 139
Granulomatosis with polyangiitis (Wegener), 581
restrictive lung disease and, 657
Granulomatous disease, 214
Hansen disease, 214
histoplasmosis, 214
hypervitaminosis D with, 451
Granulosa cells, 611
tumors of, 629, 630
Granzyme B
cytotoxic T cells, 101, 102
extrinsic pathway and, 208
Grapefruit juice and cytochrome P-450, 247
Graves disease
autoantibody, 115
goiter caused by, 337
HLA-DR3 and, 100
hyperthyroidism, 337
type II hypersensitivity, 112
Gray baby syndrome
chloramphenicol and, 192, 204, 245
Gray hepatization, 664
Great cerebral vein of Galen, 487
Greater omental sac, 355
Greenstick fracture, 436
Grief, 546
Griseofulvin, 200
cytochrome P-450 interaction, 247
microtubules and, 48
pregnancy contraindication, 204
Ground-glass appearance (X-ray), 177, 643
Growth hormone (GH), 325, 350
diabetes mellitus, 344
ghrelin and, 325
for hypopituitarism, 343
insulin resistance and, 322, 325
Laron syndrome, 341
secretion of, 321
signaling pathways for, 330
somatostatin, 341
Growth hormone (GH) deficiency, 350

Growth-hormone-releasing hormone (GHRH)
GH and, 325
hypothalamic-pituitary hormones, 323
signaling pathways of, 330
Growth media properties, 126
Growth retardation
with renal failure, 586
Growth signal in cancer, 219
GTPase, 222
GTP (guanosine triphosphate), 77 smooth muscle contraction, 447
Guaifenesin, 667
Guanfacine, 239
Guanosine analogs
mechanism and use, 201
Gubernaculum, 604, 606, 607
Guessing during USMLE Step 1 exam, 23
Guillain-Barré syndrome
Campylobacter jejuni, 145
endoneurium in, 479
presentation, 674
restrictive lung disease, 657
Schwann cell injury, 478
Gummas
syphilis, 147, 184
Gustatory hallucinations, 543
Gustatory pathway
cranial nerves in, 516
thalamic relay for, 482
Guyon canal syndrome, 435
Gynecologic procedures
ureteric damage in, 564
Gynecologic tumor epidemiology, 625
Gynecomastia, 631
antiandrogens for, 639
antipsychotic drugs and, 557
azoles, 199
choriocarcinomas, 634
cimetidine, 392
cirrhosis, 383
Klinefelter syndrome, 620
Leydig cells, 634
potassium-sparing diuretics, 591
SHBG and, 330
spironolactone, 639
tuberoinfundibular pathway, 482
Gyrase, 187

## H

$\mathrm{H}_{1}$ blockers, 246, 667
$\mathrm{H}_{2}$ blockers, 392
Haemophilus spp. taxonomy, 125
Haemophilus ducreyi sexual transmission, 184
Haemophilus influenzae, 142
biofilm production, 129
cephalosporins, 189
chloramphenicol, 192
culture requirements, 127
Gram-negative algorithm, 141
influenza, 169
penicillins for, 188
pneumonia, 179
postviral infection, 179
rhinosinusitis, 653
vaccine, 180
Haemophilus influenzae type B
chloramphenicol, 192
encapsulation, 128
IgA protease, 129
immunodeficient patients, 118
meningitis, 180
rifamycins, 196
splenic dysfunction, 98
transformation, 130
unvaccinated children, 186
vaccine, 142
Hair
Menkes disease, 52
vitamin C deficiency, 69
Hairy cell leukemia, 225, 420
cladribine for, 427
IFN- $\alpha$ for, 204
Hairy leukoplakia, 466
HIV-positive adults, 177
Half-life equation, 229, 687
Halitosis
fetor hepaticus, 383
Zenker diverticulum, 378
Hallucinations, 543
cocaine, 554
delirium, 542
memantine, 532
mesolimbic pathway, 482
pellagra, 67
postpartum psychosis, 546
schizophrenia, 544
tricyclic antidepressants, 559
Hallucinogen intoxication and withdrawal, 555
Haloperidol, 557
delirium, 542
pupil size decrease, 247
torsades de pointes, 243
Halothane, 533
hepatic necrosis, 244
Hamartin protein, 222
Hamartomas, 220
tuberous sclerosis, 509
Hamartomatous colonic polyps, 381
Hamate bone, 435
fracture of hook, 437
Hammer toes, 515
Hand
distortions of, 439
gonoccal arthritis triad, 456
muscles of, 436
squamous cell carcinoma, 469
Hand-foot-mouth disease, 183
Hand grip in auscultation, 284
Hansen disease, 141
animal transmission, 149
dapsone, 194
erythema nodosum, 468
as granulomatous disease, 214
Hantavirus, 167
Happy puppet symptoms, 58
Haptens
acute interstitial nephritis, 587
amiodarone as, 316
Haptoglobin, 409
Hardy-Weinberg population genetics, 57
Hartnup disease, 67
vitamin $B_{3}$ deficiency, 67
Hashimoto thyroiditis, 336
autoantibody, 115
cholangitis association, 389
goiter causes, 337
HLA subtypes with, 100
lymphoma association, 338
Hassall corpuscles, 98
Hay fever
HLA-DR2 and, 100
type I hypersensitivity, 112
$\mathrm{HbA}_{\text {lc }}$ test, 344
HBcAg (hepatitis B core antigen), 174
HbC disease, 410
anemia taxonomy, 406
target cells in, 405
HBeAg (hepatitis B extracellular antigen), 174
HBsAg (hepatitis B surface antigen), 174
hCG. See Human chorionic gonadotropin (hCG)
choriocarcinomas, 622, 634
ectopic pregnancy, 624
embryonal carcinomas, 634
hydatidiform moles, 622
pregnancy, 614
secretion of, 594, 614
HCTZ. See Hydrochlorothiazide (HCTZ)
HDL (high-density lipoprotein), 94
Headache, $\mathbf{5 0 2}$
$\alpha$-blockers, 240
bupropion toxicity, 560
caffeine withdrawal, 554
Chiari I malformation, 476
cilostazol/dipyridamole, 425
cimetidine, 392
drug adverse effects, 195, 199, 200, 528, 529, 530
electroconvulsive therapy, 546
genital herpes, 184
giant cell (temporal) arteritis, 502
glaucoma, 520
hydralazine, 311
hypersensitivity pneumonitis, 657
increased intracranial pressure, 487, 505
Jarisch-Herxheimer reaction, 148
lead poisoning, 413
malaria, 157
Mucor spp. and Rhizopus spp., 153
Mycoplasma pneumoniae, 150
nitrates, 311
ondansetron, 394
PDE-5 inhibitors, 639
pituitary adenomas and, 340,510
pituitary apoplexy, 343
poliomyelitis, 515
ranolazine, 312
Rocky Mountain spotted fever, 150
sodium-channel blockers, 315
subarachnoid hemorrhage, 497, 500, 674
triptans for, 530
vasculitides and, 308
venous sinus thrombosis and, 487
Head and neck cancer, 653
cetuximab for, 122, 430
Head size
Paget disease of bone, 450
Head trauma, 541
Healing, wound, 217
Healthcare delivery, 265-268
Healthcare payment models, 265
Healthcare proxy, 263
Health maintenance organization plan, 265
Healthy worker effect, 256
Hearing loss, 517
conductive, 49
cytomegalovirus, 182
osteogenesis imperfecta, 51
Paget disease of bone, 450
sensorineural deafness, 581

Heart
autonomic nervous system, 233
autoregulation of, 292
developmantal defects, 603
electrocardiograms, 288
embryology, 274
fetal development, 594
ischemia in, 210
morphogenesis of, 274-275
normal pressures in, 292
sclerosis of, 460
Heart auscultation, 284
Heart block, 277
Heartburn, 371
Heart disease
common cause of death, 266
congenital, 63, 294-295
Fabry disease, 88
ischemic, 299
Heart failure, 304
ACE inhibitors for, 592
acromegaly, 341
acute tubular necrosis with, 587
amiodarone, 316
angiotensin II receptor blockers, 592
aortic regurgitation as precursor, 285
associations, 686
atrial septal defect, 295
$\beta$-blockers for, 241, 316
B-type natriuretic peptide in, 291
calcium channel blockers, 317
carcinoid syndrome, 552
cardiac glycosides for, 314
chronic ischemic heart disease, 299
contractility in, 279
diabetic ketoacidosis, 345
disopyramide, 315
dobutamine for, 238
dopamine for, 238
Ebstein anomaly, 294
ejection fraction in, 279
ESR in, 212
fludrocortisone and, 350
hydralazine for, 311
hypertension, 296
hypertension treatment in, 310
hypertensive emergency and, 296
jugular venous pulse in, 282
loop diuretics for, 590
MI, 300
Paget disease of bone, 450
pleural effusion, 662
potassium-sparing diuretics, 591
pulmonary hypertension, 661
pulse pressure in, 278
readmissions with, 266
renal failure causing, 586
shock caused by, 305
in sleep apnea, 661
systolic vs diastolic, 279
thiazides for, 591
ventricular septal defect, 295
Heart murmurs, 285
aortic regurgitation, 671
aortic stenosis, 671
auscultation of, 284
cardiomyopathies, 303
patent ductus arteriosus, 295
Heart rate, 239
Heart sounds, 282
associations, 683
auscultation of, 284

Heart sounds (continued)
cardiac cycle, 282
cardiac tamponade, 307, 672
splitting in, $\mathbf{2 8 3}$
Heart transplant
dilated cardiomyopathy, 303
Heart valve development, 275
Heat-labile toxin, 132
Heat shock proteins, 45
Heat-stable toxin, 132
Heavy menstrual bleeding (AUB/ HMB), 614
Heberden nodes, 454
Heel pain, 444
Heel-walking, 445
Heinz bodies, 79, 405, 410
Helicase, $\mathbf{3 8}$
Helicobacter spp., 125
Helicobacter pylori, 146
associations, 682
catalase-positive organism, 128
disease association, 373
Gram-negative algorithm, 141
metronidazole, 195
as oncogenic microbe, 223
penicillins for, 188
silver stain, 126
urease-positive, 128
urease-positive organism, 128
Heliotrope rash, 221, 459
HELLP syndrome, 625
schistocytes in, 405
Helminthic infections eosinophils and, 397
Helper T cells
cell surface proteins, 110
cytokine secretion, 108
in granulomatous diseases, 214
Hemagglutinin
influenza viruses, 169
parainfluenza viruses, 170
Hemangioblastomas, 510
von Hippel-Lindau disease, 509, 674
Hemangioma
cavernous (liver), 386
Hemangiomas, 220
cherry, 465
pyogenic granuloma, 465
strawberry, 465
Hemarthroses, 69, 414
Hematemesis, 371
Mallory-Weiss syndrome, 672
Hematin, 127, 142
Hematochezia
colorectal cancer, 382
diverticulosis, 377, 378
intestinal disorders, 380
Meckel diverticulum, 600
Hematocrit
high altitude and, 652
polycythemia vera, 421
Hematologic disorders paraneoplastic syndromes, 221
Hematologic drug reactions, 245
Hematology/oncology, 396-433
anatomy, 396-399
pathology, 404-424
pharmacology, 423-431
physiology, 399-403
Hematopoiesis, 419
extramedullary, 449
Hematopoietic stem cells, 110
Hematuria, 579
bladder cancer, 584

Henoch-Schönlein purpura, 672
hereditary hemorrhagic telangiectasia, 310
IgA nephropathy, 581
interstitial nephritis, 587
kidney stones, 582
nephritic syndrome, 581
nephroblastoma, 584
Osler-Weber-Rendu syndrome, 670 protease inhibitors, 203
renal cyst disorders, 588
renal oncocytoma and, 583
renal papillary necrosis, 587-592
Schistosoma haematobium, 161
transitional cell carcinoma, 584
UTIs, 181
Wegener granulomatosis, 308
Wilms tumor, 584
Heme
bilirubin and, 369
chloroquine, 200
porphyria and, 413
sideroblastic anemia and, 407
synthesis of, 72, 413
vitamin $B_{6}$ and, 67
Hemianopia, 499, 526
Hemianopia with macular sparing, 526
Hemiballismus, 503
brain lesions and, 495
Hemidesmosome, 461
Hemihyperplasia, 584
Hemineglect, 498
Hemiparesis, 507
saccular aneurysms, 500
Hemispatial neglect syndrome, 495
Hemochromatosis, 389
calcium pyrophosphate deposition disease, 455
cardiomyopathy with, 303
chromosome association, 64
free radical injury, 216
hepatocellular carcinoma and, 386
HLA-A3 and, 100
Hemoglobin, 647
carbon dioxide transport, 652
development of, 399
kinetics of, 228
modifications of, 648
Hemoglobin electrophoresis, 401
Hemoglobinuria
acute tubular necrosis and, 587
G6PD deficiency, 410
intravascular hemolysis, 409
transfusion reaction, 114
Hemolysis
alpha toxin as cause, 133
Clostridium perfringens as cause, 138
HELLP syndrome, 625
sulfonamides as cause, 194
transfusion reactions, 114
Hemolysis in G6PD deficiency, 245
Hemolytic anemia, 409
autoimmune, 112, 189
babesiosis, 157
cephalosporins, 189
cold agglutinin disease, 673
direct Coombs-positive, 245
extrinsic, 411
folate deficiency and, 408
G6PD deficiency, 79
in taxonomy, 406
intrinsic, 410
penicillin G, V, 187
pyruvate kinase deficiency and, 410
spherocytes in, 405
sulfa drug allergies, 247
vitamin E deficiency, 70
Wilson disease, 389
Hemolytic disease of the newborn, 112, 400
Hemolytic reactions and blood types, 400
newborns, 400
Hemolytic-uremic syndrome (HUS)
Escherichia coli, 145, 179
exotoxins, 132
platelet disorders, 415
schistocytes in, 405
Hemophilia, 414
deficiencies causing, 401
X-linked recessive disorder, 60
Hemoptysis
Aspergillus fumigatus, 177
bronchiectases, 657
choriocarcinomas, 622
lung cancer, 665
tuberculosis, 140
Wegener granulomatosis, 308
Hemorrhage
acute pancreatitis, 391
acute tubular necrosis, 587
AIDS retinitis, 165
baroreceptors and, 291
bevacizumab, 430
delirium caused by, 542
Ebola virus, 171
intracranial, 497
pulmonary, 137
shock from, 305
subarachnoid hemorrhage, 497, 500
ulcers, 374
Weil disease, 147
Hemorrhagic cystitis
adenoviridae, 164
cyclophosphamide, 428
drug reaction, 246
Hemorrhagic fever
bunyavirus, 167
filovirus, 167
Hemorrhagic infarcts, 210
Hemorrhagic stroke, 497
Hemorrhoids, 360
Hemosiderinuria, 409
Hemostasis, 396
coagulation, 402
platelet plug formation, 403
Henderson-Hasselbalch equation, 576, 688
Henoch-Schönlein purpura, 309
intussusception, 379
presentation, 672
Hepadnaviruses
characteristics of, 163, 164
genome, 162
Heparin, 423
acute coronary syndromes, 302
for anticoagulation, 401
in basophils, 397
in coagulation cascade, 402
deep venous thrombosis, 653
mast cells and, 398
osteoporosis, 245
thrombocytopenia, 245
toxicity treatment, 243
warfarin vs, 424

Heparin-induced thrombocytopenia
(HIT), 423
Hepatic adenomas, 386
Hepatic arteries, 358, 361
Hepatic ascites, 591
Hepatic cirrhosis, 662
Hepatic ducts, 362
Hepatic encephalopathy, 385
cirrhosis, 383
Hepatic necrosis, 244, 470
Hepatic steatosis, 385
Hepatitis
alcoholic, 385
alcoholism, 555
aplastic anemia and, 409
cirrhosis, 383
as drug reaction, 244
heroin addiction and, 560
hyperbilirubinemia, 387
Wilson disease, 389
Hepatitis A (HAV)
characteristics of, 172
picornavirus, 167, 168
serologic markers, 174
Hepatitis antigens, 174
Hepatitis B (HBV)

## characteristics of, 172

extrahepatic manifestations, 173
hepatocellular carcinomas and, 386
IFN- $\alpha, 204$
medical importance, 164
nosocomial infection, 185
as oncogenic microbe, 223
passive antibodies for, 110
polyarteritis nodosa and, 308
serologic markers, 174
sexually transmitted infection, 184
treatment, 680
Hepatitis C (HCV)
characteristics of, 172
extrahepatic manifestations, 173
flaviviruses, 167
hepatocellular carcinoma and, 386
lichen planus, 468
as oncogenic microbe, 223
therapy for, 204
Hepatitis D (HDV), 172
Hepatitis E (HEV), 172
hepevirus, 167
Hepatitis viruses, 172
aplastic anemia, 409
serologic markers for, 174
Hepatocellular carcinomas, 386
Aspergillus fumigatus, 153
Budd-Chiari syndrome and, 386
carcinogens causing, 223
cirrhosis and, 383
hemochromatosis, 389
non-alcoholic fatty liver disease, 385
oncogenic microbes, 223
Hepatocytes, 86
Hepatoduodenal ligament, 355
Hepatomas, 386
Hepatomegaly
Budd-Chiari syndrome, 386, 672
galactosemia, 80
hepatocellular carcinoma, 386
pulmonary hypertension, 650
Reye syndrome, 384
right heart failure, 304
Von Gierke disease, 87
Zellweger syndrome, 47
Hepatosplenomegaly
$\beta$-thalassemia and, 407
biliary tract disease, 389
graft-versus-host disease, 119
hyperchylomicronemia, 94
leishmaniasis, 158
lysosomal storage diseases, 88
mononucleosis, 165
ToRCHeS infections, 182
Hepatosteatosis, 72
Hepatotoxicity
amiodarone, 316
bosentan, 667
danazol, 638
HMG-CoA reductase inhibitors, 313
inhaled anesthetics, 533
isoniazid, 197
leflunomide, 471
methotrexate, 427
pyrazinamide, 197
rifamycins, 196
terbinafine, 199
thionamides, 349
valproic acid, 528
zileuton, 668
Hepcidin, 211
in anemia of chronic disease, 409
Hepeviruses
characteristics, 167
genomes, 162
naked viruses, 163
HER-2, 632
HER2/neu (c-erbB2), 222
"Herald patch" (pityriasis rosea), 468
Herceptin (trastuzumab), 431
Hereditary amyloidosis, 218
Hereditary angioedema, 638
complement disorder and, 107
Hereditary elliptocytosis, 404
Hereditary hemorrhagic telangiectasia, 310
autosomal dominance of, 60
Hereditary hyperbilirubinemias, $\mathbf{3 8 8}$
Hereditary spherocytosis, 410
in anemia taxonomy, 406
spherocytes in, 405
Hereditary thrombosis syndromes, 416
Hermaphrodites, 621
Hernias, 364
site of, 363
Herniation syndromes, 513
Heroin

## addiction to, $\mathbf{5 6 0}$

detoxification medications, 560
intoxication and withdrawal, 554
opioids for withdrawal, 534
Herpes genitalis, 164
Herpes labialis, 164
Herpes simplex virus 1 (HSV-1), 164 encephalitis, 686
STI, 184
Herpes simplex virus 2 (HSV-2), 164 STI, 184
ToRCHeS infection, 182
Herpes simplex virus (HSV)
cidofovir, 202
foscarnet for, 202
guanosine analogs, 201
identification, 166
meningitis caused by, 180
retinitis, 522
Herpes simplex virus (HSV-1/HSV-2)
erythema multiforme, 467
skin infections, 466

Herpesviruses, 164-166, 466
clinical significance, 164
envelope, 163
Herpes zoster
dorsal root latency, 164
famciclovir, 201
reactivation, 430
retinitis, 522
Herpetic whitlow, 164
Hesselbach triangle, 364
Heterochromatin, 34
Heterodimer, 48
Heterodisomy, 57
Heterogeneous nuclear RNA (hnRNA), 41
Heteroplasmy, 57
Heterozygosity loss, 56
Hexokinase
glucokinase vs, 75
metabolic pathways, 74
HFE gene
hemochromatosis and, 389
HGPRT (hypoxanthine guanine phosphoribosyltransferase), 37, 427
HHNS, 346
Hiatal hernias, 364
Hiccups, 503
High altitude respiratory response, 652
High-frequency recombination (Hfr) cells, 130
Highly active antiretroviral therapy (HAART), 203
High-riding prostate, 609
Hilar adenopathy, 675
Hilar lymphadenopathy, 657
Hilar lymph nodes
calcification of, 659
Hilar mass, 665
Hilar nodes, 140
Hilum (lung), 645
lymphadenopathy, 657
Hindbrain, 474
Hindgut
blood supply/innervation of, 357
development of, 352
Hip dislocation
nerve injury with, 443
Hip injuries/conditions developmental dysplasia, 444
trochanteric bursitis, 441
Hip muscles, 443
Hippocampus
lesions in, 495
limbic system, 482
pyramidal cells, 210
Hippurate test, for Streptococcus agalactiae, 137
Hirschsprung disease, 378
Down syndome, 63
Hirsutism
cyclosporine, 120
danazol, 638
menopause, 617
PCOS, 627
SHBG and, 330
Hirudin, 423
Histaminase, 397
Histamine blockers, 392
Histamine receptors, 234
Histamines
in basophils, 397
cortisol effect on, 327
derivatives of, 83
location of, 367
mast cells and, 398
seafoor toxins, 242
signaling pathways for, 330
vitamin $\mathrm{B}_{6}$ and, 67
Histidine, 81
derivatives of, 83
Histiocytosis (Langerhans cell), 422
Histocompatibility complex I and II, 100
Histones
acetylation, 34
amino acids in, 81
methylation, 34
Histoplasma spp.
treatment, 199
Histoplasma capsulatum
HIV-positive adults, 177
necrosis and, 209
Histoplasmosis, 151
erythema nodosum, 468
granulomatous disease, 214
Histrionic personality disorder, 549
HIV (human immunodeficiency virus), 175
aplastic anemia in, 409
cervical cancer and, 627
diagnosis, 175
disease associations, 177
ex vacuo ventriculomegaly, 506
flow cytometry diagnosis, 54
hairy leukoplakia, 466
heroin addiction and, 560
Kaposi sarcoma, 165, 465
lymphopenia, 412
meningitis, 180
microglia in, 477
non-Hodgkin lymphoma and, 417
Pneumocystis jirovecii, 154
primary central nervous system
lymphoma (PCL) and, 418
prophylaxis for HIV patients, 198
pulmonary arterial hypertension, 661
retrovirus, 167
rifamycins in, 196
STI, 184
T cells and, 398
therapy for, 201, 203
ToRCHeS infection, 182
untreated time course, 176
viral receptor, 166
Western blot diagnosis, 53
HLA-DR4, 454
HLA genes
associations, 671, 677
celiac disease and, 375
disease associations, 100, 336
DM type 1 association, 345
seronegative spondyloarthritis, 457
uveitis, 520
HMG-CoA reductase
cholesterol synthesis, 73
metabolic pathways, 74
HMG-CoA reductase inhibitors, 313
HMG-CoA synthase, 73
HMP shunt, 79
diagram, 74
metabolic site, 72
NADPH production, 75, 79
rate-determining enzyme, 73
Vitamin $B_{1}$ deficiency, 66
Hoarseness
gastroesophageal reflux disease, 371
with heart enlargement, 277
lung cancer, 665
Pancoast tumor, 666
"Hobnail" liver in alcoholic cirrhosis, 385
Hodgkin lymphoma
bleomycin for, 428
non-Hodgkin vs, 417
oncogenic microbes and, 223
paraneoplastic cerebellar degeneration and, 221
types of, 685
vinca alkaloids for, 429
Holistic medical therapy, 263
Holoprosencephaly, 475
fetal alcohol syndrome, 597
Patau syndrome, 63
Sonic hedgehog gene and, 594
Homan sign, 653
Homatropine, 237
Homeobox (Hox) genes, 594
Homer-Wright rosettes, 512
Homicide, 266
Homocysteine
$\mathrm{B}_{12}$ deficiency, 408
folate deficiency, 408
vitamin $\mathrm{B}_{9}$ deficiency, 68
vitamin $B_{12}$ deficiency, 69
Homocysteine methyltransferase
deficiency in, 84
vitamin $\mathrm{B}_{12}$ and, 69
Homocystinuria, 84
Homologous recombination repair, 40
Homovanillic acid (HVA)
in neuroblastomas, 333
tyrosine catabolism, 83
Homunculus, 485
"Honeycomb" lung, 657
Hookworms, 159
Hormone effects on kidney, 574
Hormone replacement therapy, 637
endometrial hyperplasia, 630
estrogens for, 637
for hypopituitarism, 343
thrombotic complications, 245
Hormones (reproductive), 636
Horn cysts, 464
Horner syndrome, 498, 502, 524
labs/findings, 679
lung cancer, 665
Pancoast tumor, 666
presentation, 674
Horner-Wright rosettes, 333
Horse flies (disease vector), 159
Horseshoe kidney, 563
Turner syndrome, 674
Hospice care, 266
Hospital readmission causes, 266
Hot flashes
as drug reaction, 244
menopause, 617
"Hourglass stomach," 364
Howell-Jolly bodies, 405, 676
postsplenectomy, 98
Hu antigens, 221
Human chorionic gonadotropin (hCG)
signaling pathways, 330
Human factors design, 267
Human growth hormone. See Growth hormone (GH)
Human herpesvirus 6 (HHV-6), 165,

Human herpesvirus 7 (HHV-7), 165
Human herpesvirus 8 (HHV-8), 165, 177
Kaposi sarcoma, 465
as oncogenic microbe, 223
Humanized monoclonal antibodies, 110
Human papillomavirus 6 (HPV-6), 184
Human papillomavirus 11 (HPV-11), 184
Human papillomavirus 16 (HPV-16), 653
Human papillomavirus (HPV)
cervical pathology, 627
HIV-positive adults, 177
as oncogenic microbe, 223
penile cancer, 633
tumor epidemiology, 625
verrucae, 464
warts, 164
Human placental lactogen, 615
Humerus fracture
axillary nerve and, 437
median nerve injury, 437
radial nerve with, 437
Humor, 539
Humoral immune response, 398
Hunger, 480
Hunter syndrome, 60, 88
Huntington disease
basal ganglia lesions, 495
neurodegenerative disorder, 504
neurotransmitters for, 479
ventromegaly, 506
Hurler syndrome, 88
Hürthle cells, 336
Hutchinson teeth, 147
Hyaline arteriolosclerosis, 297
Hyaline casts, 578
Hyaline casts (urine), 578
Hyaline membrane disease, 657
Hydatid cysts, 161
Hydatidiform mole, 622
hCG in, 614
theca-lutein cysts and, 628
Hydralazine, 311
gestational hypertension, 310, 625
heart failure, 304
Hydrocele (scrotal), 634
Hydrocephalus, 506
childhood tumors, 512
headaches with, 502
posterior fossa malformations, 476
risk for developing, 497
Toxoplasma gondii, 182
vertical gaze paralysis, 495
Hydrochlorothiazide (HCTZ), 591
for diabetes insipidus, 342
hyperglycemia, 244
pancreatitis, 244
Hydrocortisone
arachidonic acid pathway, 470
Hydrogen peroxide, 204
Hydronephrosis, 583
BPH, 635
horseshoe kidney, 563
kidney stones, 582
posterior urethral valves, 563
Hydrophobia, 171
Hydrops fetalis
parvovirus, 164
parvovirus B19, 182, 183
syphilis, 182

Hydrothorax, 628
Hydroxychloroquine
myopathy, 245
rheumatoid arthritis, 454
Hydroxylases, 73
Hydroxylation, 45
Hydroxyurea, 429
in cell cycle, 426
polycythemia vera, 421
pruine synthesis, 36
sickle cell anemia, 410
targets of, 426
Hyoid artery, 601
Hyoscyamine, 237
Hyperacute transplant rejection, 119
Hyperaldosteronism, 332
hypertension with, 296
metabolic alkalosis, 576
potassium-sparing diuretics for, 591
Hyperammonemia, 82
Hyperbilirubinemia
cirrhosis and, 383
hereditary, $\mathbf{3 8 8}$
jaundice with, 387
Hypercalcemia, 575
acute pancreatitis and, 391
adult T-cell lymphoma, 418
bisphosphonates for, 471
calcium carbonate in, 393
diabetes insipidus, 342
granulomatous diseases and, 214
hyperparathyroidism, 340
loop diuretics for, 590
lung cancer, 665
paraneoplastic syndrome, 221
PTH-independent, 339
sarcoidosis and, 658
succinylcholine, 534
teriparatide, 472
thiazides as cause, 591
Williams syndrome, 64
Hypercalciuria
hyperparathyroidism, 340
thiazides for, 591
Hypercapnia
contractility in, 279
Hypercholesterolemia, 94
familial, 60
nephrotic syndrome, 674
presentation, 670
Hyperchylomicronemia, 94
Hypercoagulability, 653
hereditary syndromes, 416
in pregnancy, 614
warfarin adverse effect, 424
Hypercoagulable state
venous sinus thrombosis with, 487
Hyperemesis gravidarum, 622
Hyperemia
pseudoepherine/phenylephrine, 667
Hypereosinophilic syndrome, 303
Hyperestrogenism, 628
Hyperglycemia. See also Diabetes mellitus
Cushing syndrome, 331
diabetic ketoacidosis, 345
diabetic retinopathy, 521
as drug reaction, 244
glucagon and, 323
hyperkalemia, 574
immunosuppressants, 120
niacin causing, 313
pancreatic cell tumors, 346
protease inhibitors, 203
thiazides, 591
vitamin $\mathrm{B}_{3}$ toxicity, 67
Hypergonadotropic hypogonadism, 621
Hypergranulosis, 462
Hyper-IgE syndrome
presentation, 671
Hyper-IgM syndrome, 117
Hyperinsulinemia, 627
Hyperkalemia, 575
aldosterone in, 572
aliskiren, 592
angiotensin II receptor blockers, 592
cardiac glycosides, 314
causes of, 574
diabetic ketoacidosis, 345
potassium-sparing diuretics, 591
primary adrenal insufficiency, 332
renal failure, 586
Hyperkalemic tubular acidosis (type 4), 577
Hyperkeratosis, 462, 464
Hyperlipidemia, 297
atherosclerosis and, 298
atypical antipsychotics, 557
glomerular filtration barrier and, 565
immunosuppressants, 120
nephrotic syndrome, 580
thiazides, 591
Hypermagnesemia, 575
Hypernatremia, 575
Hyperopia, 519
Hyperorality
Klüver-Bucy syndrome, 495
Hyperosmolar coma
DM type 2, 344
Hyperosmolar hyperglycemic state,

## 346

Hyperosmolarity, 574
Hyperparathyroidism, $\mathbf{3 4 0}$
associations, 684
calcium pyrophosphate deposition disease, 455
cinacalcet for, 350
lab findings, 677
lab values in, 451
osteoporosis, 449
renal osteodystrophy and, 586
Hyperphagia
depression with, 545
hypothalamus and, 480
Klüver-Bucy syndrome, 495
Prader-Willi syndrome, 58
Hyperphosphatemia, 575
hyperparathyroidism (secondary), 340
hypoparathyroidism, 339
renal osteodystrophy and, 586
Hyperpigmentation
adrenocortical insufficiency, 672
bleomycin, 428
busulfan, 428
fludrocortisone, 350
hemochromatosis, 389
melasma, 463
Peutz-Jeghers syndrome as cause, 381
primary adrenal insufficiency, 332
Hyperplasia, 219
adrenal, 331, 332
parathyroid, 339, 340, 347

Hyperplasia/malignancy
uterine bleeding with, 614
Hyperplastic arteriolosclerosis, 297
Hyperplastic polyps, 381
Hyperprolactinemia, 244, 323, 510
anovulation, 627
calcium channel blockers and, 311
risperidone and, 557
Hyperpyrexia
tricyclic antidepressants, 559
Hyperresonance (chest percussion), 663
pneumothorax, 662, 663
Hypersensitivity pneumonitis, 214, 657
Hypersensitivity reactions, 112-113
acute interstitial nephritis, 587
blood transfusions, 114
C3 deficiency, 107
cephalosporins, 189
Graves disease, 337
IgE antibodies, 105
mast cells and, 398
organ transplants, 119
penicillins, 187, 188
rheumatic fever, 306
sulfonamides, 194
Hypersensitivity reaction (type II) rapidly progressive glomerulonephritis, 581
Hypersensitivity reaction type II, 467
Hypersensitivity reaction (type III) acute poststreptococcal glomerulonephritis, 581
Hypersensitivity reaction type IV contact dermatitis, 464
Hypersexuality
Klüver-Bucy syndrome, 495
Hypersomnia, 545
Hypertension, 296
ACE inhibitors for, 592
alcohol withdrawal, 555
aliskiren for, 592
$\alpha$-blockers for, 240
angiotensin II receptor blockers for, 592
aortic dissection and, 299, 683
atherosclerosis and, 298
atrial fibrillation and, 290
autosomal recessive polycystic
kidney disease, 588
$\beta$-blockers for, 241
Charcot-Bouchard microaneurysms, 500
Cushing syndrome, 331
ecstasy intoxication, 555
endometrial cancer, 630
episodic, 334
Guillain-Barré syndrome, 508
heart failure, 310
hyperaldosteronism, 332
immunosuppressants, 120
intraparenchymal hemorrhage, 497
isolated systolic, 278
leflunomide, 471
local anesthetics, 533
loop diuretics for, 590
MDMA, 555
microangiopathic anemia, 411
minoxidil, 639
nephritic syndrome and, 581
PCP, 555
pheochromocytomas, 334
placental abruption, 623
polyarteritis nodosa, 308
preeclampsia, 625
in pregnancy, 239
pregnancy, 625
pseudoepherine/phenylephrine, 667
renal cyst disorders, 588
renal failure, 586
sleep apnea, 661
thiazides for, 591
thoracic aortic aneurysms and, 298
treatment for, $\mathbf{3 1 0}$
tyramine, 240
tyramine ingestion, 559
Hypertensive crisis, 553
MAO inhibitors as cause, 559
phenoxybenzamine for, 240
pheochromacytoma, 334
Hypertensive emergency, 296, 311, 581
RBC casts in, 578
Hypertensive nephropathy, 296
Hypertensive urgency, 296, 311
Hyperthermia
atropine as cause, 237
ecstasy intoxication, 555
MDMA, 555
Hyperthyroidism, 335, 337, 628
amiodarone and, 316
$\beta$-blockers in, 241
choriocarcinomas, 634
drug reactions, 244
hCG elevation and, 614
hydatidiform moles, 622
mature cystic teratoma, 628
osteoporosis, 449
pulse pressure in, 278
thionamides for, 349
Hypertriglyceridemia, 94
acute pancreatitis and, 391
Hypertrophic cardiomyopathy, 303
Pompe disease, 87
systolic murmur in, 284
Hypertrophic osteoarthropathy, 665 cancer association, 221
Hypertrophic pyloric stenosis, 353
Hypertrophic scars, 216
Hypertrophy, 206
Hypertropic cardiomyopathy, 515
Hyperuricemia
as drug reaction, 245
kidney stones and, 582
Lesch-Nyhan syndrome, 37
niacin and, 313
pyrazinamide, 197
thiazides, 591
vitamin $B_{3}$ toxicity, 67
Hyperventilation
emphysema, 675
metabolic acidosis, 576
in pregnancy, 614
Hyperventilation (therapeutic), 486
Hyperviscosity syndrome, 419
Hypervitaminosis D, 451
Hypnagogic hallucinations, 543 narcolepsy, 551
Hypnopompic hallucinations, 543 narcolepsy, 551
Hypoalbuminemia
alcoholic cirrhosis as cause, 385
nephrotic syndrome, 579, 580, 674
Hypocalcemia, 327, 575
22q11 deletion syndromes, 65 acute pancreatitis and, 391
cinacalcet causing, 350
DiGeorge syndrome, 603
hypermagnesemia and, 575
hyperparathyroidism, 340
hypoparathyroidism, 339
pseudohypoparathyroidism, 339
renal osteodystrophy, 586
thymic aplasia, 116
thyroidectomy, 338
Hypochondriasis, 550
Hypocitraturia, 582
Hypocretin, 551
Hypodermis, 461
Hypofibrinogenemia, 212
Hypogammaglobulinemia, 221
Hypoglossal canal, 489
Hypoglossal nerve (CN XII), 490
brain stem location, 488
lesion in, 516
location, 488
pathway, 489
with stroke, 498
tongue, 477
Hypoglycemia
carnitine deficiency, 89
fructose intolerance, 80
GH secretion in, 325
glucagon production with, 323
gluconeogenesis and, 78
insulinomas, 346
loss of orientation, 541
low birth weight and, 616
neonatal, 596
Reye syndrome and, 384
somatostatinomas, 346
Von Gierke disease, 87
Hypogonadism
diagnosis of, 621
estrogens for, 637
gynecomastia, 631
hemochromatosis, 389
Kallmann syndrome, 621
Klinefelter syndrome, 620
pituitary prolactinomas, 323
Prader-Willi syndrome, 58
testosterone/methyltestosterone, 639
zinc deficiency, 71
Hypogonadotropic hypogonadism, 621
Hypokalemia, 575
antacid use, 393
causes of, 574
cystic fibrosis, 60
on EKG, 288
loop diuretics, 590
nephrogenic DI, 342
VIPomas and, 365
Hypomagnesemia, 575
Hypomania, 545
Hypomanic episodes, 545
Hyponatremia, 575
cirrhosis and, 383
MDMA as cause, 555
as paraneoplastic syndrome, 221 thiazides, 591
Hypoparathyroidism, 339
Hypophosphatemia, 575
aluminum hydroxide use, 393
hyperparathyroidism, 340
Hypophosphatemic rickets, 59
Hypopituitarism, 343
Hypoplasia, 595
pulmonary, 642

Hypoproteinemia, 565
Hyporeflexia
LMN lesions, 515
magnesium hydroxide and, 393
Hypospadias, 606
Hyposplenia, 405
Hypotension
acute tubular necrosis with, 587
adrenal insufficiency, 332
adrenocortical insufficiency, 672
aliskiren, 592
amphotericin B, 199
angiotensin II receptor blockers, 592
baroreceptors in, 291
cardiac tamponade, 307
cilostazol/dipyridamole, 425
endotoxins, 131
ephedrine for, 238
Guillain-Barré syndrome, 508
hypermagnesemia, 575
local anesthetics, 533
magnesium hydroxide and, 393
metronidazole, 195
midodrine for, 238
norepinephrine for, 238
orthostatic, 332
phenylephrine for, 238
scombroid poisoning, 242
sympatholytic drugs and, 239
Waterhouse-Friderichsen syndrome, 671
Hypothalamic/pituitary drugs, 350
Hypothalamic-pituitary hormones, 323
Hypothalamus, 480
ADH secretion, 325
exogenous testosterone effect, 617
homeostasis and, 480
reproductive hormone control, 636
sleep physiology, 481
Hypothenar muscles, 436
Klumpke palsy, 438
Hypotheses (statistical), 257
Hypothyroidism, 335, 336
amiodarone and, 316
anemia, 408
in anemia taxonomy, 406
carpal tunnel syndrome and, 435
as drug reaction, 244
hormone replacement, 349
lithium, 558
Hypotonia
carnitine deficiency, 89
Menkes disease, 52
Prader-Willi syndrome, 58
Zellweger syndrome, 47
Hypoventilation, 576
Hypovolemia, 325, 344
Hypovolemic shock, 305
Hypoxanthine, 472
Hypoxanthine guanine phosphoribosyltransferase (HGPRT), 37
Hypoxemia
alveolar gas equation, 650
obstructive lung disease, 656
oxygen deprivation, 651
pulmonary emboli, 654
respiratory alkalosis and, 576
Hypoxemic vasoconstriction, 661
Hypoxia
apoptosis caused by, 208
contractility in, 279
erythropoietin and, 573
hemoglobin modifications, 648
lung diseases, 661
nocturnal, 661
oxygen deprivation, 651
regions susceptible to, 210
renal, 649
vasoconstriction/vasodilation and, 292
Hypoxia inducible factor la, 222
Hypoxic stroke, 496
Hypoxic vasoconstriction
(pulmonary), 650
high altitude, 652
Hysterectomy
adenomyosis, 630
cardinal ligament in, 607
Hysteresis (lung and chest wall), 647
Hysteria
respiratory alkalosis from, 576
I
Iatrogenic abnormal uterine bleeding, 614
Ibandronate, 471
Ibuprofen, 471
arachidonic acid pathway and, 470
hemolysis in G6PD deficiency, 245
Ibutilide, 316
ICAM-1 protein
in leukocyte extravasation, 213
viral receptor, 166
I-cell disease, 47
I cells, 365
Icosahedral viruses, 163
icterohemorrhagic leptospirosis, 147
Idealization, 539
Identificatione, 539
Idiopathic intracranial hypertension, 505
Idiopathic pulmonary fibrosis, 657
Idiopathic thrombocytopenic purpura (ITP)
labs/findings, 676
rituximab for, 122, 430
type II hypersensitivity reactions, 112
IDL (intermediate-density lipoprotein), 94
IFN- $\alpha$ (interferon- $\alpha$ ), 109
clinical uses, 121, 204
hepatitis, 680
natural killer cells, 101
IFN- $\beta$ (Interferon- $\beta$ ), 109
clinical uses, 121, 204
natural killer cells, 101
IFN- $\boldsymbol{\gamma}$ (Interferon- $\gamma$ ), 108, 116
cachexia and, 225
clinical uses, 121, 204
granulomatous diseases and, 214
Graves disease and, 337
Ifosfamide, 428
hemorrhagic cystitis, 246
IgA and IgG deamidated gliadin peptide autoantibody, 115
IgA antibodies, 105
ataxia-telangiectasia, 117
breast milk, 617
in celiac disease, 375
deficiency in, 116,671
hyper-IgM syndrome, 117

IgA antibodies (continued) multiple myeloma production of, 419
passive immunity, 110
Peyer patches and, 368
IgA anti-endomysial autoantibody, 115
IgA anti-tissue transglutaminase autoantibody, 115
IgA nephropathy, 581
Henoch-Schönlein purpura and, 309
IgA protease, 129
IgD antibodies, 105
IgE antibodies, 105
ataxia-telangiectasia, 117
eczema, 464
hyper-IgM syndrome, 117
mast cells and, 398
type I hypersensitivity, 112
IGF-1. See Insulin-like growth factor 1 (IGF-1)
IgG antibodies, 105
anemia and, 411
ataxia-telangiectasia, 117
bullous pemphigoid, 467
complement activation and, 106
hepatitis A (HAV), 174
hyper-IgM syndrome, 117
multiple myeloma production of, 419
multiple sclerosis, 507
as passive immunity, 110
pemphigus vulgaris, 467
in type III hypersensitivity reactions, 113
IgM antibodies, 105
anemia and, 411
in biliary cirrhosis, 389 complement activation and, 106 hepatitis A (HAV), 174
hyper-IgM syndrome, 117
in sclerosing cholangitis, 389
splenic dysfunction, 98
IL-1 (Interleukin 1), 108
cachexia and, 225
endotoxins, 133
IL-2 (Interleukin 2), 108
cyclosporine and, 120
natural killer cells and, 101
sirolimus and, 120
tacrolimus and, 120
IL-2R (Interleukin 2 receptor), 120
IL-3 (Interleukin 3), 108
IL-4 (Interleukin 4), 108
IL-5 (Interleukin 5), 108
IL-6 (Interleukin 6), 108
cachexia and, 225
endotoxins, 133
IL-8 (Interleukin 8), 108 neutrophils and, 396
IL-10 (Interleukin 10), 108
IL-12 (Interleukin 12), 108 natural killer cells and, 101
receptor deficiency, 116
Ileum, 356
basal electric rhythm, 356
Ileus, 380
bacterial peritonitis (spontaneous), 384
gallstone, 390
Iliacus, 442
Iliohypogastric nerve, 442
Iliotibial band syndrome, 444

Illness anxiety disorder, 550
Iloperidone, 557
Iloprost
for pulmonary hypertension, 667
Imatinib, 430
IMG registration timeframe, 6
Imipenem, 187
seizures with, 246
Imipramine, 559
Immature ego defenses, 539
Immature teratoma, 629
Immune complex, 113
Immune response
Bordetella pertussis, 143
Salmonella/Shigella spp., 144
Immune responses, 104-117
acute-phase reactants, 101
cell surface proteins, 109
complement, 106
cytokines, 108
hypersensitivity types, 114-115
immunodeficiencies, 116-118
passive vs active, 110
respiratory burst, 109
transfusion reactions, 114
Immune thrombocytopenia, 415
Immune thrombocytopenic purpura hepatitis C, 173
Immunocompromised patients
acyclovir/famciclovir/valacyclovir, 201
Candida albicans in, 153
common organisms affecting, 179
Cryptococcus neoformans, 153
Cryptosporidium, 155
esophagitis in, 371
fungal infections, 186
Listeria monocytogenes, 139
Pneumocystis jirovecii, 154
Immunodeficiency
infections in, 118
syndromes, 116-117
Immunodeficiency syndromes flow cytometry diagnosis, 54
Immunoglobins
for Kawasaki disease, 308
Immunoglobulins
adaptive immunity and, 99
breast milk and, 617
Guillain-Barré syndrome, 508
isotypes of, 105
Immunohistochemical stains, 225
Immunology, 96-122
cellular components, 98
immune responses, 104-117
immunosuppressants, 120-122
lymphoid structures, 96-98
pathogen recognition in, 99
Immunomodulator signaling pathways, 330
Immunophenotype assessment, 54
Immunosuppressants
for aplastic anemia, 409
for polymyositis/dematomyositis, 459
targets (diagram), 121
transplant rejection, 120
Immunosuppression
squamous cell carcinoma, 469
vitamin A deficiency, 66
vitamin C deficiency, 69
Immunotherapy, 121
Impaired colleague, 263
Impaired glucose tolerance. See Insulin resistance

Impetigo, 462
crusts with, 466
Streptococcus pyogenes, 136
sunburn and, 468
Incidence vs prevalence, 255
Inclusions
Cowdry A, 166
mulberry-like (morulae), 150
Negri bodies, 171
"owl eye," 165
reticulate bodies, 148
Incomplete penetrance, 56
Incontinence (fecal/urinary), 443
Incorrect results (statistical hypothesis testing), 258
Incus (bone), 517
Incus (ossicles)
branchial arch derivative, 602
India ink stain, 126
Indicator media, 126
Indinavir
HIV therapy, 203
mechanism, 201
Indirect bilirubin, 369
Indirect cholinomimetic agonists, 236
Indirect Coombs test, 112
Indirect inguinal hernias, 364
Indirect sympathomimetics, 238
Indomethacin, 471
arachidonic acid pathway, 470
for diabetes insipidus, 342
gout, 455
for PDA closure, 276
Infant/child development, 616
Infant development, 616
Infarction
blood-brain barrier effects, 480
of bone, 450
Infarcts
atherosclerosis, 298
calcification in, 215
pituitary, 343
regions susceptible to, 210
types of, 210
Infections
ESR in, 212
Inferior colliculi, 488
Inferior gluteal nerve, 443
Inferior mesenteric artery, 357
horseshoe kidney, 563
Inferior mesenteric vein, 359
Inferior oblique muscle, 524
Inferior phrenic arteries, 357
Inferior rectal artery, 360
Inferior rectal vein, 359
Inferior rectus muscle, 524
Inferior sagittal sinus, 487
Inferior vena cava, 354
diaphragm, 645
gonadal drainage and, 606
Infertility
clomiphene, 637
cystic fibrosis, 60
ectopic pregnancy, 624
endometriosis, 630
impaired sperm mobility, 618
Kallmann syndrome, 621
Kartagener syndrome, 49, 670
Klinefelter syndrome, 620
leuprolide for, 637
mumps, 170
ovarian neoplasms, 628
PCOS, 627
salpingitis, 185
septate uterus, 605
varicoceles, 633
Infiltrative cardiomyopathy, 303
Inflammasome, 212
Inflammation
acute, $\mathbf{2 1 2}$
in atherosclerosis, 298
cardinal signs, 211
chronic, 214
ESR in, 212
Extrinsic (death receptor) pathway, 208
IL-l as cause, 108
Intrinsic (mitochondrial) pathway, 208
wound healing, 217
Inflammatory bowel disease (IBD),

## 376

azathioprine for, 427
colorectal cancer and, 382
erythema nodosum, 468
infliximab/adalimumab for, 472
methotrexate for, 427
sclerosing cholangitis and, 389
spondyloarthritis, 457
therapeutic antibodies, 122
Inflammatory breast carcinoma, 632
Inflammatory breast disease, 631
Inflammatory diseases
Staphylococcus aureus, 135
Inflammatory pseudopolyps, 381
Infliximab, 122, 472
for Crohn disease, 376
for ulcerative colitis, 376
ulcerative colitis, 680
Influenza, 169
orthomyxovirus, 167
pneumonia, 664
Reye syndrome and, 384
treatment/prevention, 201
Informed consent, 260
Infraspinatus muscle
Erb palsy, 438
rotator cuff, 434
Infundibulopelvic ligament, 607
Infundibulum, 488
Ingested seafood toxins, 242
Inguinal canal, 363
Inguinal hernia, 364, 606
Inguinal ligament, 362, 363
Inguinal triangle, 364
Inhalational general anesthetic, 248
Inhalational injury, 645, 658
Inhaled anesthetics, 533
Inheritance modes, 59
Inhibin
cryptorchidism, 633
Klinefelter syndrome, 620
Sertoli cell secretion of, 610
Inhibitors of complement activation, 106
Inhibitory pathway, 484
Initiation of protein synthesis, 45
Innate immune system
in acute inflammation, 212
Innate immunity, 99
Inositol trisphosphate ( $\mathrm{IP}_{3}$ ), 330
Inotropes, 305
Inotropy, 281
INR (international normalized ratio), 414
Insomnia
AChE inhibitors, 532
barbiturates for, 529
benzodiazepines, 529
marijuana withdrawal, 555
nonbenzodiazepine hypnotics, 529
stimulants causing, 554
Inspiration effect on auscultation, 284
Inspiratory capacity (IC), 646
Inspiratory reserve volume (IRV), 646
Insulin, 322
anabolic effects of, 322
deficiency in, 344
diabetic ketoacidosis, 345
for HHNS, 346
fructose bisphosphatase-2 and, 76
GIP effect on, 365
glucagon and, 323
glycogen regulation, 73, 85
hypokalemia from, 574
in pregnancy, 322
production of, 321
secretion of, 322
signaling pathways for, 330
somatostatin and, 365
somatostatinomas and, 346
Insulin-like growth factor 1 (IGF-1)
acromegaly, 341
Laron syndrome, 341
signaling pathways for, 330
Insulinomas
insulin and C-peptide in, 322
MEN 1 syndrome, 347
pancreatic cell tumor, 346
Insulin preparations, 348
Insulin resistance
acanthosis nigricans and, 468
acromegaly, 341
cortisol, 327
Cushing syndrome, 331
DM type 2, 345
during pregnancy, 614
GH, 322, 325
non-alcoholic fatty liver disease, 385
PCOS, 627
Insurance
disregarding in treatment, 262
Medicare/Medicaid as, 266
types of plans, 265
Integrase inhibitors, 203
Integrins
epithelial cells, 461
viral, receptor, 166
Intellectual disabilities
WAGR complex, 584
Intellectual disability
autism and, 541
fetal alcohol syndrome, 597
Intellectualization, 539
Intention tremor, 503
cerebellar lesions, 495
multiple sclerosis, 507
Intention tremors
multiple sclerosis, 674
Interactions, drug, 229
Intercostobrachial nerve, 437
Interferon- $\alpha$
myopathy, 245
Interferon- $\gamma$ release assay (IGRA), 140
Interferons
mechanism and use, 204
Interferon- $\gamma$ release assay (IGRA), 140
Interlobar artery, 564
Interlobular artery, 564
Intermediate filaments
cytoskeletal element, 48

Intermenstrual bleeding (AUB/IMB), Intrauterine growth restriction 614
Internal auditory meatus, 489
Internal capsule
intraparenchymal hemorrhage, 497
stroke effects, 498
Internal carotid artery
cavernous sinus, 526
circle of Willis, 487
Internal hemorrhoids, 360
Internal iliac arteries, 357
Internal iliac artery, 276
Internal iliac lymph nodes, 606
Internal inguinal ring, 364
Internal jugular vein, 487
Internal oblique muscle, 363
Internal rotation
arm (rotator cuff), 434
hip, 443
Internal spermatic fascia, 363
International Foundations of

$$
\text { Medicine (IFOM), } 12
$$

Internuclear ophthalmoplegia, 495, 527
multiple sclerosis, 674
Interossei muscles, 436
Klumpke palsy, 438
ulnar nerve, 437
Interpreting study results, 256
Intersex, 621
Interstitial fluid, 293
Interstitial lung diseases, 454, 657
Interstitial nephritis
acute, $\mathbf{5 8 7}$
as drug reaction, 246
NSAID toxicity, 471
penicillins, 188
Interstitial pneumonia, 664
Interstitium
leukocyte extravasation and, 213
Interventricular foramen, 275
Interventricular septal rupture, 302
Intervertebral disc
lumbar/sacral herniation, 445
"Intestinal angina," 380
Intestinal atresia, 353
Intestinal obstruction
hernias, 364
superior mesenteric artery syndrome, 357
Intestinal villi, 356
Intimate partner violence, 263
Intoxication (psychoactive drugs), 554
Intracellular fluid (ICF), 565
Intracellular organisms, 128
Intracellular receptors
endocrine hormone messengers, 330
Intracranial hemorrhage, 497
eclampsia, 625
Intracranial hypertension (idiopathic), 505
Intracranial pressure, 486
hydrocephalus, 506
papilledema, 522
superior vena cava syndrome, 666
Intraductal papillomas, 631
Intraocular pressure, 520
Intraparenchymal hemorrhage, 497
Intrauterine device (IUD)
copper, 638
endometritis, 630

## (IUGR)

low birth weight, 616
substance abuse, 596
Intravascular hemolysis, 409
Intravenous anesthetics, 533
Intraventricular hemorrhage, 496
low birth weight, 616
neonatal respiratory distress syndrome as cause, 643
Intrinsic factor, 366, 367
Intrinsic hemolytic anemia, 410
Intrinsic pathway, 208
for coagulation, 401
coagulation defects of, 414
heparin and, 424
Intrinsic renal failure, 586
Introns vs exons, 43
Intrusive thoughts, 547
Intussusception, 379
Meckel diverticulum as cause, 378
Inulin
extracellular volume and, 565
glomerular filtration rate and, 566
in proximal convoluted tubules, 571
Inury (unintentional), 266
Invariant chain, 100
Invasive breast carcinomas, 632
Invasive carcinoma, 219
Invasive lobular carcinoma (breast), 632
Inversion, 442
In vivo biofilm-producing bacteria, 129
Involuntary treatment, 264
Iodine
deficiency in, 336, 337
infection control, 204
teratogenicity, 596
thionamide effect on, 349
Iodophors, 204
IPEX syndrome, 102
Ipratropium, 237, 668
Irinotecan, 429
in cell cycle, 426
targets of, 426
Irinotecan/topotecan, 38
Iris, 518
Iritis, 520
Iron
absorption of, 69, 368
anemia, 412
anemia of chronic disease, 409
excess, 67
in hemochromatosis, 389
lab values in anemia, 412
metabolic acidosis, 576
sideroblastic anemia, 407
toxicity of, 69
toxicity treatment, 243
Iron deficiency anemia, 406
in anemia taxonomy, 406
colorectal cancer, 382
fibroid tumors, 630
Plummer-Vinson syndrome, 371
Iron poisoning, 414
Irritable bowel syndrome (IBS), $\mathbf{3 7 7}$
antispasmodic drugs, 237
Ischemia, 210, 651
acute tubular necrosis from, 587
atherosclerosis, 298
digital, 459
Fanconi syndrome, 570
in gastrointestinal tract, 380
necrosis and, 209
Ischemic brain disease, 496
Ischemic heart disease
contraindicated antiarrhythics, 315
heart murmurs in, 285
manifestations of, 299
Ischemic priapism, 633
Islet cell cytoplasmic antibodies, 115
Islets of Langerhans, 321
Isocarboxazid, 559
Isocitrate dehydrogenase
metabolic pathways, 74
rate determining enzyme, 73
Isodisomy, 57
Isoflurane, 533
Isolated systolic hypertension, 278
Isolation of affect, 539
Isoleucine
classification of, 81
maple syrup urine disease and, 84
Isoniazid, 197
cytochrome P-450, 247
drug-induced SLE, 677
hemolysis in G6PD deficiency, 245
hepatitis, 244
Mycobacterium tuberculosis, 196
seizures, 246
sideroblastic anemia, 407
Isoproterenol
norepinephrine vs, 239
sympathomimetic action, 238
Isosorbide dinitrate, 311
Isosorbide mononitrate, 311
Isotretinoin
cystic acne, 66
teratogenicity, 596
Isovolumetric contraction, 282
Isovolumetric relaxation, 282
Isuccinate dehydrogenase, 78
Itraconazole
azoles, 199
mechanism (diagram), 198
Sporothrix schenckii, 154
systemic mycoses, 151
Ivabradine, 317
IV drug use
common organisms, 179
Ivermectin, 200
"Ivory white" plaques, 659
IV phlebitis, 199
Ixodes ticks, 146, 149, 157

## J

JAK2 gene, 222
myeloproliferative disorders, 421
Janeway lesions, 305, 672
Jarisch-Herxheimer reaction, 148
Jaundice, $\mathbf{3 8 7}$
alcoholic cirrhosis and, 385
biliary tract disease, 389
cholangitis, 362, 390
cirrhosis, 383
Crigler-Najjar syndrome, 672
as drug reaction, 244
fructose intolerance, 80
galactosemia, 80
graft-versus-host disease, 119
hepatitis B, 184
hepatocellular carcinoma, 386
hereditary hyperbilirubinemias, 388
leptospirosis, 147

Jaundice (continued) newborn hemolytic disease, 400 painless, 672
pancreatic cancer, 391
ToRCHeS infections, 182
transfusion reaction, 114
yellow fever, 168
Jaw jerk reflex, 490
JC virus (John Cunningham virus) HIV-positive adults, 177 immunocompromised patients, 118 polyomaviruses, 164
Jejunal and ileal atresia, 353
Jejunum, 356
Jervell and Lange-Nielsen syndrome, 289
Jimson weed, 237
Jod-Basedow phenomenon, 337. See also Wolff-Chaikoff effect
J point in ECG, 288
Jugular foramen, 487, 489
Jugular venous distention (JVD), 304, 666
Jugular venous pulse, 282
Justice (ethics), 260
Juvenile idiopathic arthritis, 520
Juvenile polyposis, 381
Juxtaglomerular apparatus (JGA), 573
filtration, 567
juxtaglomerular cells, 564
renin secretion, 572
Juxtaglomerular cells
tumors in, 332

## K

Kala-azar, 158
Kallikrein
Cl esterase inhibitor deficiency, 107
neutrophils and, 396
Kallmann syndrome, 480, 621
Kaposi sarcoma, 465
AIDS and, 184
bacillary angiomatosis vs, 465
HHV-8, 165
HIV-positive adults, 177
IFN- $\alpha$ for, 204
oncogenic microbes and, 223
Kartagener syndrome, 49, 274
infertility with, 618
obstructive lung disease, 657
presentation, 670
Karyotyping, 55
Kawasaki disease, $\mathbf{3 0 8}$
presentation, 671, 672
Kayser-Fleischer rings
Wilson disease as cause, 389
K cells, 365
K complexes/sleep spindles, 481
Kegel exercises, 584
Keloid scars, 216
Keratinocytes
sunburn, 468
in wound healing, 217
Keratin pearls, 665
Keratoacanthomas, 469
Keratoconjunctivitis, 164
Keratoconjunctivitis sicca, 456
Keratomalacia, 66
Kernicterus, 194, 204
Kernohan notch, 513
Ketamine, 533

Ketoacidosis, 72, 90
Ketoconazole, 198, 199, 639
cytochrome P-450, 247
gynecomastia from, 631
PCOS, 627
reproductive hormones and, 636
Ketogenesis
diabetic ketoacidosis, 345
diagram of, 74
insulin deficiency, 344
metabolic site, 72
rate-determining enzyme for, 73
Ketone bodies, 90
Ketonemia, 344
Ketonuria, 344
Ketorolac, 471
arachidonic acid pathway, 470
Kidney
anatomy, 564
chronic graft nephropathy, 119
donor transplantation of, 564
embryology of, 562
endocrine functions, 573
glomerular structure, 564
hormones acting on, 574
solitary functioning, 563
transplant prophylaxis, 120
Kidney disease
anemia of chronic disease and, 409
hypertension, 296
Kidney disease/disorders
prenatal diagnosis of, 562, 563
Kidney endocrine functions, 573
Kidneys
blood flow regulation, 292
calcification in, 215
embryologic derivation, 595
ischemia in, 210
retroperitoneal location of, 354
sclerosis, 460
Kidney stones, 582
Crohn disease association, 376
electrolyte disturbances, 575
hematuria with, 578
horseshoe kidney and, 563
hydronephrosis, 583
hyperparathyroidism, 340
postrenal azotemia, 586
risk factors for, 577
UTIs, 181
Kiesselbach plexus, 653
Killian triangle, 378
Kimmelstiel-Wilson nodules
diabetes mellitus, 344
Kinases, 73
Kinesin, 48
Kinin cascade/pathways, 401
Kinky hair, 52
Kissing bug (disease vector), 158
Klebsiella spp., 145
alcoholism, 179
currant jelly sputum, 145, 186
Gram-negative algorithm, 141
kidney stones, 582
lactose fermentation, 144
nosocomial infections, 185
pneumonia, 664
taxonomy, 125
urease-positive, 128
urinary tract infections, 585
Klebsiella pneumoniae
cephalosporins, 189
encapsulation, 128
immunodeficient patients, 118
presentation, 671
splenic dysfunction, 98
UTIs caused by, 181
Klinefelter syndrome, 620
chromosome association, 64
gynecomastia, 631
testicular tumors, 634
Klumpke palsy, 438
Klüver-Bucy syndrome, 495
Knee examination, 440
Knee injuries/conditions
Baker cyst, 441
ligament and meniscus, 441
prepatellar bursitis, 441
Knees
common conditions of, 441
Knock-out/Knock-in genes, 56
KOH preparation, 152
Koilocytes, 627
condylomata acuminata, 184
Koilocytosis, 464
Koplik spots, 170, 183, 671
Korsakoff psychosis, 555
Korsakoff syndrome, 542
Krabbe disease, 88
KRAS gene, 222
adenomatous colonic polyps and, 381
colorectal cancer and, 383
lung cancer and, 665
Krukenberg tumors, 373, 629
$\mathrm{K}_{\mathrm{m}}, 228$
Kübler-Ross grief model, 546
Kulchitsky cells, 333, 665
Kupffer cells, 361
Kuru, 178
Kussmaul respirations
in diabetic ketoacidosis, 345
Kussmaul sign, 310
Kwashiorkor, 71
Kyphoscoliosis, 515
Kyphosis, 84

## L

Labetalol, 241
gestational hypertension, 625
hypertension in pregnancy, 310
hypertensive emergency, 311
Labia, 607
male homolog of, 605
Labile cells, 46
Lachman test, 440
Lac operons, 39
Lacrimation reflex, 490
Lactase deficiency, 81
Lactation, 617. See also Breast milk
dopamine and, 324
oxytocin for, 350
progesterone and, 611
prolactin and, 324
Sheehan syndrome and, 343
Lactational mastitis, 631
Lactic acid dehydrogenase, 77
Lactic acidosis
ethanol metabolism and, 72
exercise and, 652
MELAS syndrome, 59
metabolic acidosis, 576
pyruvate dehydrogenase complex deficiency, 77
Lactiferous sinus, 631
Lactobacillus spp.
taxonomy, 125

Lactoferrin
in neutrophils, 396
in respiratory burst, 109
Lactose-fermenting enteric bacteria, 127, 144
Lactose intolerance, 375
Lactose metabolism, 39
Lactulose
for hepatic encephalopathy, 385
hyperammonemia, 82
Lacunar infarcts, 498
Ladd bands, 379
Lambert-Eaton myasthenic syndrome, 459
autoantibody, 115
as paraneoplastic syndrome, 221
small cell lung cancer, 665
Lamina propria, 356
Peyer patches in, 368
in Whipple disease, 375
Lamins, 48
Lamivudine
HIV therapy, 203
mechanism, 201
Lamotrigine
for epilepsy, 528
rash caused by, 245
Lancet-shaped diplococci, 136
Landmark dermatomes, 494
Landmarks (anatomical)
for dermatomes, 494
McBurney point, 377
midclavicular line, 645
pudendal nerve block, 443
Langerhans cell histiocytosis, 422
pulmonary, 657
Langerhans cells, 398
Birbeck granules in, 677
Language development, 616
Lanosterol synthesis, 198
Lansoprazole, 392
Laplace law, 279, 643
Large cell carcinoma, 665
Laron syndrome, 341
Larva migrans, 159
Laryngopharyngeal reflux, 371
Laryngospasm, 352
Larynx, 644
Larynx muscles, 602
Lassa fever encephalitis, 167
Latanoprost, 535
Latent errors, 268
Lateral cerebellar lesions, 483
Lateral collateral ligament (LCL) injury, 440
Lateral corticospinal tract, 492, 493, 498
Lateral epicondylitis, 434
Lateral femoral circumflex artery, 450
Lateral femoral cutaneous nerve, 442
Lateral geniculate nucleus (LGN), 482
Lateral medullary syndrome, 498
Lateral pterygoid muscle, 491, 602
Lateral rectus muscle, 524
Lateral spinothalamic tract, 492
Lateral thoracic artery, 445
Lateral ventricles
herniation syndromes, 513
optic radiation, 526
ventricular system, 488
Laxatives, 394
LDH
exudates, 217
tumor burden indicator, 224

LDL (low-density lipoprotein), 94
Leaden paralysis, 545
"Lead pipe" muscle rigidity, 553
Lead poisoning, 407, 413
acute tubular necrosis, 587
in anemia taxonomy, 406
basophilic stippling in, 404
labs/findings, 676
presentation, 673
sideroblastic anemia, 407
treatment, 243
Lead-time bias, 256
Leber hereditary optic neuropathy, 59
Lecithinase, 133, 138
Lecithin-cholesterol acetyltransferase (LCAT)
activation of, 93
Lecithins
lung maturity, 643
Lectin pathway (complement activation), 106
Leflunomide, 36, 454, 471
Left anterior descending artery coronary circulation, 277
myocardial infarction and, 300
Left bundle branch, 288
Left bundle branch block, 283
Left circumflex coronary artery, 277
Left-dominant coronary circulation, 277
Left heart disease, 661
Left horn of sinus venosus, 274
Left main coronary artery, 277
Left marginal artery, 277
Left shift, 412
Left-to-right shunts, 295
Legg-Calvé-Perthes disease, 444, 450
Legionella spp.
atypical organism, 179
culture requirements, 127
intracellular organism, 128
macrolides, 193
nosocomial infection, 185
pneumonia, 664
silver stain, 126
taxonomy, 125
Legionella pneumophila, 143
Legionnaires' disease, 143
Leiomyoma (fibroid), 630
uterine bleeding with, 614
Leiomyomas
nomenclature for, 220
Leiomyosarcomas, 220
Leishmania donovani, 158
Leishmaniasis, 158, 200
Lens
collagen in, 50
infantile cataracts, 80
subluxation of, 84
Lens (eye), 518
Lenticulostriate artery, 498
Lentiform nucleus, 484
Leonine facies, 141
Lepromatous Hansen disease, 141
Leptin, 325
hypothalamus, 480
Leptospira spp.
animal transmission, 149
spirochete, 146
Leptospira interrogans, 147
Leptospirosis, 147, 149
Lesch-Nyhan syndrome, 37
inheritance, 60
labs/findings, 677

Leser-Trélat sign, 221, 464
stomach cancer as cause, 373
Lesser omental sac, 355
Lethal median dose, 232
Letrozole, 637
Leucine
classification of, 81
maple syrup urine disease and, 84
Leucovorin, 427
Leukemia
carcinogens, 223
cell type, 220
epidemiology, 226
immunohistochemical stain for, 225
nomenclature for, 220
oncogenic microbes, 223
suppressor genes, 222
TRAP tumor marker, 225
Leukemias, 420
allopurinol for, 472
aplastic anemia and, 409
cyclophosphamide for, 428
cytarabine for, 427
doxorubicin for, 428
etoposide/teniposide for, 429
lymphoma comparison, 417
mucormycosis, 153
vinca alkaloids for, 429
Leukemoid reaction, 211
Leukocyte adhesion deficiency, 117, 213
Leukocyte alkaline phosphatase (LAP), 396
in CML, 420
Leukocyte esterase, 181, 585
Leukocyte extravasation, 212, 213
Leukocytes, 396
basophilia in CML, 397
leukemias, 420
in urine, 181, 578, 585
Leukocytoclastic vasculitis, 173
Leukocytosis, 211
Clostridium difficile, 671
diabetic ketoacidosis, 345
nosocomial infections, 185
Leukodystrophies, 478, 508
Leukoerythroblastic reaction, 412
Leukopenia
ganciclovir, 202
immunosuppressants and, 120
trimethroprim, 194
Leukopenias, 412
cytarabine, 427
Leukoplakia, 466
Leukotriene receptor antagonists, 470
Leukotrienes, 470
basophils and, 397
cortisol effects, 327
Leuprolide, 637
Levator veli palatin muscle, 602
Levetiracetam, 528
tonic-clonic seizures, 681
Levodopa, 531, 532
Levofloxacin
fluoroquinolones, 195
mechanism (diagram), 187
Pseudomonas aeruginosa, 143
Levomilnacipran, 559
Levonorgestrel, 638
Levothyroxine, 349. See also Thyroid hormones
Lewy bodies, 504

Lewy body dementia, 504
Leydig cells
cryptorchidism, 633
endocrine function, 610, 620
genital embryology, 604
tumors, 634
LFA-l antigens, 213
LH. See Luteinizing hormone (LH)
Libido
in geriatric patients, 264
testosterone and, 617
Lice
disease vectors, 149, 150
head/scalp, 161
treatment, 200
Lichen planus, 173, 462, 468
presentation, 673
Lichen sclerosis, 626
Lichen simplex chronicus, 626
Liddle syndrome, 570
markers in, 575
Lidocaine, 315, 533
arrhythmia, 680
Life support
withdrawal, 263
Li-Fraumeni syndrome
osteosarcomas, 452
tumor suppressor genes in, 222
Ligaments, gastrointestinal, 355
Ligamentum arteriosum, 276
Ligamentum teres hepatis, 276, 355
Ligamentum venosum, 276
Ligand receptors, 208
Light criteria, 217
Likelihood ratio (LR), 253
Limbic system, $\mathbf{4 8 2}$
Limit dextrin, 86
Limited scleroderma, 460
Limited scleroderma (CREST syndrome)
autoantibody, 115
Linagliptin, 349
Lindane, 200
Linea alba, 363
Linear ulcers, 371
Linear viruses, 163
Lines of Zahn, 654, 678
Lineweaver-Burk plot, 228
Linezolid, 193
highly resistant organisms, 198
mechanism (diagram), 187
protein synthesis inhibition, 191
Lingula (lung), 645
Linkage disequilibrium, 56
Lipase
as pancreatic secretions, 367
in pancreatitis, 391
Lipid-lowering agents, 313
Lipids
metabolism of, 74
transport of, 92-93
viral structure, 162
Lipodystrophy
protease inhibitors, 203
tesamorelin for, 323
Lipofuscin, 215
Lipoic acid, 76
Lipoid nephrosis, 580
Lipolysis
cortisol and, 327
insulin and, 322
in insulin deficiency, 344
niacin and, 313
sympathetic receptors and, 234

Lipomas, 220
Lipoproteins, 93, 94
Liposarcomas, 220
Lipoteichoic acid, 124
Liquefactive necrosis, 209
Liraglutide, 348
Lisch nodules
neurofibromatosis, 509, 674
Lisinopril, 592
Lispro insulin. See also Insulin
Listeria spp. catalase-positive organism, 128
Gram-positive algorithm, 134
intracellular organism, 128
meningitis, 180
taxonomy, 125
Listeria monocytogenes, 139
$\beta$-hemolysis, 135
granulomatous diseases, 214
neonates, 182
penicillins for, 188
Lithium, 558
for bipolar disorder, 545, 681
diabetes insipidus and, 244, 342
hypothyroidism, 336
prenatal exposure, 294, 296
teratogenicity, 596
therapeutic index of, 232
thyroid functions with, 244 toxicity of, 553
Live attenuated vaccines, 111
Livedo reticularis, 531
Liver
blood supply and innervation of, 357
in gastrointestinal anatomy, 355
lipid transport and, 92
tissue architecture, 361
Liver/biliary disease
alcoholic, 385
autoimmune, 383, 386, 389
hereditary, 388
Liver disease
acanthocytes in, 404
anemia, 408
in anemia taxonomy, 406
cirrhosis, 71, 80
cystic fibrosis, 60
echinocytes in, 404
hepatosteatosis, 72
ischemia in, 210
labs/findings, 676
loading and maintenance dose in, 229
metastases to, 226
target cells in, 405
Liver failure
Budd-Chiari syndrome and, 386
movement disorder in, 503
Wilson disease as cause, 389
Liver fluke
hyperbilirubinemia with, 387
as oncogenic microbe, 223
Liver function tests
cholestatic pattern of, 389
serum markers for, 384
Liver markers
in alcohol use, 554
Liver pathology serum markers, 384
Liver tumors, 386
Living wills, 261
LMN facial nerve palsy
presentation, 674
Loading dose, 229, 687

Loa loa, 158, 159
Lobar pneumonia, 662
natural history of, 664
physical findings with, 662
Lobular carcinoma (breast), 632
Lobular carcinomas, 631
Local anesthetics, 533
naming convention, 248
Localized amyloidosis, 218
"Locked-in" syndrome osmotic demyelination syndrome, 508
stroke, 499
Lockjaw
Clostridium tetani, 138
Locus ceruleus, 479
Locus heterogeneity, 57
Löffler endocarditis, 303
Löffler medium, 127
Lomustine, 428
in cell cycle, 426
Lone Star tick (disease vector), 149
Long QT syndrome
congenital, 289
ranolazine, 312
sudden cardiac death, 299
Long thoracic nerve
arm abduction, 434
neurovascular pairing, 445
Loop diuretics, 590
for heart failure, 304
metabolic alkalosis, 576
site of action, 589
toxicity of, 246
Loop of Henle, 589
"Looser zones" (osteomalacia), 450
Loperamide, 393, 534
Lopinavir
HIV therapy, 203
mechanism, 201
Loratadine, 667
Lorazepam, 529
alcohol withdrawal, 556
Losartan, 592
Lovastatin, 313
Low birth weight, 616
Löwenstein-Jensen agar, 127
Lower esophageal sphincter achalasia and, 370 in Barrett esophagus, 372
Lower extremity nerves, 442-443
Lower left quadrant (LLQ) pain, 377
Lower motor neuron (LMN) lesions, 515
LPS endotoxin, 124, 131, 133, 145
$\mathrm{LTB}_{4}$ (leukotriene $\mathrm{B}_{4}$ ), 396, 470
Lumbar puncture, 491, 505
Lumbosacral radiculopathy, 445
Lumbrical muscles, 436
Klumpke palsy and, 438
median and ulnar nerves, 437
Lumefantrine, 200
Lunate bone, 435
Lung abscesses, 666
Lung and chest wall expansion, 647
Lung cancer, 665
apical tumor, 679
asbestosis and, 659
carcinogens causing, 223
cisplatin/carboplatin for, 429
erlotinib for, 430
hypercalcemia and, 221
incidence/mortality in, 226
metastases to, 226
oncogenes and, 222
paraneoplastic syndromes and, 221
SIADH, 687
topotecan for, 429
lung compliance
in elderly, 647
Lung diseases
obstructive, 656
restrictive, 657
Lungs
anatomical relationships, 645
blood flow regulation, 292
development of, 642
physical findings, 662
sclerosis of, 460
transfusion-related injury, 114
Lung volumes, 646
Lung zones, 651
Lupus
anemia of chronic disease and, 409
autoimmune hemolytic anemia and, 411
azathioprine for, 427
drug-induced, 115
isoniazid, 197
lab/findings, 678
lymphopenia, 412
microangiopathic anemia, 411
neutropenia, 412
presentation, 673
Lupus anticoagulant, 115
Lupus-like syndrome
$\alpha$-methyldopa, 239
hydralazine, 311
procainamide, 315
Lupus pernio, 658
Lurasidone, 557
Luteal phase, 613
Luteal phase of menstrual cycle, 613
Luteinizing hormone (LH)
clomiphene effect, 637
contraception, 638
cryptorchidism, 633
estrogen/progesterone, 611
hCG and, 599
Klinefelter syndrome, 620
leuprolide, 637
menopause, 617
ovulation, 324, 612
PCOS, 627
pharmacologic control of, 636
premature ovarian failure, 617, 627
secretion of, 321
sex development disorders, 621
signaling pathways of, 330
spermatogenesis, 324,610
testosterone, 639
Turner syndrome, 620
Lyme disease, 146
animal transmission, 149
AV block in, 290
ceftriaxone, 189
Lymphadenopathy
Corynebacterium diphtheriae, 132, 139
follicular lymphoma, 418
hilar, 657, 658
Kawasaki disease, 672
lymphogranuloma venereum, 184
mediastinal, 658
mononucleosis, 165
rubella, 169, 182, 183
serum sickness, 113
syphilis, 147, 184
tinea capitis, 152
Toxoplasma gondii, 182
Trypanosoma brucei, 156
Lymphangioma, 465
Lymphatic pleural effusion, 662
Lymph drainage
deep inguinal nodes, 606
external iliac nodes, 606
gonadal, 606
internal iliac nodes, 606
malignant breast tumors, 632
para-aortic lymph nodes, 606
pectinate line, 360
superficial inguinal nodes, 606
Lymphedema, 620, 674
Lymph nodes
absent or scanty, 116
drainage sites, 97
structure and function, 96
T-cell differentiation, 101
TNM tumor staging, 220
tumor metasases, 226
Lymphocyte-depleted lymphoma, 417
Lymphocyte-rich lymphoma, 417
Lymphocytes, 398
breast milk and, 617
CLL/small cell lymphocytic lymphoma, 420
corticosteroid effect on, 412
lymph nodes, 96
non-Hodgkin lymphoma, 418
spleen, 98
thymus, 98
Lymphocytic choriomeningitis virus (LCMV), 167
Lymphocytic infiltrates
Bordetella pertussis, 143
Lymphocytosis
postsplenectomy, 98
Lymphogranuloma venereum, 149, 184
Lymphoid hyperplasia, 377
Lymphoid neoplasms, 420
Lymphoid structures, 96-97
Peyer patches, 356, 368, 379
Lymphoma
carcinogens causing, 223
cyclophosphamide for, 428
cytarabine for, 427
doxorubicin for, 428
etoposide/teniposide for, 429
Hodgkin, 417
hypercalcemia and, 221
leukemia comparison, 417
methotrexate for, 427
nomenclature for, 220
non-Hodgkin, 417, 418
oncogene for, 208, 222
oncogenic microbes, 223
paraneoplastic syndromes with, 221
Lymphomas
allopurinol, 472
associations, 685
celiac disease and, 375
EBV and, 165
of stomach, 373
thyroiditis association with, 338
Lymphopenias, 412
ataxia-telangiectasia, 117
corticosteroid effect on, 412
Lynch syndrome, 382
endometrial cancer, 630
mismatch repair and, 40
ovarian neoplasms, 628

Lysergic acid diethylamide (LSD), 555
Lysine
classification of, 81
in cystinuria, 85
kidney stones, 582
for pyruvate dehydrogenase complex deficiency, 77
Lysogenic phage infection, 130
Lysosomal $\alpha$-l,4-glucosidase, 87
Lysosomal storage diseases, 47, 88
Lysozyme
innate immunity, 99
in neutrophils, 396
LYST gene, 117
Lysyl oxidase, 52
Lytic bone lesions
adult T-cell lymphoma, 418
Langerhans cell histiocytosis, 422
multiple myeloma and, 419

## M

MacConkey agar, 126, 127, 144
Macroangiopathic anemia, 406, 411
Macrocytic anemia, 406, 408
Macroglossia, 584
Macrolides, 193
cytochrome P-450 and, 247
hypertrophic pyloric stenosis and, 353
Legionella pneumophila, 143
mechanism (diagram), 187
Mycoplasma pneumoniae, 150
naming convention for, 248
protein synthesis iinhibition, 191
torsades de pointes, 243
Macroorchidism, 62
Macro-ovalocytes, 404
Macrophages, 397
alveolar, 644
apoptosis and, 208
bilirubin and, 369
binding of, 104
breast milk and, 617
cell surface proteins, 110
cytokine secretion, 108
endotoxin activation, 133
innate immunity, 99
in lymph node, 96
lymphocyte interaction, 102
in MI, 300
necrosis and, 209
pneumoconioses, 659
in spleen, 98
in wound healing, 217
Macrosomia, 596
Macula densa, 564
filtration and, 567
juxtaglomerular apparatus, 573
Macular cherry-red spot, 88, 522, 670
Macular degeneration, 520
Macules, 462
erythema multiforme, 467
melanocytic nevus, 464
Maculopapular rash
graft-versus-host disease, 119
rubeola, 170
syphilis, 147
Magnesium
antacid use, 393
antiarrhythmic treatment, 317
cardiac glycoside toxicity, 314
in laxatives, 394

PPI use and, 392
PTH regulation, 328
in renal disorders, 575
torsades de pointes and, 289
Magnesium hydroxide, 393
Magnesium sulfate
preeclampsia/eclampsia, 625
Maintenance dose, 229, 687
Maintenance stage, 552
Major basic protein (MBP), 397
Major depressive disorder (MDD), 545
tricyclic antidepressants, 559
Major ducts (breast), 631
Malabsorption syndromes, 375, 376
fat-soluble vitamin deficiencies, 65 osteoporosis, 449
Malaria
anemia in, 411
artesunate for, 200
Plasmodium, 157
quinidine/quinine for, 200
Malassezia spp., 152, 463
Malathion, 200
Male/female genital homologs, 605
Male genital embryology, 604
Male reproductive anatomy, 608
Male sexual response, 609
Maleylacetoacetic acid, 83
Malformation, 595
Malignancy/hyperplasia
uterine bleeding with, 614
Malignant hypertension
microangiopathic anemia, 411
Malignant hyperthermia, 533, 534, 553
Malignant melanomas
IFN- $\alpha$ for, 204
Malignant mesotheliomas, 224
Malignant tumors, 220
Malingering, 550
Malleus, 517
Malleus (ossicles), 602
Mallory bodies
in alcoholic hepatitis, 385
Mallory-Weiss syndrome, 371, 672
Malnutrition, 71
superior mesenteric artery syndrome and, 357

## Malrotation, 379

Maltese cross appearance, 157
"Maltese cross" sign, 578
MALT lymphomas
Helicobacter pylori, 146
oncogenic microbes and, 223
Sjögren syndrome, 456
Mammary glands, 595
Mammillary bodies, 488, 495
Korsakoff syndrome, 542
limbic system, 482
Wernicke-Korsakoff syndrome, 555
Mandibular process, 602
Mango flies (disease vector), 159
Manic episode, 544
Mannitol, 590
extracellular volume and, 565
site of action, 589
Mantle cell lymphomas, 418, 422
chromosomal translocations and, 422
Mantle zone
lymph nodes, 96
spleen, 98

MAO inhibitors, 559
atypical depression, 545
mechanism of, 558
Parkinson disease, 531
phobias, 547
selegiline/rasagiline, 532
tyramine and, 240
Maple syrup urine diseae, $\mathbf{8 4}$
Marantic endocarditis, 221, 305
Marasmus, 71
Maraviroc, 201, 203
Marburg hemorrhagic fever, 167
Marcus Gunn pupils, 523
multiple sclerosis, 507
Marfanoid habitus
homocystinuria, 84
MEN 2B syndrome and, 347
Marfan syndrome
aortic aneurysms, 683
aortic dissection and, 299
cardiac defect association, 296
cataracts, 519
chromosome association, 64
elastin and, 52
heart murmur with, 285
presentation, 670
thoracic aortic aneurysms and, 298
Marginal zone lymphoma, 418
Marijuana
intoxication and withdrawal, 555
schizophrenia and, 544
"Mask of pregnancy," 463
Masseter muscle, 491, 602
Mast cells, 398
IgE antibody and, 105
Mast cell stabilizers, 668
Mastectomy and winged scapula, 438
Mastication muscles, 491
Mastitis, 631
Mastoid air cells, 603
Mastoiditis
brain abscesses, 180
Wegener granulomatosis, 308
Maternal diabetes
cardiac defect association, 296
Maternal-fetal blood barrier
(placenta), 480
Maternal PKU, 84
Maternal (postpartum) blues, 546
Maternal pregnancy complication, 266
Mature cystic teratomas, 628
Mature ego defenses, 539
Maxillary artery, 601
Maxillary process, 602
Mayer-Rokitansky-Küster-Hauser syndrome, 604
McArdle disease, 87
McBurney point, 377
McBurney sign, 672
McCune-Albright syndrome, 57, 670
McMurray test, 440
MDD with seasonal pattern, 545
MDMA (ecstasy), 555
Mean, 257
Mean arterial pressure, 278, 486, 688
Measles, 170, 183
paramyxovirus, 167, 170
presentation, 671
unvaccinated children, 186
vitamin A for, 66
Measurement bias, 256
Measures of central tendency, 257
Measures of dispersion, 257

Mebendazole, 200
microtubules and, 48
"Mechanic's hands" in dermatomyositis, 459
Meckel diverticulum, 378, 600
Meconium ileus, 380
cystic fibrosis, 60
MECP2 gene, 61
Medial antebrachial cutaneous nerve, 437
Medial brachial cutaneous nerve, 437
Medial calcific sclerosis, 297
Medial cerebellar lesions, 483
Medial collateral ligament (MCL) injury
abnormal passive abduction in, 440
in "unhappy triad," 441
Medial epicondylitis, 434
Medial femoral circumflex artery, 450
Medial geniculate nucleus (MGN), 482
Medial lemniscus, 498
Medial longitudinal fasciculus, 527
Medial medullary syndrome, 498
Medial meniscal tear, 441
Medial pterygoid muscle, 491, 602
Medial rectus muscle, 524
Medial tibial stress syndrome, 444
Medial umbilical ligament, 276, 363
Median, 257
Median claw, 439
Median nerve
carpal tunnel syndrome, 435
injury to, 437
neurovascular pairing, 445
Median umbilical ligament, 363, 564
Mediastinal lymphadenopathy, 658
Medical abortion
ethical situations, 262
methotrexate for, 427
Medical error types/assessment, 262, 268
Medical insurance plans, 265
Medical power of attorney, 261
Medicare/Medicaid, 266
Medication errors, 268
Medication noncompliance, 262
Medium-chain acyl-CoA dehydrogenase deficiency, 89
Medroxyprogesterone, 638
Medulla
lymph nodes, 96
thymus, 101
Medulla (brain)
brain stem, 474
cranial nerves and nuclei, 488, 489
pyramids of, 488
spinal tracts and, 493
strokes in, 498-499
Medullary carcinoma (breast), 632
Medullary cords (lymph nodes), 96
Medullary cystic kidney disease, 588
Medullary pyramids (renal), 564
Medullary syndromes, 498
Medullary thyroid carcinomas, 338, 347
oncogenes and, 222
Medulloblastoma, 333, 512
Medulloblastomas, 686
"Medusa head" appearance, 137
Mefloquine, 157
Megacolon
Chagas disease, 158
in Hirschsprung disease, 378

Megakaryocytes in essential
thrombocytemia, 421
Megaloblastic anemia, 406, 408
cytarabine, 427
Diphyllobothrium latum, 160
as drug reaction, 245
macro-ovalocytes in, 404
orotic aciduria, 408
trimethroprim, 194
tropical sprue, 375
vitamin $\mathrm{B}_{9}$ deficiency, 68
vitamin $\mathrm{B}_{12}$ deficiency, 69
Megestrol, 638
Meglitinides, 348
Meigs syndrome, 628
Meissner corpuscles, 478
Meissner plexus, 378
Melanocytes
embryologic derivatives, 595
tumor nomenclature in, 220
in vitiligo, 463
Melanocyte-stimulating hormone
(MSH)
secretion of, 321
signaling pathways of, 330
Melanocytic nevus, 464
Melanoma
common metastases, 226
immunohistochemical stain for, 225
nomenclature for, 220
oncogene, 222
origin of, 220
tumor suppressor gene, 222
Melanoma, metastatic
recombinant cytokines for, 121
Melanomas
of skin, 469
sunburn and, 468
Melarsoprol, 156, 200
Melasma (cholasma), 463
MELAS syndrome, 59
Melatonin
circadian rhythms and, 481
derivation, 83
Melena
with Meckel diverticulum, 378, 600
polyarteritis nodosa, 308
Meloxicam, 471
Memantine, 532
Membrane attack complex (MAC), 104
complement and, 106
in type II hypersensitivity, 112
Membranoproliferative glomerulonephritis (MPGN), 581
hepatitis B and C, 173
Membranous glomerular disorders, 578
hepatitis B and C, 173
Membranous interventricular septum, 275
Membranous nephropathy, 578, 580, 678
membranous nephropathy, primary
autoantibody, 115
Membranous ossification, 447
Membranous urethra injury, 609
Membranous ventricular septum, 275
Memory
neural structures and, 482

Memory loss
anti-NMDA receptor encephalitis, 221
lead poisoning, 413
Wernicke-Korsakoff syndrome, 66, 495, 555
MEN1 gene, 222
Ménétrier disease, 373
Menin, 222
Meninges, 479
Meningiomas, 510
lab/findings, 678
Psammoma bodies in, 224
Meningitis
ceftriaxone, 189
chloramphenicol, 192
coccidioidomycosis, 151
common causes, 180
Cryptococcus neoformans, 153
CSF findings in, 180
fluconazole, 199
flucytosine, 199
Haemophilus influenzae, 142
headaches with, 502
HIV-positive adults, 177
Listeria monocytogenes, 139
meningococci, 142
mumps as cause, 170
in neonates, 182
rifamycin prophylaxis, 196
Streptococcus pneumoniae, 136
Streptococcus agalactiae, 137
tuberculosis, 140
unvaccinated children, 186
Meningocele, 475
Meningococcal prophylaxis, 198
Meningococcal vaccine, 128
Meningococcemia
endotoxins, 131
meningococci, 142
Meningococci, 142
Meningoencephalitis
HSV-2, 182
Naegleria fowleri, 156
West Nile virus, 167
Meningomyelocele, 475
Meniscal tear, 440, 441
Menkes disease, 50, 52
Menkes protein (ATP7A), 52
Menometrorrhagia, 613
Menopause, 617
fibroid tumors in, 630
hormone replacement therapy, 637
Menorrhagia, 613
adenomyosis, 630
anemia with, 406
Menstrual cycle, 613
estrogens for, 637
MEN syndromes. See Multiple endocrine neoplasias (MEN syndromes)
Meperidine, 534
Mepivacaine, 533
Mercury poisoning, 243
Merkel discs, 478
Merlin protein, 222
Meropenem, 187
MERS (Middle East respiratory syndrome), 167
Mesalamine, 376, 680
Mesangial cells, 564
filtration, 567
juxtaglomerular apparatus, 573

Mesencephalon, 474
Mesenchymal tumors
nomenclature of, 220
Mesenteric arteries, 563
Mesenteric ischemia, 380
Mesenteric veins, 359
Mesocortical pathway, 482
Mesoderm, 474
branchial arches derivation, 601 derivatives of, 595
Mesolimbic pathway, 482
Mesometrium, 607
Mesonephric (Wolffian) duct, 604
Mesonephros, 562
Mesosalpinx, 607
Mesothelioma, 660
Mesotheliomas
carcinogens causing, 223
Psammoma bodies in, 224
Mesovarium, 607
Messenteric arteries, 357
Mestranol, 637
Meta-analysis, 259
Metabolic acidosis, 576 adrenal insufficiency, 332
neonatal respiratory distress syndrome, 643
renal failure, 586
symptoms of, 576
Metabolic alkalosis, 570, 576
acetazolamide for, 590
causes of, 576
Gitelman syndrome, 570
hyperaldosteronism, 332
in hypertrophic pyloric stenosis, 353
loop diuretics, 590
thiazides, 591
with bulimia nervosa, 550
Metabolic fuel use, 91
Metabolic syndrome
with antipsychotic drugs, 557
atypical antipsychotics, 557
non-alcoholic fatty liver disease and, 385
Metabolism, 72-94
amino acid derivatives, 83
amino acids, 81
apolipoproteins, 93
catecholamine synthesis/tyrosine catabolism, 83
disorders of, 80, 81, 84-85, 87, 88-89, 94
of drugs, 231
ethanol, 72
fatty acid, 89
fuel use, 91
gluconeogenesis, 78
glycogen and, 86
lipoprotein functions, 93, 94
pathway summary (diagram), 74
pyruvate, 77
rate-determining enzymes, 73
sites of, 72
TCA cycle, 77
urea cycle, 82
Metabolites, 558
Metacarpal neck fracture, 435
Metacarpophalangeal (MCP) joints, 439
Metachromatic leukodystrophy, 88
Metalloproteinases, 217
Metal storage diseases, 216
Metanephric mesenchyme, 562

Metanephrines
pheochromocytoma, 334
tyrosine catabolism, 83
Metanephros, 562
Metaphase, 46
Metaphyseal tumors, 453
Metaplasia, 206
benign breast disease, 631
cervical, 608
esophagus, 372
gastric, 373
intestinal, 373
specialized intestinal, 372
Metastases, 386
gastric cancer, 373
liver cancer, 386
ovarian, 684
Metastases (lung cancer), 665
Metastasis, 219, 226
Metastatic calcification, 215
Metastatic melanomas
vemurafenib for, 431
Metatarsophalangeal (MTP) joints gout, 455
Metencephalon, 474
Metformin, 348
diarrhea with, 244
Methacholine, 236
Methacholine/challenge, 656, 668
Methadone, 534
heroin addiction, 560
intoxication and withdrawal, 554
for opioid withdrawal, 554
Methamphetamine, 556
Methanol toxicity, 243
Methemoglobin, 648
toxicity treatment, 243
Methemoglobinemia, 648
local anesthetics and, 533
Methicillin, 244
Methimazole, 349. See also
Thionamides
agranulocytosis, 245
aplastic anemia, 245
teratogenicity, 596
Methionine, 194
classification of, 81
start codons, 40
tRNA charging, 44
Methotrexate, 427
in cell cycle, 426
folate deficiency, 408
hydatidiform moles, 622
megaloblastic anemia, 245
polymyositis/dematomyositis, 459
pulmonary fibrosis, 246
pyrimidine synthesis and, 36
rheumatoid arthritis, 454
targets of, 426
teratogenicity, 596
toxicities of, 431, 657
vitamin $\mathrm{B}_{9}$ deficiency, 68
as weak acid, 231
Methoxyflurane, 533
Methylation, 45
Methyldopa
Coombs-positive hemolytic anemia, 245
hypertension in pregnancy, 310
Methylene blue, 243, 648
Methylmalonic acid
vitamin $\mathrm{B}_{9}$ deficiency, 68
vitamin $\mathrm{B}_{12}$ deficiency, 69

Methylmalonyl-CoA mutase, 69
Methylmercury teratogenicity, 596
Methylphenidate
ADHD, 541, 556
for ADHD, 681
CNS stimulant, 556
Methylprednisone, 470
Methyltestosterone, 639
Methylxanthines, 668
Metoclopramide, 394
Parkinson-like syndrome, 246
tardive dyskinesia, 246
Metolazone, 591
Metoprolol, 241, 316
Metronidazole, 195
bacterial vaginosis, 148
clindamycin vs, 192
Clostridium difficile, 138
for Crohn disease, 376
disulfiram-like reaction, 246
Giardia lamblia, 155
Helicobacter pylori, 146
mechanism (diagram), 187
Trichomonas vaginalis, 680
vaginal infections, 181
vaginitis, 158
Metrorrhagia, 613
Metyrapone, 332
Mevalonate synthesis, 313
Mexiletine, 315
arrhythmia, 680
Meyer loop, 526
MHC I and II, 100
dendritic cells and, 398
Micafungin, 198, 200
Michaelis-Menten kinetics, 228
Miconazole, 198, 199
Microalbuminuria, 344
Microangiopathic anemia, 411
in anemia taxonomy, 406
Microangiopathic hemolytic anemia
hypertensive emergency and, 296
intravascular hemolysis in, 409
Microangiopathic hemolytic anemias schistocytes with, 405
Microarrays, 54
Microbiology, 124-204
antimicrobials, 187-204
bacteriology, 124-134
clinical bacteriology, 134-150
mycology, 151-154
oncogenic organisms, 223
parasitology, 155-161
systems, 178-186
virology, 162-177
Microbiome
in innate immunity, 99
Microcephaly
cri-du-chat syndrome, 64
fetal alcohol syndrome, 597
maternal phenylketonuria, 84
maternal X-ray exposure, 596
Patau syndrome, 63
Microcytic anemia, 406, 407
Ancylostoma, 161
key associations, 685
Microcytosis, 212
Microfilaments (cytoskeleton), 48
Microglia, 474, 477
Micrognathia
Edwards syndrome, 63
Pierre Robin sequence, 602
Microhematuria, 410
Micromelia, 596

Microphthalmia, 63
MicroRNAs, 43
Microscopic polyangiitis, 308, 581
labs/findings, 676
Microsporum, 152
Microtubule inhibitors, 429
in cell cycle, 426
Microtubules, 48
Midazolam, 529, 533
Midbrain
cranial nerve nuclei of, 489
development, 474
lesions in, 495
Middle cerebellar peduncle, 488
Middle cerebral artery (MCA) in circle of Willis, 487
cortical distribution, 486
saccular aneurysms, 500
stroke effects, 498
Middle meningeal artery epidural hematoma and, 497
Middle rectal vein, 359
Midgut
blood supply/innervation of, 357
development of, 352
Midodrine, 238
Midshaft of humerus, 445
Mifepristone, 638
Miglitol, 349
Migraine headache
TCAs as, prophylaxis, 559
Migraine headaches, 502
butorphanol for, 535
hormonal contraception contraindication, 638
triptans for, 530
Migrating motor complexes (MMCs), 365
Migratory polyarthritis, 306
Miliary tuberculosis, 140
Milnacipran, 559
Milrinone, 312
Mineralocorticoids
adrenal insufficiency, 332
adrenal steroids and, 326
Mineral oil, 65
Minimal alveolar concentration, 532
Minimal change disease, 578, 580
Minocycline, 187, 192
Minors, consent for, 260
Minoxidil, 639
Minute ventilation, 646
Miosis
cholinesterase inhibitor poisoning, 236
Horner syndrome, 515, 674
opioids, 534
Pancoast tumor, 666
pupillary control, 523
sympatholytic drugs, 239
Mirabegron, 238
Mirtazapine, 240, 560
anorexia nervosa, 681
major depressive disorder, 545
mechanism of, 558
Mismatch repair, 40
Misoprostol, 393
Missense mutations, 39
Mites/louse treatment, 200
Mitochondria
high altitude and, 652
metabolism in, 72
muscle fibers, 447
Mitochondrial encephalopathy, 59

Mitochondrial inheritance, 59
Mitochondrial myopathies, 59
Mitosis, 46
griseofulvin, 200
Mitral regurgitation
in MI, 300
murmurs caused by, 284, 285
S3 heart sound, 683
tuberous sclerosis, 509
Mitral stenosis
left heart disease, 661
murmurs caused by, 284, 285
Mitral valve
in cardiac cycle, 282
regurgitation in, 306
Mitral valve prolapse, 285
fragile X syndrome, 62
renal cyst disorders and, 588
Mittelschmerz, 612
Mivacurium, 534
Mixed cellularity lymphoma, 417
Mixed connective tissue disease, 458
autoantibody, 115
Raynaud phenomenon, 459
Mixed incontinence (urinary), 584
Mixed transcortical aphasia, 500
MMR vaccine, 170
Mobitz AV blocks, 290
Modafinil, 551
Mode, 257
Molecular motor proteins, 48
Molluscum contagiosum, 164, 466
Mönckeberg sclerosis, 297
"Monday disease," 311
Monobactams, 190
mechanism (diagram), 187
Pseudomonas aeruginosa, 143
Monoclonal gammopathy of undetermined significance (MGUS), 419
Monocytes, 396, 397
innate immunity, 99
morulae in, 150
Mononucleosis
anemia and, 411
Monospot test, 165
Monozygotic ("identical") twins, 598
Montelukast, 668
arachidonic acid pathway, 470
Mood disorder, 544
Mood disorders
readmissions with, 266
Mood stabilizing drugs, 545
Moon facies, 331
Moraxella spp.
Gram-negative algorithm, 141
taxonomy, 125
Moraxella catarrhalis
rhinosinusitis, 653
Moro reflex, 494, 616
Morphine, 534
for acute coronary syndromes, 302
buprenorphine and, 230
intoxication and withdrawal, 554
Morphogenesis errors, 595
Morphogenesis of heart, 274-275
Morulae, 150
"Mosaic" bone architecture, 451
Mosaicism, 57
Mosquitoes (disease vectors)
lymphatic filariasis, 159
malaria, 157
Zika virus, 171
Motilin, 365

Motion sickness, 237
Motor cortex, 498
descending spinal tracts, 493
topographic representation, 485
ventral lateral thalamus and, 482
Motor innervation
lower extremity, 442
tongue, 477
Motor neuron signs, 513
Movement disorders, 503
dopaminergic pathways and, 482
Moxifloxacin, 195
M phase, 46
MPO-ANCA/p-ANCA autoantibody, 115
M protein
in multiple myeloma, 419
rheumatic fever and, 136
as virulence factor, 129
mRNA
aminoglycosides, 191
hepatitis viruses, 172
pre-mRNA splicing, 42
processing, 41
protease inhibitors, 203
stop codons, 40
MRSA (methicillin-resistant Staphylococcus aureus)
cephalosporins, 189
highly resistant, 198
nosocomial infections, 135
oxazolidinones, 193
vancomycin, 190
MSH. See Melanocyte-stimulating hormone (MSH)
mTOR, 120
Mucicarmine stain, 126
Mucinous cystadenocarcinomas, 629
Mucinous cystadenomas, 628
Mucociliary escalator, 644
mucocutaneous lymph node syndrome, 308
Mucoepidermoid carcinomas, 370
Mucopolysaccharides, 126
Mucopolysaccharidoses, 88
Mucor spp.
amphotericin B for, 199
opportunistic infection, 153
presentation, 671
Mucormycosis, 153
diabetic ketoacidosis, 345
Mucosa, 356
Mucosal bleeding scurvy, 670
Mucosal neuromas, 347
Mucosal polyps, 381
Mucositis
bleomycin, 428
methotrexate, 427
Mucus, 234
"Muddy brown" casts (urine), 578, 587
Mulberry molars, 147
Müllerian duct agenesis, 604
anomalies of, 605
derivatives of, 604
Müllerian inhibitory factor (MIF), 604
Sertoli cell production, 610
Multicystic dysplastic kidney, 562, 563
Multidrug resistance protein 1 (MDR1), 225

Multifactorial pulmonary
hypertension, 661
Multiorgan drug reactions, 246
Multiple endocrine neoplasias (MEN syndromes), $\mathbf{3 4 7}$
Zollinger-Ellison syndrome, 346
Multiple gestations, 614
Multiple myeloma, 419
amyloidosis, 218
common metastases, 226
ESR in, 212
lab/diagnostic findings, 677
metastatic calcification, 215
osteoporosis, 449
as plasma cell cancer, 399
Multiple sclerosis, 507
Daclizumab, 122
heart murmur with, 285
HLA-DR2 and, 100
IFN- $\beta$ for, 204
internuclear ophthalmoplegia, 527
natalizumab for, 122
oligodendroglia in, 478
presentation, 674
recombinant cytokines for, 121
as type IV hypersensitivity, 113
Mumps, 170
acute pancreatitis with, 391
paramyxovirus, 167, 170
Munchausen syndrome, 550
Munchausen syndrome by proxy, 550
Murphy sign, 390
Muscarinic acetylcholine (ACh) receptors, 233
Muscarinic antagonists, 237, 668
multiple sclerosis, 507
neuromuscular blocking drugs, 534
Parkinson disease, 531
Muscle conduction/contraction
skeletal, 446
smooth muscle, 447
Muscle fibers, 447
Muscle relaxants, 534
Muscles
metabolism in, 86
ragged red fibers in, 59
Muscle spasms
relaxants for, 534
Muscular dystrophies, 61
frameshift mutation, 39, 61
presentation, 670
X-linked recessive disorder, 60
Muscularis externa, 356
Muscularis mucosa, 356
Muscular ventricular septum, 275
Musculocutaneous nerve
injury presentation, 437
Musculoskeletal drug reactions, 245
Musculoskeletal paraneoplastic syndromes, 221
Musculoskeletal system
anatomy, 434-442
pathology, 448-456
pharmacology, 470-472
Mutases, 73
Mutations in DNA, 39
Mutism, 550
Myalgia
vasculitides, 308
Myalgias
Ebola virus, 171
fluoroquinolones, 195
genital herpes, 184
Jarisch-Herxheimer reaction, 148

Myalgias (continued)
Leptospira interrogans, 147
Lyme disease, 146
meningitis, 186
Trichinella spiralis, 159, 161
trichinosis, 159
Myasthenia gravis, 459
autoantibody, 115
diagnosis of, 236
neostigmine for, 236
as paraneoplastic syndrome, 221
pyridostigmine for, 236
restrictive lung disease, 657
thymoma association, 98
type II hypersensitivity, 112
MYCLI gene, 222
MYCN gene, 222
Mycobacterial cells, 196
Mycobacterium spp., 140
granulomatous diseases, 214
intracellular organism, 128
taxonomy, 125
Mycobacterium avium-intracellulare,

## 140

HIV-positive adults, 177
prophylaxis with HIV, 198
vertebral osteomyelitis, 180
Mycobacterium leprae
animal transmission, 149
diagnosis, 141
rifamycins/dapsone, 196
Mycobacterium marinum, 140
Mycobacterium pneumoniae, 127
Mycobacterium scrofulaceum, 140
Mycobacterium tuberculosis, 140 aerobic organism, 127
culture requirements for, 127
osteomyelitis, 180
therapeutic agents, 196, 197
Mycolic acid
isoniazid, 197
synthesis of, 196
Mycology, 151-154
Mycophenolate, 36
Mycophenolate mofetil, 120, 121
Mycoplasma pneumoniae, 150 anemia and, 411 erythema multiforme, 467 tetracyclines, 192
Mycoplasma spp.
atypical organisms, 179
interstitial nephritis with, 587
macrolides, 193
pneumonia, 664
pneumonia caused by, 179
Mycoses
cutaneous, 152
granulomatous diseases, 214
systemic, 151
Mycosis fungoides, 418
Mydriasis
G-protein-linked second receptor, 234
muscarinic antagonists for, 237
pupillary control, 523
saccular aneurysm, 500
Myelencephalon, 474
Myelin, 478
myeloblasts (peripheral smear), 420
Myelodysplastic syndromes, 419
sideroblastic anemia, 407
Myelofibrosis, 421
dacrocytes in, 404
Myeloid neoplasms, 420

Myeloperoxidase, 109
in neutrophils, 396
Myeloproliferative disorders, 421
AML, 420
basophilia, 397
chronic, 421
hydroxyurea for, 429
Myeloschisis, 475
Myelosuppression
alkylating agents, 428
antimetabolites, 427
drugs causing, 431
hydroxyurea, 429
irinotecan/topotecan, 429
Myenteric plexus, 356, 370
Mylohyoid muscle, 602
Myocardial action potential, 286
Myocardial depression, 533
Myocardial infarction (MI), 299
antiarrhythmics after, 315
$\beta$-blockers for, 241
complications of, $\mathbf{3 0 2}$
diabetes mellitus, 344
diagnosis of, $\mathbf{3 0 1}$
on ECG, 288, 301
evolution of, 300
heart failure caused by, 304
heparin for, 423
homocystinuria, 84
hypertensive emergency and, 296 shock caused by, 305
thrombolytics for, 425
myocardial $\mathrm{O}_{2}$ consumption/demand, 279
angina treatment, 312
Myocarditis, 307
adenovirus, 164
Corynebacterium diphtheriae, 139
coxsackievirus, 167
diptheria, 139
picornaviruses, 167
Toxocara canis, 159
Myoclonic seizures, 501
Myoclonus, 503, 505
Myofibroblasts, 217
Myoglobin
in muscle fibers, 447
Myoglobin (Mb), 647
ooxygen-hemoglobin dissociation curve, 649
Myoglobinuria
acute tubular necrosis, 587
McArdle disease, 87
Myometrium, 607
Myonecrosis, 138
Myopathy
daptomycin, 195
as drug reaction, 245
interferons, 204
lipid-lowering agents and, 313
Myophosphorylase, 87
Myopia, 519
retinal detachment, 521
Myosin
smooth muscle contraction, 447
Myosin-light-chain kinase (MLCK), 447
Myotonic dystrophy
cataracts and, 519
Myotonic type 1 muscular dystrophy, 61
Myxedema
thyroid hormones for, 349
Myxomas, 309
Myxomatous degeneration, 285

## N

N -acetylcysteine, 667
for acetaminophen toxicity, 243
for cystic fibrosis, 60
N -acetylglucosaminyl-lphosphotransferase, 47
NADH (nicotinamide adenine dinucleotide)
electron transport chain, 78
fructose metabolism, 80
TCA cycle, 77
Nadolol, 241
NADPH (nicotinamide adenine dinucleotide phosphate)
ethanol metabolism, 72
HMP shunt and, 79
respiratory burst and, 109
universal electron acceptors, 75
Naegleria fowleri, 156
Nafcillin
characteristics of, 188
mechanism (diagram), 187
Nail-bed hemorrhage, 305
Nails
clubbing, 60
glomus tumors under, 465
Naive T-cell activation, 103
Naked viral genome infectivity, 163
Nalidixic acid, 187
Naloxone
dextromethorphan overdose, 667
heroin detoxification, 560
for opioid toxicity, 243, 534, 554
Naltrexone
alcoholism, 555, 681
heroin detoxification, 560
opioid toxicity, 534, 554
Naproxen, 471
acute gout drugs, 472
arachidonic acid pathway, 470
Narcissistic personality disorder, 549
Narcolepsy, 551
amphetamines for, 238
CNS stimulants for, 556
hallucinations with, 543
Nasal congestion, 667
Nasal decongestion
ephedrine for, 238
Nasal polyps
cystic fibrosis, 60
Nasal septum perforation, 308
Nasopharyngeal carcinomas
EBV and, 165
oncogenic microbes and, 223
Natalizumab, 122
multiple sclerosis, 507
Nateglinide, 348
National Board of Medical Examiners (NBME), 2, 11
Natriuresis, 572
Natriuretic peptide, 291
Natural killer (NK) cells, 101
cell surface proteins, 110
function of, 398
innate immunity, 99
Nausea
adverse drug effects, 393, 530
Alzheimer disease drugs, 532
anesthetics, 533
antiemetics for, 394
with appendicitis, 377
biliary colic, 390
cardiac glycosides, 314
iron poisoning, 414
with MI, 300
migraine headaches, 502
Parkinson disease drugs, 531
polio presentation, 515
ranolazine, 312
renal failure, 586
vitamin A toxicity, 66
vitamin C toxicity, 69
NE. See Norepinephrine (NE)
Nebivolol, 241
Necator spp.
disease associations, 161
infection routes, 158
Necator americanus, 159
Neck and head cancer, 653
cetuximab for, 430
Necrosis, 209
acute pancreatitis, 391
Arthus reaction, 113
benign tumors, 220
Budd-Chiari syndrome, 386
calcification, 215
caseating, 214
enterocolitis, 380
femoral head, 120, 444, 450
fibrinoid, 454
glioblastoma multiforme, 510
hepatic, 470
hernias and, 364
intestinal atresia, 353
ischemic brain disease, 496
jaw, 471
mesenteric ischemia, 380
nonalcoholic fatty liver disease, 385
retinitis, 522
saponification, 209
scaphoid avascular, 435
skin, 467
transplant reaction, 119
warfarin, 424
Necrotizing enterocolitis, 380
low birth weight, 616
neonatal respiratory distress syndrome and, 643
Necrotizing fasciitis, 136, 466
Necrotizing glomerulonephritis, 308
Nedocromil, 668
Negative predictive value (NPV),

$$
253,687
$$

Negative punishment, 538
Negative reinforcement, 538
Negative skew distribution, 257
Negative-stranded viruses, 168
Neglect (child), 540
Negri bodies, 171
Neisseria spp., 142
C5-C9 deficiencies, 107
cephalosporins, 189
fluoroquinolones, 195
IgA protease, 129
intracellular organism, 128
taxonomy, 125
transformation in, 130
Neisseria gonorrhoeae, 142
culture requirements, 127
Gram-negative algorithm, 141
osteomyelitis, 180
septic arthritis, 456
STI, 184
UTIs with, 585
Neisseria meningitidis
chloramphenicol, 192
culture requirements, 127
encapsulation, 128

Gram-negative algorithm, 141
immunodeficient patients, 118
meningitis, 180
penicillin G/V for, 187
splenic dysfunction, 98
Waterhouse-Friderichsen syndrome, 332
Nelson syndrome, $\mathbf{3 4 0}$
Nematodes, 159
infection routes, 158
Neomycin
aminoglycosides, 191
for hepatic encephalopathy, 385
mechanism (diagram), 187
Neonatal abstinence syndrome, 597
Neonatal respiratory distress
syndrome (NRDS), 643
restrictive lung disease, 657

## Neonates

abstinence syndrome, 597
Apgar score, 615
Candida albicans in, 153
Chlamydia trachomatis in, 149
coagulation cascade in, 402
conjunctivitis, 142, 149
deprivation effects, $\mathbf{5 4 0}$
esophageal atresia in, 352
flora with C-section, 178
galactosemia in, 80
gastroenteritis, 168
gray baby syndrome in, 192
hemolytic anemia in, 410
herpes in, 164
hyperthermia in, 237
hypertrophic pyloric stenosis in, 353
indirect inguinal hernia in, 364
jaundice in, 387
kernicterus, 194, 204
Listeria monocytogenes in, 139
low birth weight, 616
meningitis in, 139, 182
necrotizing enterocolitis and, 380
obesity risk factors, 617
pneumonia in, 149
primitive reflexes in, 494
sickle cell anemia in, 410
Streptococcus agalactiae in, 137
Neoplasia
pathology of, 219-226
Neoplastic transformation, 214
Neostigmine, 236, 534
Nephritic-nephrotic syndrome, 579
Nephritic syndrome, 579, 580,

## 581-582

Nephritis, 590
Nephroblastoma, 584
Nephrocalcinosis, 215
Nephrogenic, diabetes insipidus treatment, 591
Nephrogenic diabetes insipidus, 215, 342
lithium toxicity, 553
Nephrolithiasis, 584
calcium oxalate, 69
Nephron physiology, 569
Nephropathy
diabetes mellitus, 344
hypertension and, 296
membranous, 678
protease inhibitors, 203
transplant rejection, 119
Nephrotic syndrome, 579, 580
charge barrier in, 565

ESR in, 212
fatty casts in, 578
labs/findings, 678
loop diuretics for, 590
pleural effusion, 662
presentation, 674
Nephrotoxicity
aminoglycosides, 191
amphotericin B, 199
cidofovir, 202
cisplatin/carboplatin, 429
cladribine, 427
as drug reaction, 246
drugs causing, 431
immunosuppressants, 120
inhaled anesthetics, 533
streptomycin, 197
sulfonamides, 194
vancomycin, 190
Nerve blockade (local anesthetics), 533
Nerve fibers, 479
Nerves
lower extremity, 442
upper extremity, 437
Nerve trunk, 479
Net filtration pressure, 567
Neural crest
derivatives of, 595
Neural crest cells, 474, 478
neuroblastomas in, 333
Neural development, 474
Neural fold, 474
Neural plate, 474
Neural tube, 474
derivatives, 595
formation, 594
Neural tube defects, 475
labs/findings, 673
maternal diabetes, 596
prevention, 68
valproic acid, 528
vitamin deficiency, 682
Neuraminidase, 169, 170
Neuroblastomas, $\mathbf{3 3 3}$
Homer-Wright rosettes, 678
incidence and mortality, 226
labs/findings, 684
oncogenes and, 222
paraneoplastic syndromes with, 221
Neurocutaneous disorders, 509
Neurodegenerative disorders, 504-505
Neuroectoderm, 474
astrocytes derived from, 477
derivatives of, 594
pituitary gland, 321
teratomas, 629
Neuroendocrine tumors, 333
Neurofibromatosis, 519
chromosome association, 64
inheritance, 60
variable expressivity, 56
Neurofibromatosis type 1
presentation, 674
tumor suppressor genes and, 222
Neurofibromatosis type 2
presentation, 674
tumor suppressor genes and, 222
Neurofilaments, 48
immunohistochemical stain for, 225
Neurogenic bladder, 507, 584

Neurogenic ileus, 236
Neurohumoral transmission, 233
Neurohypophysis, 321
hypothalamus and, 480
Neuroleptic drugs, 551
Neuroleptic malignant syndrome
(NMS), 534, 553
Neurologic drug reactions, 246
Neurology, 474-528
anatomy/physiology, 477-499
embryology, 474-476
ophthalmology, 518-525
pathology, 495-502
pharmacology, 528-535
Neuromuscular blocking drugs, 534
Neuromuscular disorders paraneoplastic syndromes, 221
Neuromuscular junction diseases,

## 459

Neurons, 477
in ascending spinal tracts, 493
dendritic branching
(schizophrenia), 544
local anesthetics, 533
origins of, 474
Parkinson disease, 531
primary motor cortex, 493
Neuropathic pain, 499
Neuropathy
diabetes mellitus, 344
Neurosyphilis, 147
Neurotoxicity
cladribine, 427
immunosuppressants, 120
methylmercury exposure, 596
methylxanthines, 668
vincristine, 429
Neurotransmitters changes with disease, 479
Neurovascular pairing, 445
Neutralization (antibody), 104
Neutropenia
ganciclovir, 202
interferons, 204
rheumatoid arthritis, 454
Neutropenias, 412 ticlopidine, 425
Neutrophil chemotaxis
endotoxins and, 133
Neutrophils, 396
chemotaxis, 106
CML, 420
corticosteroid effect on, 412
IL-8 and, 108
innate immunity, 99
in leukocyte adhesion deficiency, 117
megaloblastic anemia, 408
in MI, 300
necrosis and, 209
nonmegaloblastic anemia, 408
pseudo-Pelger-Huet anomaly, 419
wound healing, 217
Nevi, 220
Nevirapine
cytochrome P-450 and, 247
HIV therapy, 203
mechanism, 201
Nevus flammeus
presentation, 674
Sturge-Weber syndrome, 509
NF1 gene, 509
pheochromocytomas and, 334
NF1/NF2 genes, 222

NF-кB, 120
$N$-formylmethionine (fMet), 40
Niacin
cutaneous flushing, 243
gout, 245
hyperglycemia, 244
myopathy caused by, 245
tachyphylactic drug interaction, 229
Nicardipine, 311
Nicotinamides, 75
Nicotine
teratogenicity, 596
Nicotine intoxication and withdrawal, 554
Nicotinic acetylcholine receptors, 166, 233
Niemann-Pick disease, 88, 670
Nifedipine, 310, 311, 625
Nifurtimox, 158, 200
Night sweats
Pott disease, 671
Night terrors, 529
benzodiazepines for, 481
Nigrostriatal pathway, 482
Nikolsky sign
pemphigus vulgaris, 467
scalded skin syndrome, 466
Nimodipine, 311, 497
Nipple
eczematous patches, 632
intraductal papilloma, 631
lactational mastitis, 631
rash on, 674
Nissl bodies, 46
Nissl substance
chromatolysis, 479
neurons, 477
Nitazoxanide, 155
Nitrates, 311, 312
Nitric oxide, 365
derivation, 83
free radical injury and, 216
Nitric oxide synthase, 447
Nitrites
methemoglobin, 648
urinary tract infections, 181
Nitroblue tetrazolium dye reduction test, 117
Nitrofurantoin
hemolysis in G6PD deficiency, 245
pulmonary fibrosis, 246
Nitroglycerin, 311
acute coronary syndromes, 302
angina, 299
Nitroprusside, 311
Nitrosamines
as carcinogens, 223
stomach cancer and, 373
Nitrosoureas, 428
Nitrous oxide, 533
Nizatidine, 392
N-myc oncogene, 333
Nocardia spp.
Actinomyces spp. vs, 139
aerobe, 127
catalase-positive organism, 128
Gram-positive algorithm, 134
immunodeficient patients, 118
necrosis and, 209
sulfonamides for, 194
taxonomy, 125
urease-positive, 128

Nocturia, 635
Nocturnal enuresis, 325
Nodes of Ranvier, 478
Nodular phlebitis, 308
Nodular sclerosing Hodgkin lymphoma, 685
Nodular sclerosis lymphoma, 417
Noise-induced hearing loss, 517
Nonadherent patients, 262
Nonalcoholic fatty liver disease, 383, 384, 385, 386
Nonbacterial endocarditis, 305
Nonbacterial thrombotic endocarditis, 221
Nonbenzodiazepine hypnotics, 529
Noncaseating granulomas restrictive lung disease, 657
sarcoidosis, 658
Noncommunicating hydrocephalus, 506
Noncompetitive agonists, 230
Noncompetitive inhibitors, 228
Noncompliant patients, 262
Nondisjunction (meiosis), 63
Nondominant parietal cortex lesions, 495
Nonhemolytic, normocytic anemia, 409
Non-Hodgkin lymphoma, 417, 418 associations, 685
corticosteroids, 120
Hashimoto thyroiditis and, 336
hepatitis C, 173
HIV-positive adults, 177
Hodgkin lymphoma vs, 417
oncogenes and, 222
rituximab for, 122, 430
vinca alkaloids for, 429
Nonhomologous end joining, 40
Nonmaleficence (ethics), 260
Nonmegaloblastic macrocytic anemia, 408
Nonnormal distributions, 257
Nonoverlapping genetic code, 37
Nonreceptor tyrosine kinase, 330
Non-REM sleep stages, 481
Non-response bias, 256
Nonsense mutations, 39
Nonsteroidal anti-inflammatory drugs (NSAIDs), 471
acute gout attack, 681
acute interstitial nephritis, 587
aplastic anemia, 245
Beers criteria, 242
calcium pyrophosphate deposition disease, 455
colorectal cancer chemopreventative, 383
endometriosis, 630
esophagities from, 371
gastric ulcers from, 374
gastritis with, 373
GFR effects of, 573
gout, 455, 472
headaches, 502
interstitial nephritis, 244, 246
loop diuretics and, 590
misoprostol use with, 393 osteoarthritis, 454
peptic ulcer disease and, 374
prostaglandin synthesis, 573
renal papillary necrosis, 587
rheumatoid arthritis, 454
for sialoadenitis, 370

## Non-ST-segment elevation MI

 (NSTEMI)diagnosis of, 301
STEMI vs, 299
treatment, 302
Noradrenergic drugs, 235
Norepinephrine (NE). See also Catecholamines
adrenal medulla secretion, 320
amphetamines and, 235
bupropion effect on, 560
changes with disease, 479
circadian rhythm, 481
direct sympathomimetic, 238
isoproterenol vs, 239
male sexual response, 609
MAO inhibitor effects, 559
in nervous system, 233
opioid effect on, 534
phenoxybenzamine and, 230
pheochromocytoma secretion,

## 334

REM sleep and, 481
tramadol effects, 535
tyrosine catabolism, 83
vitamin $\mathrm{B}_{6}$ and, 67
Norethindrone, 638
Norfloxacin, 195
Normal distribution, 257
Normal flora
colonic, 137
female genital tract, 136
GI tract, 127
neonates, 178
oropharynx, 136
skin, 135
Normal pressure hydrocephalus, 506
Normal splitting, 283
Normetanephrine, 83
Normocytic, normochromic anemia, 406, 409
Norovirus
medical importance, 167
Northern blot, 53
Nortriptyline, 559
Nosocomial infections, 185, 268
Ebola, 171
enterococci, 137
Klebsiella, 145
MRSA, 135
pneumonias, 179
Pseudomonas aeruginosa, 143
UTIs as, 181
Notochord, 474, 594, 595
postnatal derivative of, 276
Novobiocin
Gram-positive antibiotic test, 134
Staphylococcus epidermidis, 135
NPH insulin. See also Insulin
NSE hormone, 333
Nuchal translucency, 63
Nuclear envelope, 47
Nucleic acids pathogen-associated molecular pattern (PAMP), 99
synthesis of, 198
in viruses, 162
Nucleosides, 35
Nucleotide excision repair, 40
Nucleotides, 35
synthesis, 72
Nucleus accumbens, 479
Nucleus ambiguus, 490
Nucleus cuneatus, 493

Nucleus pulposus
collagen in, 50
fetal precursor, 276
Nucleus pulposus herniation, 491
Nucleus solitarius, 490
Null hypothesis, 258
Number needed to harm (NNH), 254, 687
Number needed to treat (NNT), 254, 687
"Nursemaid's elbow," 444
Nutmeg liver, 304, 386
Nutrition, 65-72
Nyctalopia, 66
Nystagmus
cerebellum, 483
common lesions with, 495
Friedreich ataxia, 515
internuclear ophthalmoplegia, 527
multiple sclerosis, 507, 674
PCP as cause, 555
phentoin, 528
stroke and, 498
Nystatin, 199
Candida albicans, 153, 679
mechanism (diagram), 198
0
Obesity
acanthosis nigricans, 468
acanthosis nigricans association, 221
amphetamines for, 238
anovulation with, 627
breast cancer risks, 632
cholelithiasis and, 390
Cushing syndrome, 331
DM type 2 and, 345
endometrial cancer, 630
esophageal cancer and, 372
hypertension risk factors, 296
hypoventilation syndrome, 661
lateral femoral cutaneous nerve, 442
leptin gene mutation, 325
olanzapine, 557
osteoarthritis/rheumatoid arthritis, 454
PCOS and, 627
Prader-Willi syndrome, 58
renal cell carcinoma association, 583
sleep apnea, 661
stress incontinence and, 584
Obesity hypoventilation syndrome, 661
Obligate intracellular organisms, 128
Oblique fissure, 645
Observational studies, 252-259
errors in, 256
Observer-expectancy bias, 256
Obsessions, 547
Obsessive-compulsive disorder (OCD), 547
antipsychotic drugs for, 557
atypical antipsychotics for, 557
drug therapy for, 556
SSRIs for, 559
Tourette syndrome and, 541
tricyclic antidepressants for, 559
venlafaxine for, 559
Obsessive-compulsive personality disorder, 549
Obstructive jaundice, 391

Obstructive lung diseases, 656-657
flow volume loops in, 655
Obstructive shock, 305
Obstructive sleep apnea, 661
pulse pressure in, 278
pulsus paradoxus in, 307
Obturator nerve, 442
Occipital cortex, 499
Occipital lobe, 485
Occipital sinus, 487
Occult bleeding, 381
FOBT for, 382
Octreotide, 365, 393
acromegaly, 341
carcinoid syndrome, 346
for carcinoid syndrome, 680
GH excess, 325
glucagonomas, 346
hypothalamic/pituitary drugs, 350
Ocular albinism, 60
Ocular motility, 524
Ocular muscles, 524
Oculogyric crisis, 553
Oculomotor nerve (CN III), 490
brain stem location, 488
cavernous sinus, 526
location in brain stem, 488
ocular motility, 524
palsy of, 497, 525
pathway for, 489
pupillary contraction, 523
Odds ratio (OR), 252, 254, 687
Odontoblasts, 595
Ofloxacin, 195
Okazaki fragments, 38
Olanzapine, 557
Olfactory bulb, 488
Olfactory hallucinations, 543
Olfactory nerve (CN I), 490
in ventral view, 488
pathway for, 489
Olfactory tract, 488
Oligoclonal bands, 507
Oligodendrocytes, 478
Oligodendroglia, 474
Oligodendrogliomas, 510
Oligohydramnios, 595, 624
Potter sequence, 562
Oligomenorrhea, 613, 627
Oligomycin, 78
Oligospermia, 393
Oliguria
acute injury/failure, 586
nephritic syndrome and, 581
Olive-shaped mass, 353
Omalizumab, 122, 668
Omental foramen, 355
Omeprazole, 392
Omphalocele, 352
Omphalomesenteric cysts, 378
Omphalomesenteric (vitelline) duct, 600
Onchocerca volvulus, 158, 159
Oncocytoma (renal), 583
Oncogenes, 222
Oncogenic microbes, 223
Ondansetron, 394
torsades de pointes, 243
$1,25-(\mathrm{OH})_{2} \mathrm{D}_{3}$
kidney endocrine function, 573
"Onion skin" periosteal reaction, 453
Onychomycosis
terbinafine, 199
tinea unguium, 152

Oocysts
acid-fast stain, 155
Toxoplasmosis, 156
Ziehl-Neelsen stain, 126
Oogenesis, 612
Oophorectomy, 607
Open-angle glaucoma, 520
carbachol for, 236
epinephrine for, 238
pilocarpine for, 236
Operant conditioning, 538
Ophthalmology, 518-525
Ophthalmoplegia, 66 cavernous sinus syndrome, 526 common lesions with, 495 internuclear, 527 Wernicke-Korsakoff syndrome, 66, 555
Opioids, 534
Beers criteria, 242
intoxication and withdrawal, 554
pentazocine and, 535
sleep apnea, 661
toxicity treatment, 243
Opponens digiti minimi muscle, 436
Opponens pollicis muscle, 436
Opportunistic fungal infections,

## 153-154

Oppositional defiant disorder, 541
Opposition (thumb), 436, 439
Opsoclonus-myoclonus syndrome, 221, 333
Opsonins, 106
Opsonization, 98, 104, 106, 112
Optic canal, 489
Optic chiasm, 488 circle of Willis, 487
pupillary reaction, 523
Optic disc, 518
papilledema in, 522
Optic gliomas
neurofibromatosis, 509, 674
Optic nerve (CN II), 490
anatomy, 518
embryologic derivation, 595
optic tract, 488
pathway, 489
Optic neuritis, 507
Optic neuropathy, 197
Optochin
Gram-positive antibiotic test, 134
Oral advance directives, 261
Oral contraceptive (OCP) use venous sinus thrombosis with, 487
Oral contraceptives (OCPs) cytochrome P-450 and, 247 endometriosis, 630 hepatic adenomas and, 386 melasma and, 463 ovarian neoplasms, 628 PCOS, 627 prolactin effects on, 324 reproductive hormones, 636
SHBG effects on, 330
Oral glucose tolerance test, 344
Oral hairy leukoplakia, 177
Oral/intestinal ganglioneuromatosis, 347
Oral rehydration therapy, 146
Oral thrush, 177
Orange body fluids, 196
Orchiectomy, 633
Orchiopexy, 633
Orchitis, 170

Orexigenic effect, 325
Orexin, 551
Organ failure, in acute pancreatitis, 391
Organogenesis
embryologic derivatives, 595
errors in, $\mathbf{5 9 5}$
fetal development, 594
teratogens, 596
Organomegaly, 584
Organophosphates
poisoning by, 236
toxicity treatment, 243
Organ transplants
azathioprine for, 427
cytomegalovirus, 186
hairy leukoplakia and, 466
kidneys, 564
WBC casts, 578
Organum vasculosum of the lamina terminalis (OVLT), 480
Orientation, 541
Origin of replication, 38
Orlistat, 394
diarrhea, 244
Ornithine
cystinuria, 85
kidney stones and, 582
urea cycle, 82
Ornithine transcarbamylase, 74
Ornithine transcarbamylase deficiency, 60, 83
Orofacial chorea, 557
Orotic acid, 83
Orotic aciduria, 408
in anemia taxonomy, 406
"Orphan Annie" eyes (nuclei), 338, 676
Orthomyxoviruses
characteristics of, 167, 168
influenza viruses, 169
segmented, 168
Orthopedic conditions, 441
lower extremity, 444
Orthopnea, 304
Orthostatic hypotension
adrenal insufficiency, 332
$\alpha$-blockers, 240
phenoxybenzamine, 240
Ortolani maneuver, 444
Oseltamivir, 201
Osgood-Schlatter disease, 444
Osler nodes, 305, 672
Osler-Weber-Rendu syndrome, 310
Osmolality, 565, 574
Osmotic demyelination syndrome, 508
SIADH and, 342
Osmotic diarrhea, 375
Osmotic diuresis
hyperosmolar hyperglycemic state, 346
insulin deficiency/insensitivity, 344
Osmotic sensing, 480
Ossicles, 517
Ossification, 447
Osteitis deformans, 450
Osteitis fibrosa cystica, 340, 448, 451, 677
Osteoarthritis, 454
celecoxib for, 471
presentation, 673
Osteoarthropathy, hypertrophic
cancer association, 221

Osteoblastoma, 452
Osteoblasts, 448
bone formation, 447
cortisol effect on, 327
Paget disease of bone, 450
teriparatide effect on, 472
Osteochondroma, 452
Osteoclasts, 448
bisphosphonate effects, 471
bone formation, 447
osteopetrosis, 449
Paget disease of bone, 450
Osteodystrophy, 393 Albright hereditary, 339 renal, 340, 586
Osteogenesis imperfecta, 51 bisphosphonates, 471
collagen and, 50
presentation, 670
Osteogenic sarcomas, 450, 452
Osteoid osteoma, 452
Osteoma, 452
Osteomalacia
hypophosphatemia, 575
Osteomalacia/rickets, 450
lab values in, 451
Osteomas
nomenclature for, 220
Osteomyelitis, 180
diagnostic findings, 677
Pseudomonas aeruginosa, 143
sickle cell anemia, 410
Staphylococcus aureus, 135
Osteonecrosis, 450
bisphosphonates causing, 471
Osteopenia, 450
Osteopetrosis, 449, 451
Osteophytes, 454
Osteoporosis, 449
bisphosphonates, 471
corticosteroids, 120
Cushing syndrome, 331
denosumab, 122
as drug reaction, 245
estrogen, 448
Gaucher disease, 88
heparin, 423
homocystinuria, 84
hormone replacement therapy, 637
lab values in, 451
menopause, 617
pituitary prolactinomas, 323
raloxifene for, 431, 637
teriparatide for, 472
thiazides for, 591
vertebral compression fractures, 685
Osteosarcomas, 452
nomenclature for, 220
tumor suppressor genes and, 222
Otitis media
brain abscesses with, 180
Haemophilus influenzae, 129, 142
Langerhans cell histiocytosis, 422
Streptococcus pneumoniae, 136
Wegener granulomatosis and, 308
Otology, 517
Ototoxicity
aminoglycosides, 191, 204, 596
cisplatin/carboplatin, 429
as drug reaction, 246
ethacrynic acid, 590
loop diuretics, 590
vancomycin, 190

Ouabain, 49
Outcome (quality measurement), 267
Outer membrane, 124
Outflow tract formation, 275
Ovarian artery, 607
Ovarian cancer
breastfeeding and, 617
cisplatin/carboplatin for, 429
epidemiology of, 625
hypercalcemia and, 221
irinotecan/topotecan for, 429
Lynch syndrome and, 382
oncogenes and, 222
paclitaxel for, 429
Psammoma bodies in, 224
tumor suppressor genes and, 222
Ovarian cycle, 613
Ovarian cysts, 628
Ovarian dysgenesis, 620
Ovarian insufficiency (primary), 627
Ovarian ligament, 607
Ovarian neoplasms, 628-629
Ovarian teratomas
paraneoplastic syndrome, 221
Ovaries
anatomy of, 607
descent of, $\mathbf{6 0 6}$
embryologic derivation, 595
epithelial histology, 608
estrogen production, 611
lymphatic drainage, 606
Overactive bladder, 584
Overflow incontinence, 584
Overuse injury
elbow, 434
knee, 444
radial nerve, 437
wrist, 435
Oviducts, 604
OVLT (organum vasculosum lamina terminalis), 480
Ovotesticular disorder, 620
Ovulation, 612
anovulation causes, 627
progesterone and, 611
prolactin effect on, 324
Ovulatory uterine bleeding, 614
"Owl eye" inclusions, 165, 676
"Owl eyes" cells, 417
Oxacillin
characteristics of, 188
mechanism (diagram), 187
Oxazepam, 529
Oxazolidinones, 193
Oxidative burst, 109
Oxidative phosphorylation, 78
metabolic site, 72
poisons, 78
Oxybutynin, 237
Oxygen
in blood, 649
for carbon monoxide poisoning, 243
carboxyhemoglobin, 648
cluster headaches, 502
exercise and, 652
hemoglobin, 647
Oxygen deprivation, 651
Oxygen-hemoglobin dissociation
curve, 649
Oxygen toxicity, 216
Oxytocin
functions of, 323
hypothalamic/pituitary drugs, 350

Oxytocin
hypothalamus production, 480
lactation and, 617
pituitary gland and, 321
signaling pathways for, 330

## P

P-450, 197
Pacemaker action potential, 287
Pacinian corpuscles, 478
Paclitaxel, 429
in cell cycle, 426
microtubules and, 48
targets of, 426
Paget disease (breast), 631, 632
Paget disease (extramammary), 626
Paget disease of bone, $\mathbf{4 5 0}$
bisphosphonates, 471
lab values in, 451
osteosarcomas and, 452
presentation, 673
woven bone in, 447
Paget disease of breast
presentation, 674
Pain receptors, 478
Palatine shelves, 603
Pale (anemic) infarct, 210
Paliperidone, 557
Palivizumab, 122
pneumonia prophylaxis, 170
Pallor in aplastic anemia, 409
Palmar crease, 670
Palmar erythema, 383
Palmar interossei, muscle, 436
Palmar reflex, 494
PALM-COEIN uterine bleeding classification, 614
Panacinar emphysema, 386, 656
p-ANCA
sclerosing cholangitis and, 389
ulcerative colitis, 376
Pancoast tumor, 666
Horner syndrome and, 524
labs/findings, 679
lung cancer, 665
superior vena cava syndrome, 666
thoracic outlet syndrome, 438
Pancreas
biliary structures and, 362
blood supply and innervation of, 357
embryology, 353
Pancreas (annular), 353
Pancreas divisum, 353
Pancreatic buds, 353
Pancreatic cancer, 391
5-fluorouracil for, 427
adenocarcinomas, 391
biliary cirrhosis and, 389
carcinogens causing, 223
hyperbilirubinemia with, 387
metastases of, 226
oncogenes and, 222
paraneoplastic syndromes with, 221
presentation, 672
tumor suppressor genes and, 222
Pancreatic ducts, 353, 362
Pancreatic endocrine cells, 321. See also $\alpha$ cells; $\beta$ cells; $\Delta$ cells
Pancreatic insufficiency, 375, 391
Pancreatic secretions, 367
Pancreatitis, 391
acute respiratory distress syndrome and, 660
alcoholism, 555
corticosteroids and, 244
as drug reaction, 244
hyperchylomicronemia, 94
hyperparathyroidism as cause, 340
hypertriglyceridemia, 94
mumps, 170
necrosis and, 209
NRTIs, 203
pancreas divisum and, 353
pancreatic insufficiency with, 375
valproic acid, 528
Pancuronium, 534
Pancytopenia, 409
Chédiak-Higashi syndrome, 117
cytarabine, 427
Gaucher disease, 88
leishmaniasis, 158
osteopetrosis and, 449
paroxysmal nocturnal hemoglobinuria, 410
Pandemics, 169
Panic disorder, 546, 547
drug therapy for, 556
SSRIs for, 559
venlafaxine for, 559
Pansystolic murmur, 284
Pantoprazole, 392
Papillary carcinomas, 220
Papillary cystadenoma lymphomatosum, 370
Papillary muscle
blood supply to, 302
rupture, 300, 302
Papillary thyroid carcinomas, 338
carcinogens for, 223
labs/findings, 678
Psammoma bodies in, 224
Papilledema, 505, 522
hypertensive emergency and, 296
Papillomas, 220
Papillomaviruses
characteristics of, 164
DNA viruses, 163
genome, 162
Pap smear, 627
Papules, 462
capillary, 465
molluscum contagiosum, 466
Para-aminohippuric acid (PAH), 566
Para-aortic lymph nodes, 606
Paracoccidioidomycosis, 151
Paracortex (lymph node), 96
Paracrine, 573
Paradoxical splitting, 283
Paraesophageal hiatal hernia, 364
Parainfluenza
croup, 170
paramyxovirus, 167, 170
Parakeratosis, 462
Paralysis
conversion disorder and, 550
of face, 498
Guillain-Barré syndrome, 508
poliovirus, 186
rabies, 171
stroke effects, 498
unvaccinated children, 186
Paralytic ileus, 429
Paramedian pontine reticular formation lesions, 495
Paramesonephric (Müllerian) duct, 604

Paramyxoviruses, 170
characteristics of, 167, 168
croup, 170
measles, 170
mumps, 170
Paraneoplastic cerebellar degeneration, 221
Paraneoplastic encephalomyelitis, 221
Paraneoplastic syndromes, 221
lung cancer, 665
renal cell carcinoma and, 583
renal tumors, 686
Paranoia
amphetamines, 554
LSD as cause, 555
Paranoid personality disorder, 549
Paraphilia, 551
Parasites
infections with immunodeficiency, 118
Parasitology, 155-161
Parasympathetic nervous system, 233
male erection, 609
Parasympathetic receptors, 234
Parathyroid adenomas
hyperparathyroidism caused by, 340
MEN 1/MEN 2A syndromes, 347
Parathyroid disease diagnosis, 339
Parathyroid glands
branchial pouch derivation, 603
Parathyroid hormone (PTH), 328
bone disorders, 451
bone formation, 448
calcitonin and, 329
in hyperparathyroidism, 340
kidney effects, 574
nephron physiology, 569
osteomalacia/rickets, 450
Paget disease of bone, 450
pseudohypoparathyroidism and, 339
signaling pathways of, 330
thymic aplasia, 116
vitamin D and, 328
Parathyroid tumors
presentation, 672
Paraumbilical vein, 359
Paraventricular nucleus, 480
Parental consent, 260
Paresthesias
panic disorder, 547
vitamin $\mathrm{B}_{12}$ deficiency, 69
Parietal cells (stomach), 366, 373
Parietal cortex lesions, 495
Parietal lobe, 485
Parietal pericardium, 277
Parietal peritoneum, 363
Parinaud syndrome, 495, 512
Parkinson disease, 504
basal ganglia lesions, 495
benztropine for, 237
dopaminergic pathways, 482
drug therapy for, 531
Lewy bodies, 504
neurotransmitters for, 479
nigrostriatal pathway and, 482
presentation, 674
proteasome and, 48
resting tremor in, 503
seborrheic dermatitis association, 463
trihexyphenidyl, 237
Parkinsonism
Wilson disease as cause, 389

Parkinson-like syndrome, 246
Parotid gland
embryologic derivation, 595
enlargement of, 456
stones in, 370
tumors in, 370
Parotitis
bulimia nervosa, 550
mumps, 170
Paroxetine, 559
Paroxysmal nocturnal dyspnea, 304
Paroxysmal nocturnal
hemoglobinuria, 410
in anemia taxonomy, 406
CD55 deficiency, 107
eculizumab for, 122
flow cytometry diagnosis, 54
intravascular hemolysis in, 409
presentation, 673
Pars planitis, 520
Partial agonists, 230
Partial complex seizures
hallucinations in, 543
Partial seizures, 501
Partial thromboplastin time (PTT), 414
Parvovirus
characteristics of, 164
DNA viruses, 163
genome of, 162
naked viruses, 163
Parvovirus B19
aplastic anemia, 409
hereditary spherocytosis, 410
hydrops fetalis, 182
rash, 183
Passive aggression, 539
Passive immunity, 110
Pasteurella spp.
Gram-negative algorithm, 141
taxonomy, 125
Pasteurella multocida
osteomyelitis, 180
transmission, 149, 186
Patau syndrome, 63
cataracts, 519
chromosome association, 64
holoprosencephaly, 475
Patau syndrome (trisomy 13)
horseshoe kidney in, 563
Patches, 462
Patches (skin)
pityriasis rosea, 468
psoriatic arthritis, 457
Patellar reflex, 494
lumbosacral radiculopathy, 445
Patent ductus arteriosus (PDA)
congenital rubella, 296
fetal alcohol syndrome, 296
heart murmur with, 285
indomethacin for, 471
mechanism and treatment, 295
misoprostol for, 393
neonatal respiratory distress syndrome and, 643
Patent foramen ovale
atrial septal defect vs, 295
septal fusion failure, 274
Patent urachus, 600
Pathogen-associated molecular patterns (PAMPs), 99
Pathologic grief, 546
Pathology, 205-223
cardiovascular, 294-308
endocrine, 331-347
gastrointestinal, 370-391
hematologic/oncologic, 404-424
musculoskeletal/skin/connective tissue, 448-456
neoplasia, 219-226
neurological, 495-502
psychiatric, 540-554
renal, 578-589
reproductive, 620-634
respiratory, 653-663
USMLE Step 1 preparation for, 271
Pautrier microabscess, 418
Pavlovian (classical) conditioning, 538
Payment models for healthcare, 265
PCP (phencyclidine)
intoxication and withdrawal, 555
PCSK9 inhibitors, 313
PDE-3, 312
PDE-5 inhibitors, 635, 639
benign prostatic hyperplasia, 682
naming convention for, 248
PDGF. See Platelet-derived growth factor (PDGF)
PDSA cycle, 267
Pearson correlation coefficient $(r)$, 259
Peau d'orange, 632
Pectinate line, $\mathbf{3 6 0}$
Pectineus, 442, 443
Pectoriloquy (whispered), 662
Pediatric patients
aspirin contraindication in, 384
brachial plexus injury, 438 childhood/early onset disorders, 541
common causes of death, 266
common fractures, 436
common orthopedic conditions, 444
cystic fibrosis, 60
dactinomycin for, 428
failure to thrive, 540
growth retardation in, 586
hemolytic disease of newborn, 400
hemolytic-uremic syndrome, 415
hyperbilirubinemia (newborns), 387
infant deprivation effects, 540
intraventricular hemorrhage, 496
intussusception in, 379
juvenile polyposis syndrome in, 381
Munchausen syndrome by proxy, 550
neglect in, 540
neuroblastomas in, 333
precocious puberty in, 57, 326
primary brain tumors, $\mathbf{5 1 2}$
rashes, 183
rhabdomyomas in, 309
scalded skin syndrome, 466
sleep terror disorder in, 551
strawberry hemangiomas in, 465
tetracycline side effects, 192
unvaccinated, 186
Wilms tumors in, 584
Pegloticase, 472, 681
Pegvisomant, 341
Pellagra
vitamin $B_{3}$ deficiency, 67
Pelvic inflammatory disease (PID), 185
Actinomyces, 139
chlamydia, 148, 184

Chlamydia trachomatis, 149
copper IUD, 638
ectopic pregnancy, 624
gonococci, 142
gonorrhea, 184
Pelvic inlet (renal), 564
Pelvic pain
Asherman syndrome, 630
endometrioma, 628
endometriosis, 630
Pelvis
fracture and nerve injury, 442
nerve injury with surgery, 442
Pemphigus vulgaris, 467
acantholysis and, 462
autoantibody, 115
labs/findings, 673
type II hypersensitivity, 112
"Pencil-in-cup" deformity (X-ray), 457
Penicillamine
for copper toxicity, 243
for lead poisoning, 243
myopathy, 245
for Wilson disease, 389
Penicillin
Actinomyces spp., 139
antipseudomonal, 188
Coombs-positive hemolytic anemia, 245
interstitial nephritis from, 587
mechanism, 187
penicillinase-resistant, 188
penicillinase-sensitive, 188
prophylaxis, 198
rash, 245
for rheumatic fever, 306
Treponema pallidum, 679
Penicillinase-resistant penicillins, 188
Penicillinase-sensitive penicillins, 188
Penicillin G, V, 187
meningococci, 142
prophylaxis, 198
Penile cancer, 223
Penile pathology, 633
Penis
congenital abnormalities, 606
female homolog, 605
lymphatic drainage, 606
pathology of, 633
Pentamidine, 154
Pentazocine, 534, 535
Pentobarbital, 529
Pentostatin, 420
PEP carboxykinase, 74
Pepsin, 366
Pepsinogen
location of, 367
somatostatin and, 365
Peptic ulcer disease, 374
associations, 682
glycopyrrolate for, 237
$\mathrm{H}_{2}$ blockers for, 392
Helicobacter pylori, 146
misoprostol for, 393
proton pump inhibitors for, 392
Zollinger-Ellison syndrome, 347
Peptidoglycan synthesis, 187
Peptostreptococcus spp.
alcoholism, 179
lung abscess, 666
Percussion (chest), 662
Perforation (GI), 374
duodenal ulcer, 358
necrotizing enterocolitis, 380

Perforin
cytotoxic T cells and, 102
extrinsic pathway and, 208
natural killer cells and, 101
Performance anxiety, 551
Perfusion and ventilation, 651
Perfusion-limited gas exchange, 650
Perfusion pressure regulation, 292
Periarteriolar lymphatic sheath (PALS), 98
Pericardial cavity, 277
Pericardial effusion, 665
Pericardial tamponade
labs/findings, 675
Pericarditis
acute, 306
fibrinous, 300
jugular venous pulse in, 282
Kussmaul sign in, 310
picornaviruses, 167
postinfarction, 300, 302
pulsus paradoxus in, 307
referred pain from, 277
renal failure, 586
rheumatoid arthritis, 454
Pericardium, 277
calcification in, 215
Perinephric abscesses, 585
Perineurium, 479
Periodic acid-Schiff stain, 126
glycogen storage diseases, 87
Periorbital edema, 335
nephrotic syndrome, 674
Trichinella spiralis, 161
Peripartum cardiomyopathy, 303
Peripheral edema
calcium channel blockers, 311
cirrhosis and, 383
heart failure, 304
nephrotic syndrome, 674
Peripheral nerves, 479
Peripheral nervous system (PNS), 233
embryologic derivation, 595 origins of, $\mathbf{4 7 4}$
Peripheral neuropathy
alcoholism, 555
Fabry disease, 88
isoniazid, 197
Krabbe disease, 88
NRTIs, 203
oxazolidinones, 193
sorbitol as cause, 81
tricyclic antidepressants, 559
vincristine as cause, 431
vitamin $\mathrm{B}_{6}$ deficiency, 67
Peripheral resistance, 239
Peripheral vascular disease, 298
Peripheral vertigo, 518
Periplasm, 124
Perirenal space, 354
Peristalsis
motilin receptor agonists and, 365
visible, 353
Peritoneum, 354
hernias and, 364
irritation with mittelschmerz, 612
Peritonitis
appendicitis, 377
diverticulitis, 377
spontaneous bacterial, 384
Peritubular capillaries, 567
Permanent cells, 46
Permethrin, 161, 200
Permissive drug interactions, 229

Pernicious anemia, 366
autoantibody, 115
$\mathrm{B}_{12}$ deficiency caused by, 408
HLA-DR5 and, 100
type IV hypersensitivity, 113
vitamin $\mathrm{B}_{12}$ deficiency, 69
Peroneus brevis, 436, 442, 443, 444
Peroneus longus, 442
Peroxisome, 47
Persistent cervical sinus, 601
Persistent depressive disorder
(dysthymia), 545
Persistent fetal circulation, 616
Persistent thyroglossal duct, 320
Persistent truncus arteriosus, 275, 294
Personality, 548
Personality disorder, 548, 549-550
Personality traits, 548
Pertussis toxin, 132, 143
Pes cavus
Friedreich ataxia, 515
Petechiae
aplastic anemia as cause, 409
with cirrhosis, 383
scurvy, 670
Petechial rash
with fat emboli, 654
Peutz-Jeghers syndrome, 220, 381
PEX genes, 47
Peyer patches, 356, 368, 379
IgA antibody production, 105
Salmonella/Shigella invasion, 144
Peyronie disease, 633
$\mathrm{PGI}_{2}, 470$
P-glycoprotein, 225
Phagocytes, 117
Phagocytosis, 129
dendritic cells, 398
eosinophils, 397
Phalen maneuver, 435
Pharmaceutical company sponsorship, 263
Pharmacokinetics, 229
Pharmacology, 228-247
autonomic drugs, 233-242
cardiovascular, 310-316
endocrine, 348-350
gastrointestinal, 392-394
hematologic/oncologic, 423-431
musculoskeletal/skin/connective tissue, 470-472
neurology, 528-535
pharmacodynamics, 230-232
pharmacokinetics, 228-229
psychiatric, 556-560
renal, 589-592
reproductive, 636-639
respiratory, 667-668
toxicities and side effects, 243-246
USMLE Step 1 preparation for, 271
Pharyngitis
adenoviridae, 164
Corynebacterium diphtheriae, 139
diptheria, 139
mononucleosis, 165
prophylaxis (rheumatic fever), 198
Streptococcus pyogenes, 136
unvaccinated children, 186
Pharyngoesophageal false diverticulum, 378
Pharynx, 644
blood supply and innervation of, 357

Phenacetin, 584
Phenelzine, 559
Phenobarbital, 529
epilepsy, 528
teratogenicity, 596
as weak acid, 231
Phenotypic mixing, 162
Phenoxybenzamine, 240. See also $\alpha$-antagonists
norepinephrine and, 230
for pheochromocytomas, 334
Phentolamine, 240
Phenylalanine
classification of, 81
tyrosine catabolism, 83
Phenylbutyrate, 82
Phenylephrine, 238, 667
$\alpha$-blockade of, 240
Phenylketones, 84
Phenylketonuria, 83, 84
Phenytoin
cytochrome P-450 and, 247
drug-induced lupus, 245
drug-induced SLE, 677
epilepsy, 528
erythema multiforme, 467
folate deficiency caused by, 408
gingival hyperplasia, 245
megaloblastic anemia, 245
peripheral neuropathy, 246
teratogenicity, 596
tonic-clonic seizures, 681
vitamin $B_{9}$ deficiency, 68
zero-order elimination of, 230
Pheochromocytomas, 334
MEN 2A/MEN 2B and, 347
neurofibromatosis, 509
phenoxybenzamine for, 240
presentation, 674
von Hippel-Lindau disease, 509
Philadelphia chromosome, 685 in myeloproliferative disorders, 421
translocations of, 422

## Phlebitis

IV amphotericin B, 199
Phlebotomy
for hemochromatosis, 389
Phobias, 546, 547
Phocomelia, 596
Phonophobia, 502
Phosphatases, 73
Phosphate in bone disorders, 451
Phosphodiesterase 5 (PDE-5) inhibitors, 667
Phosphodiesterase type 5 inhibitors, 639
Phosphoenolpyruvate carboxykinase, 78
Phosphofructokinase-1 (PFK-1)
glycolysis and, 73
metabolic pathways, 74
Phospholipids, 368
Phosphorus in Paget disease of bone, 450
Phosphorylases, 73
Phosphorylation, 45
Photophobia
headaches, 502
leptospirosis, 147
rabies, 171
Photosensitivity
demeclocycline causing, 350
drugs causing, 245
porphyria as cause, 413

Photosensitivity (cutaneous)
sulfonamides, 194
tetracyclines, 192
Phototherapy for jaundice, 387
Phrenic nerve, 645
Phyllodes tumors, 631
Physical abuse (child), 540
Physical findings
lung, 662
Physician-assisted suicide, 262
Physician-patient relationship, 262
Physiologic dead space, 646, 688
Physiologic neonatal jaundice, 387
Physiology
cardiovascular, 278-292
endocrine, 322-330
gastrointestinal, 365-369
hematolic/oncologic, 399-403
neurological, 477-499
renal, 565-576
reproductive, 611-618
respiratory, 646-651
USMLE Step 1 preparation for, 270
Physostigmine
anticholinergic toxicity treatment, 243
anticholinesterase, 236
glaucoma, 535
Pia mater, 479
Pick bodies, 504, 677
Pickwickian syndrome, 661
Picornaviruses, 168
characteristics, 167
genomes, 162
naked viruses, 163
Pierre Robin sequence, 602
Pigmented skin disorders, 463
Pigment-producing bacteria, 129
Pigment stones, 390
"Pill-rolling tremor," 503
Pilocarpine, 236
glaucoma, 535
Pilocytic astrocytoma, 512
Pilus, 124
Pimozide, 541, 556
Pindolol, 241, 312
Pineal gland, 488
Pinealoma, 512
Pinworms, 159
Pioglitazone, 349
Piperacillin
characteristics of, 188
mechanism (diagram), 187
Pseudomonas aeruginosa, 143
Piroxicam, 471
Pisiform bone, 435
Pitting edema, 304
Pituitary adenoma, 510
Pituitary adenomas
acromegaly and, 341
GH and, 325
goiter and, 337
hypopituitarism and, 343
Pituitary apoplexy, 343
Pituitary drugs, 350
Pituitary gland, $\mathbf{3 2 1}$
Pituitary hormones, 248
Pituitary prolactinomas, 323
Pituitary tumors
diabetes insipidus, 342
MEN 1 and, 347
Pityriasis rosea, 468
Pityrosporum spp., 152

PKD genes
renal cyst disorders and, 588
Placebo, 252
Placenta, 599
estrogen production, 611
maternal-fetal barrier, 480
progesterone production, 611
Placenta accreta/increta/percreta, 623
Placental abruption
diffuse cortical necrosis (renal), 587
Placental aromatase deficiency, 621
Placental insufficiency
oligohydramnios and, 624
Potter sequence, 562
preeclampsia, 625
Placenta previa, 623
Plague, 149
Plantar aponeurosis, 444
Plantar fasciitis, 444
Plantar flexion, 442, 445
Plantaris, 442
Plantar reflex, 494
Plaques (skin), 462
actinic keratosis, 468
basal cell carcinoma, 469
hairy leukoplakia, 466
lichen planus, 468
pityriasis rosea, 468
psoriasis, 464
seborrheic dermatitis, 463
squamous cell carcinoma, 469
Plasma cells, 399
Plasma membrane
cell trafficking, 47
sodium-potassium pump, 49
Plasma osmolality
DI treatment, 342
insulin deficiency/insensitivity, 344
Plasmapheresis
for Guillain-Barré syndrome, 508
Plasmapheresis, 581
Plasma protein concentration, 567
Plasma volume measurement, 565
Plasminogen, 402, 425
Plasmodium spp.
chloroquine, 200
Plasmodium falciparum, 157, 200
Plasmodium malariae, 157
Plasmodium ovale, 157
Plasmodium vivax, 157
Platelet-activating factor, 396
Platelet-derived growth factor (PDGF)
in wound healing, 217
signaling pathways for, 330
Platelet disorders, 415
transfusion for, 417
Platysma muscle, 602
Plelotropy, 56
Pleomorphic adenomas, 370
Pleomorphic bacteria, 125
Pleural effusion, 662
asbestosis, 659
lung cancer, 665
mesothelioma, 660
physical findings, 662
Pleuritis, 454
Plicae circulares, 356
Plummer-Vinson syndrome, 371, 406
Pneumatosis intestinalis, 380
Pneumococcal vaccine, 128
Pneumoconioses, 657, 659
Pneumocystis spp., 117

Pneumocystis jirovecii, 154
dapsone, 194
HIV-positive adults, 177
immunocompromised patients, 179
silver stain for, 126
TMP-SMX, 194
Pneumocystis pneumonia
HIV-positive adults, 177
prophylaxis, 198
Pneumocytes, 642, 643, 644
Pneumomediastinum, 371
Pneumonia, 664
acute respiratory distress syndrome, 660
adenoviridae, 164
chlamydiae, 148
coccidioidomycosis, 151
common causes, 179
compliance in, 647
Haemophilus influenzae, 142
inhalational injury, 658
Klebsiella pneumoniae, 671
Mycoplasma pneumoniae, 150
Pneumocystis jirovecii, 154
PPI adverse effects, 392
Q fever, 150
readmissions with, 266
Staphylococcus aureus, 135
Streptococcus pneumoniae, 136
Streptococcus agalactiae, 137
VZV, 164
Pneumonitis
as granulomatous disease, 214
HIV-positive adults, 177
hypersensitivity, 214
metastatic calcification, 215
Pneumoperitoneum, 358
Pneumothorax, 662, 663
Podagra
gout, 455
presentation, 673
Podocytes, 564
in filtration, 567
glomerular filtration barrier and, 565
nephrotic syndrome, 580
Poikilocytosis, 396
Point of service plan, 265
pol gene, 175
Poliomyelitis, 515
restrictive lung disease, 657
Poliovirus, 515
immunodeficient patients, 118
medical importance, 167
picornavirus, 168
unvaccinated children, 186
Polyadenylation signal, 41
Polyangiitis, microscopic
autoantibody, 115
Polyarteritis nodosa, 173, 308
necrosis and, 209
Polyarthralgias
gonococcal arthritis, 456
rubella, 182
Polyarthritis
rubella, 182
Polycystic disease
kidney, 588
Polycystic ovarian syndrome (PCOS)
anovulation, 627
antiandrogens, 639
clomiphene, 637
endometrial hyperplasia, 630
ovarian neoplasm risk, 628

Polycythemia
blood oxygen in, 649
bronchitis and, 656
Eisenmenger syndrome, 295
ESR in, 212
low birth weight, 616
paraneoplastic syndrome, 226
presentation, 673
Polycythemia/vera, 421
Budd-Chiari syndrome and, 386
hepatocellular carcinoma, 386
Polydactyly, 63
Polydipsia, 344
Polyenes, 198
Polyhydramnios, 475, 624
esophageal atresia and, 352
Polymenorrhea, 613
Polymerase chain reaction (PCR), 52
Polymyalgia rheumatica, $\mathbf{4 5 8}$
associations, 683
ESR in, 212
giant cell arteritis and, 308
Polymyositis
autoantibody, 115
Polymyositis/dermatomyositis, 459
Polymyxin B, 143, 193, 198
Polymyxins, 193, 198
Polyneuritis, 66
Polyneuropathy, 413
familial amyloid, 218
Polyomaviruses
characteristics of, 164
DNA viruses, 163
genome, 162
naked viruses, 163
Polyostotic fibrous dysplasia, 57, 670
Polyposis syndromes, 381
Polyps (endometrial), 630
uterine bleeding with, 614
Polyuria, 584
diabetes insipidus, 342
diabetes mellitus, 344, 345
Fanconi syndrome, 673
hyperosmolar hyperglycemic state, 346
hyperparathyroidism, 340
lithium as cause, 558
Pompe disease, 87
Pons, 474, 488
cranial nerve nuclei of, 489
Pontiac fever, 143
Pontine syndrome, 498
"Pope's blessing" (median nerve injury), 437, 439
Popliteal artery, 445
atherosclerosis in, 298, 683
Popliteal fossa, 445
Popliteus, 442
Porcelain gallbladder, 390
Porphobilinogen deaminase, 413
Porphyria, 529
Porphyria (acute intermittent), 413
Porphyria cutanea tarda, 413
Porphyrin derivatives, 83
Portal hypertension, 383
ARPKD, 588
cirrhosis and, 383
pulmonary arterial hypertension, 661
Schistosoma spp., 161
serum markers for, 384
varices and, 359
Portal triad, 355, 361
Portal vein, 355, 361
in fetal circulation, 276

Portal vein thrombosis, 383
Portosystemic anastomoses, 359
Port-wine stain, 509
Port-wine stain of face, 674
Positive predictive value (PPV), 253, 255, 687
Positive punishment (aversive stimulus), 538
Positive reinforcement, 538
Positive skew distribution, 257
Postcapillary venule (lymph node), 96
Posterior cerebral artery, 486, 487, 499
Posterior chamber (eye), 518
Posterior circulation strokes, 498
Posterior circumflex artery, 445
Posterior communicating artery, 487
Posterior cruciate ligament (PCL) injury, 440
Posterior descending artery (PDA), 277
Posterior drawer sign, 440
Posterior fossa
malformations, 476
Posterior hypothalamus, 480
Posterior inferior cerebellar artery
circle of Willis, 487
stroke effects, 498
Posterior pituitary gland, 321
Posterior superior pancreaticoduodenal arteries, 358
Posterior tibial artery, 445
Posterior urethral valves, 563
Posterior uveitis, 520
Postherpetic neuralgia, 164
Postinfectious encephalomyelitis, 508
Postoperative ileus, 236
Postpartum depression, 546
Postpartum hemorrhage, 624
Postpartum (maternal) blues, 546
Postpartum mood disturbances, 546
Postpartum psychosis, 546
Postpartum thyroiditis, 336
Postprandial pain, 357
Postrenal azotemia, 586
Poststreptococcal glomerulonephritis (acute), 581
Posttranslational modifications, 45
Post-traumatic stress disorder (PTSD), 546, 548
dissociative identity disorder, 542
drug therapy for, 556
prazosin for, 240
SSRIs for, 559
venlafaxine, 559
Postural hypotension
midodrine for, 238
trazodone, 560
Postviral infections, 179
Potassium
amphotericin B, 199
in cardiac muscle, 286
diabetic ketoacidosis, 345
PTH and, 328
shifts in, 574
torsades de pointes and, 289
Potassium channel blockers, 316
Potassium channels
myocardial action potential, 286
opioid effect, 534
Potassium chloride, 244
Potassium iodide
Sporothrix schenckii, 154
for thyroid storm, 337

Potassium-sparing diuretics, 589, 591
Potency of drugs vs efficacy, 232
Pott disease, 180
Potter sequence, 595, 624
Potter sequence (syndrome), 562
ARPKD, 588
Potter syndrome, 642
Poxviruses
characteristics of, 164
DNA viruses, 163
molluscum contagiosum, 466
PPAR- $\gamma$ activators, 248
PPD test, 140
PR3-ANCA/c-ANCA autoantibody, 115
Practice tests, 22
Prader-Willi syndrome
chromosome association, 64
ghrelin in, 325, 365
imprinting, 58
Pralidoxime, 236
Pramlintide, 244, 348
Prasugrel, 403, 425
Pravastatin, 313
Praziquantel
antihelminthic therapy, 200
tapeworms, 160
trematodes, 160
Prazosin, 240
Precision vs accuracy, 255
Precocious puberty
adrenal steroids and, 326
leuprolide, 637
McCune-Albright syndrome, 57, 670
pinealoma, 512
Precontemplation stage, 552
Predictive value, 253
Prednisolone
arachidonic acid pathway, 470
for thyroid storm, 337
Prednisone
arachidonic acid pathway, 470
Preeclampsia, 625
hydatidiform moles, 622
placental abruption, 623
Preferred provider organization plan, 265
Prefrontal cortex, 485
Pregnancy, 614
advanced maternal age, 63
aliskiren contraindication, 592
amniotic fluid abnormalities, 624
anemia caused by, 406
carpal tunnel syndrome and, 435
choriocarcinomas and, 622
contraindicated antimicrobials, 204
diabetes in. See Gestational diabetes mellitus (GDM)
ESR in, 212
estrogen in, 611
ethical situations, 262-263
fetal circulation, 276
fetal hemoglobin, 647
fetal respiration, 642
fibroid tumors in, 630
folate deficiency caused by, 408
folic acid supplementation, 68
heparin in, 423
hypertension in, 625
hypertension treatment in, 239, 310
hypothyroidism in, 336
insulin in, 322
Listeria monocytogenes in, 139
lithium in, 294, 296
maternal complications, 266
maternal phenylketonuria, 84
melasma in, 463
neural tube defect association, 475
opiate use during, 597
ovarian neoplasms and, 628
parental consent and, 260
pituitary infarcts with, 343
posterior urethral valve diagnosis, 563
prolactin and, 324
propylthiouracil in, 349
pyelonephritis, 585
pyogenic granulomas and, 465
quad screening in, 63
sex hormone-binding globulin, 330
stillbirth, 182
Streptococcus agalactiae in, 137
syphilis in, 147
termination of, 638
ToRCHeS infections, 182
Turner syndrome and, 620
twinning in, 598
urinary tract infections, 181
venous sinus thrombosis in, 487
vitamin $\mathrm{B}_{9}$ deficiency, 68
Pregnancy complications, 623-624
Pregnenolone, 326
Preload in cardiac output, 279
Premature ejaculation, 559
Premature labor and delivery
cryptorchidism and, 633
low birth weight with, 616
murmur in prematurity, 285
neonatal respiratory distress syndrome and, 643
Premature ovarian failure, 617, 627
Premenstrual dysphoric disorder (PMDD), 559
Premotor cortex, 485
Preoptic nucleus, 480
Prepatellar bursitis, 441
Preprocollagen, 50
Preproinsulin, 322
Prepuce, 608
Prerenal azotemia, 586
Presbycusis, 264
Presbyopia, 519
Preschool age development, 616
Presenilin, 504
Pressure-volume loops, 282
Pretectal nuclei, 523
Preterm birth
common cause of death, 266
Pretest probability, 253
Prevalence
diagnostic test evaluation, 253
incidence vs, 255
observational studies, 252
relative risk, 254
Prevotella spp., 179
Priapism, 633
sickle cell anemia, 410
trazodone and, 560
Primaquine, 157
hemolysis in G6PD deficiency, 245
Primary adrenal insufficiency, $\mathbf{3 3 2}$
Primary amyloidosis, 218, 677
Primary bacterial peritonitis, 384
Primary biliary cirrhosis
as granulomatous disease, 214
labs/findings, 676
Primary central nervous system lymphoma (PCL), 418

Primary disease prevention, 265
Primary glomerular disease, 578
Primary hemostasis, 403
Primary hyperaldosteronism, 332
hypertension with, 296
markers in, 575
Primary hyperparathyroidism, 339, 340
Primary hypertension, 310
Primary hypogonadism, 621
Primary hypoparathyroidism, 339
Primary ovarian insufficiency, 627
Primary polycythemia, 421
Primary sclerosing cholangitis, 389 ulcerative colitis, 376
Primary spontaneous pneumothorax, 663
Primase, 38
Primidone, 503
Primitive atrium, 274
Primitive pulmonary vein, 274
Primitive reflexes, 494
Primitive ventricle, 274
Pringle maneuver, 355
PR interval, 288, 290 antiarrhythmic effects, 316, 317 prolonged, 290
shortened, 289
Prinzmetal angina calcium channel blockers for, 311 ischemic manifestations, 299 propranolol adverse effects, 316

## Prions, 178

Privacy and confidentiality, 264
Probenecid, 247
cidofovir with, 202
for gout, 472, 681
Procainamide, 315
Procaine, 533
Procarbazine, 246
Procedure bias, 256
Process improvement model, 267
Process (quality measurement), 267
Processus vaginalis, 606
Procoagulation, 402
Progesterone, 611
ganulosa cell tumors, 629
lactation and, 617
menstrual cycle, 613
ovulation, 612
pregnancy, 614
signaling pathways for, 330
Progestins, 638
endometriosis, 630
Progressive multifocal leukoencephalopathy (PML), 478, 508
HIV-positive adults, 177
polyomaviruses, 164
rituximab, 430
Proguanil, 200
Projection, 539
Prokaryotes
DNA replication in, 38
mRNA start codons, 40
RNA polymerases in, 41
Prolactin, 324
circadian rhythm, 481
lactation and, 617
pregnancy, 614
secretion of, 321, 323
signaling pathways for, 330
tuberoinfundibular pathway, 482
Prolactinomas
dopamine agonists for, 324

Proliferative glomerular disorders, 578
Prometaphase, 46
Promoters (gene expression), 41
Promyelocytic leukemia, 66
Pronephros, 562
Proopiomelanocortin, 321
Propafenone, 315
Propanolol, 337
Proper hepatic artery, 355
Prophase, 46
Prophylaxis (antimicrobial), 198
Propionibacterium spp., 125
Propionyl-CoA carboxylase
metabolic pathways, 74
vitamin $\mathrm{B}_{7}$ and, 68
Propofol, 533
Propranolol, 241, 316
essential tremor, 503
Proprioception
Friedreich ataxia, 515
Propylthiouracil
agranulocytosis, 245
aplastic anemia, 245
thionamides, 349
for thyroid storm, 337
Prosencephalon, 474
Prostacyclin, 470
Prostacyclin analogs, 667
Prostaglandin analogs, 248
Prostaglandins
arachidonic acid pathway, 470
aspirin effects, 471
cortisol effect on, 327
glaucoma treatment, 535
kidney functions, 573
PDA and, 276
Prostate cancer
adenocarcinomas, 635
estrogens for, 637
incidence/mortality of, 226
leuprolide for, 637
metastases of, 226
tumor suppressor genes and, 222
Prostate gland, 608
female homolog of, 605
lymphatic drainage of, 606
with urethral injury, 609
Prostate-specific antigen (PSA), 635
Prostatic acid phosphatase (PAP), 635
Prostatic adenocarcinoma, 635
Prostatitis, 635
gonorrhea, 184
Prosthetic devices
Staphyloccus epidermidis, 135
Prosthetic heart valves, 411
Protamine sulfate, 243, 423
Protease inhibitors
acute pancreatitis, 391
fat redistribution, 245
HIV therapy, 203
hyperglycemia, 244
mechanism (diagram), 201
naming convention for, 248
Proteases, 367
Proteasome, 48
Protein A, 129, 135
Proteinases, 396
Protein C/S deficiency, 416
Protein kinase A fructose bisphosphatase-2 and, 76 glycogen regulation, 85
Protein metabolism, 74
Protein phosphatase, 85

Proteins
free radical effect on, 216
Protein synthesis, 187, 201
insulin and, 322
metabolic site, 72
sequence of, $\mathbf{4 5}$
Protein synthesis inhibitors, 191, 248
Proteinuria, 579
ACE inhibitors for, 592
angiotensin II receptor blockers, 592
diabetes mellitus, 344
nephritic syndrome, 581
nephrotic syndrome, 580, 674
preeclampsia, 625
renal papillary necrosis and, 587
serum sickness, 113
Proteolysis
cortisol and, 327
in insulin deficiency, 344
Proteus spp.
Gram-negative algorithm, 141
taxonomy, 125
urease-positive, 128
xanthogranulomatous
pyelonephritis, 585
Proteus mirabilis
cephalosporins, 189
kidney stones, 582
penicillins for, 188
urinary tract infections, 585
UTIs, 181
Prothrombin
complex concentrate transfusion, 417
warfarin effect on, 424
Prothrombin gene mutation, 416
Prothrombin time (PT), 414
Protofilament, 48
Proton pump inhibitors (PPIs), 392
acute interstitial nephritis, 587
Beers criteria, 242
gastrin and, 365
for Helicobacter pylori, 146
naming convention for, 248
Protozoa
CNS infections, 156
GI infections, 155
hematologic infections, 157
miscellaneous, 158
watery diarrhea, 179
Proximal convoluted tubules
ischemia susceptibility, 210
Proximal convoluted tubules (PCT)
in ATN, 587
defects in, 570
diuretics and, 589, 591
dopamine secretion by, 573
glucose clearance and, 568
physiology of, 569
relative concentrations in, 571
renal cell carcinoma and, 583
Proximal interphalangeal (PIP) joints, 439
Proximal renal tubular acidosis (type 2), 577
PRPP (glutamine-phosphoribosylpyrophosphate) amidotransferase, 73
Pruritus
anal, 159
atopic dermatitis, 464
biliary tract disease, 389
chloroquine, 200
cutaneous mycoses, 152
dermatitis herpetiformis, 467
ectoparasites, 161
histamine receptors and, 234
in hyperchylomicronemia, 94
lichen planus, 468
pseudofolliculitis barbae, 464
urticaria, 464
Prussian blue stain, 659
Psammoma bodies, 215, 224
diseases with, 678
mesotheliomas, 660
papillary thyroid carcinoma, 338
serous cystadenocarcinomas, 629
PSA (prostate-specific antigen), 224
immunohistochemical stain for, 225
Pseudoappendicitis, 144
Pseudocyst, 391
Pseudoephedrine, 667
Pseudofolliculitis barbae, 464
Pseudofractures, 450
Pseudoglandular stage (development), 642
Pseudogout, 455
labs/findings, 677
Pseudohermaphrodites, 621
Pseudohyperaldosteronism
Cushing syndrome and, 331
Pseudohypoparathyroidism, 339
Pseudomembranous colitis
clindamycin, 192
Clostridium difficile, 138
as drug reaction, 244
penicillins, 188
spore-forming bacteria, 131
vancomycin for, 190
watery diarrhea, 179
Pseudomembranous pharyngitis
diptheria, 139
Pseudomonas spp.
catalase-positive organism, 128
ceftazidime, 189
cystic fibrosis, 60, 179
fluoroquinolones, 195
Gram-negative algorithm, 141 as nosocomial infection, 179
osteomyelitis, 180
penicillins for, 188
taxonomy, 125
tricuspid valve endocarditis, 305
type III secretion system, 129
Pseudomonas aeruginosa, 143
aerobic organism, 127
biofilm production, 129
encapsulated, 128
exotoxin production, 132
immunodeficient patients, 118
multidrug-resistant, 198
nosocomial infection, 185
pigment production, 129
pyocyanin of, 109
splenic dysfunction and, 98
UTIs, 181
Pseudo-Pelger-Huet anomaly, 419
Pseudopseudohypoparathyroidism, 339
Pseudotumor cerebri, 505
acetazolamide for, 590
vitamin A toxicity, 66
Pseudovirion, 162
Psittacosis, 149
Psoriasis, 464
arthritis and, 457
cyclosporine, 120
etanercept for, 472
hyperkeratosis/parakeratosis, 462 infliximab/adalimumab for, 472
methotrexate for, 427
skin lesions, 462
therapeutic antibodies, 122
Psoriatic arthritis, 457
HLA-B27 and, 100
leflunomide for, 471
psoriasis and, 464
Psychiatry, 538-560
emergencies in, 552
pathology, 540-554
pharmacology, 556-560
psychology, 538-539
Psychoactive drug intoxication/ withdrawal, 554-555
Psychology, 538-539
Psychosis, 543
corticosteroids, 120
diabetic ketoacidosis, 345
drug therapy for, 557
LSD and, 555
PCP and, 555
postpartum, 546
Psychotherapy
anorexia/bulimia nervosa, 550
anorexia nervosa, 681
conduct disorder, 541
oppositional defiant disorder, 541
Psychotic disorder (brief), 544
Psychotic disorders
readmissions with, 266
PTEN gene, 222
Pterygoid muscles, 491, 602
PTH. See Parathyroid hormone (PTH)
PTH-independent hypercalcemia, 339
PTH-related peptide (PTHrP), 328
PTHrP (parathyroid hormone-related protein), 221
Ptosis (eyelids)
CN III damage, 525
Horner syndrome, 524, 674
myasthenia gravis, 459
Pancoast tumor, 666
saccular aneurysm, 500
Puberty
GH secretion in, 325
GnRH and, 323
Kallmann syndrome and, 621
precocious, 57, 326
Tanner stages, 619
Public health sciences, 252-269
Pudendal nerve, 360, 443
Pulmonary anthrax, 137
Pulmonary arterial hypertension (PAH), 661
high altitude and, 652
Pulmonary artery, 601
fetal circulation, 276
Pulmonary artery stenosis, 296
Pulmonary capillary wedge pressure (PCWP), 292, 650
Pulmonary circulation, 650
Pulmonary edema
compliance in, 647
consolidation in, 662
heart failure, 304
loop diuretics for, 590
LV failure, 302
mannitol, 590
nitrates for, 311
opioids for, 534
preeclampsia and, 625
renal failure, 586
transfusion-related injury, 114
Pulmonary embolism, 654
chronic thromboembolism, 661
deep venous thrombosis and, 653
direct factor Xa inhibitors for, 425
heparin for, 423
respiratory alkalosis, 576
tamoxifen/raloxifene and, 431
thrombolytics for, 425
ventilation/perfusion with, 651
Pulmonary fibrosis
amiodarone and, 316
bleomycin, 428
busulfan, 428
compliance in, 647
diffusion in, 650
as drug reaction, 246
methotrexate, 427
restrictive lung disease, 657
Pulmonary hypertension, 661
cor pulmonale, 650
drug therapy, 667
PDE-5 inhibitors for, 639
Schistosoma, 160
sleep apnea, 661
Pulmonary hypoplasia, 642
Potter sequence, 562
Pulmonary Langerhans cell histiocytosis, 657
Pulmonary surfactant
club cells, 643
compliance and, 647
NRDS, 643
Pulmonary trunk, 274
Pulmonary vascular resistance (PVR), 650, 688
chest wall and, 647
Pulmonic regurgitation, 284
Pulmonic stenosis
carcinoid syndrome, 346
systolic ejection murmur in, 284
wide splitting in, 283
Pulmonic valves, 274
"Pulseless disease," 308
Pulse pressure, 278
Pulsus paradoxus, 307
asthma, 656
croup, 170
Punched-out lytic bone lesions (X-ray), 419
Punched-out ulcers, 371
Punishment, 538
Pupil
anatomy, 518
CN III palsy, 525
control, 490, 523
Pure red cell aplasia, 221
Purines, 194
de novo synthesis, 36, 73
in Lesch-Nyhan syndrome, 37
mutations in DNA, 39
salvage deficiencies, 37
Purkinje cells
cerebellum, 483
of cerebellum, 210
in paraneoplastic cerebellar degeneration, 221
Purkinje fibers, 286, 288
Purpura
aplastic anemia, 409
cirrhosis, 383

Pustular psoriasis, 462
Pustules, 462
acne, 464
pseudofolliculitis barbae, 464
rosacea, 464
with septic arthritis, 456
Putamen, 484
neurodegenerative disorders, 504
Pyelonephritis, 585
kidney stones, 582
labs/findings, 678
urinary tract infections, 181
WBC casts in, 578
Pygmalion effect, 256
Pyloric sphincter, 367
Pyloric stenosis, 353
Pyloromyotomy, 353
Pyoderma gangrenosum
inflammatory bowel disease, 376
Pyogenic granulomas, 465
Pyramidal cells, 210
Pyramidal decussation, 488
Pyramidalis muscle, 363
Pyrantel pamoate, 200
Pyrazinamide, 197
gout, 245
hepatitis, 244
Mycobacterium tuberculosis, 196
Pyridostigmine, 236
myasthenia gravis treatment, 459
Pyridoxal phosphate, 67
Pyrimethamine, 36, 200
effect on purine synthesis, 36
Toxoplasma gondii, 680
Pyrimidine dimers, 40
Pyrimidines
de novo synthesis of, 36
mutations in DNA, 39
Pyrimidine synthesis, 471
Pyruvate carboxylase, 77, 78
metabolic pathways, 74
vitamin $\mathrm{B}_{7}$ and, 68
Pyruvate dehydrogenase
complex, 76
deficiency, 77
metabolic pathways, 74
vitamin $B_{1}$ and, 66
Pyruvate kinase, 74
Pyruvate kinase deficiency, 410 in anemia taxonomy, 406
echinocytes in, 404
Pyruvate metabolism, 77
Pyuria, 587
Q
Q fever
rickettsial disease, 150
transmission, 149
QRS complex, 288
QT interval
atypical antipsychotic effect on, 557 Class IA antiarrhythmic effects, 315 congenital long QT syndrome, 289 drug-induced long, 289
ECG, 288
ondansetron effect on, 394
in torsades de pointes, 289
Quadrantic hemianopia
lower, 526
Quadriceps, 442
Quad screening, 63
Quality measurements, 267
Quantifying risk, 254
Quaternary disease prevention, 265

Quetiapine, 557
Quiescent cells, 46
Quinidine, 157, 200, 315
cinchonism, 246
Quinine, 200
Quinolone, 143, 187
Quinupristin, 187, 198

## R

Rabies, 171
active and passive immunity, 110
rhabdovirus, 167
viral receptors, 166
Rachischisis, 475
Rachitic rosary, 450
Radial head subluxation, 444
Radial nerve, 437
neurovascular pairing, 445
Radiation exposure
acute myelogenous leukemia and, 420
aplastic anemia, 409
apoptosis caused by, 208
as carcinogen, 223
free radical injury caused by, 216
hypopituitarism, 343
myelodysplastic syndromes, 419
Radiation therapy
acute pericarditis and, 306
angiosarcomas, 465
lymphopenia, 412
for Nelson syndrome, 340
neutropenia, 412
osteosarcomas, 452
pancreatic cancer, 391
papillary thyroid carcinoma risk, 338
readmissions with, 266
Radiculopathy
lumbosacral, 445
Radon
as carcinogen, 223
lung cancer, 665
Ragged red muscle fibers, 59
Rales, 304
Raloxifene, 431, 637
Raltegravir, 201, 203
Ramipril, 592
Ranibizumab
macular degeneration, 520
Ranitidine, 392
RANK-L, 328
Ranolazine, 312
Raphe nucleus, 479
Rapid-eye movement (REM) sleep, 481
changes in depression, 545
Rapid filling (cardiac cycle), 282
Rapidly progressive

## glomerulonephritis

(RPGN), 581
Rapid squatting on auscultation, 284
Rasagiline, 532
Rasburicase, 431, 582
RAS gene, 338
Rashes
"blueberry muffin," 169
butterfly, 673
carbapenems, 190
childhood, 183
cytomegalovirus, 182
desquamating, 308, 672
fluoroquinolones, 195
heliotrope, 221

Rashes (continued)
macrolides, 193
measles, 170
nipple/areola, 674
palms/soles, 150,671
penicillinase-sensitive penicillins, 188
rickettsial diseases, 150
rubella, 169, 182
syphilis, 147,184
unvaccinated children, 186
Rathke pouch, 321, 512
Rathke pouch tumor, 595
Rationalization, 539
Raynaud phenomenon, 459
Buerger disease, 308
calcium channel blockers for, 311
presentation, 673
SLE, 673
"Razor bumps," 464
Rb, 46
RBC casts (urine), 578, 581
$R b$ gene, 222
Reabsorption/secretion rate calculation, 568
Reaction formation, 539
Reactive arthritis, 457
Campylobacter jejuni, 145
chlamydia, 148, 184
HLA-B27 and, 100
presentation, 671
Reactive attachment disorder, 540
Readmission recurrences, 266
Reassortment (viral), 162, 169
Recall bias in studies, 256
Receptor binding, 230
Receptors (viral), 166
Receptor tyrosine kinase hormone messenger, 330
as oncogene product, 222
Recessive inheritance, 59
Recombinant cytokines, 121
Recombination (viral), 162
Recruiting study participants, 256
Rectal veins, 359
Rectosigmoid junction blood supply to, 357

## Rectum

anastomosis at, 359
blood supply and innervation, 357
familial adenomatous polyposis, 381
Hirschsprung disease, 378
ischemia susceptibility, 210
portosystemic anastomosis, 359
Rectus abdominis muscle, 363
Recurrent branch (median nerve), 437
Recurrent laryngeal nerve, 601, 666 compression of, 277, 665
Pancoast tumor, 666
Red cell casts, 308
Red-green color blindness, 197
Red (hemorrhaghic) infarct, 210
Red hepatization, 664
Red man syndrome, 190
Red muscle fibers, 447
Redox reactions
free radical injury and, 216
vitamin $B_{2}$ and, 67
Red pulp (spleen), 98
Red rashes of childhood, 183
Reduced filling (cardiac cycel), 282
Reduviid bug (disease vector), 158
Reed-Sternberg cells, 417

Referred pain
cholecystitis, 390
from diaphragm, 645
from pericarditis, 277
Reflex bradycardia, 572
Reflexes
clinical, 494
cranial nerve, 490
motor neuron sign, 513
primitive, 494
Reflex tachycardia, 240
Refractive errors (vision), 519
Refractory hypertension, 639
Refsum disease, 47
Refusing care, 263
minors, 263
Regadenoson, 299
Regan-Lowe medium, 127
Regional specification (brain), 474
Registering for exam, 5-6
Regression, 539
Regular insulin. See also Insulin
Regulation of gene expression, 41
Regulatory T cells, 102
cell surface proteins, 110
Regurgitation
in GERD, 371
Reichert cartilage, 602
Reid index, 656
Reinforcement, 538
Reinke crystals, 634, 678
Relapse stage, 552
Relapsing fever
animal transmission, 149
lice, 161
Relationship with patients, 262
Relative risk reduction (RRR), 254, 687
Relative risk (RR), 252, 254, 258, 687
Reliability, 255
Religious beliefs, 263
Remodeling (tissue), 217
REM sleep, 481
changes in depression, 545
Renal agenesis
bilateral, 562
unilateral, 563
Renal arteries, 357, 564
horseshoe kidney, 563
stenosis, 592
Renal blood flow (RBF), 564, 688 acute injury and, 587
endocrine function and, 573
NSAID effects on, 573
renal plasma flow and, 566
Renal cell carcinomas, 583
associations, 686
bevacizumab for, 430
carcinogens for, 223
chromosome association, 64
horseshoe kidney and, 563
hypercalcemia and, 221
IFN- $\alpha$ for, 204
immunohistochemical stain for, 225
metastases of, 226
recombinant cytokines, 121
therapeutic antibodies, 122
von Hippel-Lindau disease, 509, 674
Renal clearance, 566, 688
Renal cortex, 564
atrophy of, 583
Renal cyst disorders, 588

Renal disease
ESR in, 212
maintenance and loading dose in, 229
Wilson disease, 389
Renal disorders/failure, 586
consequences of, 586
diffuse cortical necrosis, 587
features of, 575
in utero, 562
markers for, 575
NSAIDs, 573
renal cyst disorders, 588
waxy casts in, 578
Renal failure
diabetes mellitus, 344
enterotoxigenic Escherichia coli (EHEC), 145
Fabry disease, 88
guanosine analogs, 201
labs/findings, 678
myoclonus in, 503
preeclampsia and, 625
prolactin elimination in, 324
tetracyclline use in, 192
Renal/genitourinary drug reactions,

## 246

Renal hypoxia, 649
Renal ischemia, 471
Renal medulla, 564
hydronephrosis, 583
Renal oncocytoma, 583
Renal osteodystrophy, 340, 586
Renal papillary necrosis, 587
pyelonephritis and, 585
sickle cell anemia, 410
Renal pelvis, 564
Renal plasma flow, 566
glomerular dynamics and, 567
Renal sympathetic discharge, 572
Renal toxicity
ganciclovir, 202
Renal tubular acidosis
Fanconi syndrome, 673
metabolic acidosis, 576
Renal tubular defects, 570
Renal tubules
anatomy of, 564
in nephron physiology, 569
PTH and, 328
Renal vascular smooth muscle, 234
Renal vein, 564
Renin, 572
ACE inhibitor effect on, 592
aliskiren effect on, 592
in hyperaldosteronism, 332
renal disorders and, 575
sympathetic receptors and, 234
Renin-angiotensin, 320
Renin-angiotensin-aldosterone system, 572
Renin secreting tumors, 575
Renshaw cells, 138
Reoviruses
characteristics, 167
genome, 162
naked viruses, 163
segmented, 168
Repaglinide, 348
Reperfusion injury, 210, 216, 300
Reperfusion therapy, 302
Replication fork, 38
Reportable diseases
confidentiality exceptions, 264
Repression, 539

Repressor proteins, 39
Reproductive/endocrine drug reactions, 244
Reproductive hormones, 636
Reproductive system, 594-635
anatomy, 606-609
embryology, 594-605
pathology, 620-634
pharmacology, 636-639
physiology, 611-618
Reptile (disease vectors), 149
Rescheduling exam, 6
Reserpine
as noradrenergic drug, 235
Parkinson-like syndrome, 246
Residual volume (RV), 646 in elderly, 647
Resistance equation, 688
Resistance in vessels, 280
Respiratory acidosis, 576
Respiratory alkalosis, 576
causes of, 576
in delirium tremens, 553
high altitude, 652
pulmonary embolism, 654
Respiratory burst, 109
free radical injury and, 216
Respiratory depression
barbiturates, 529, 554
benzodiazepines, 528, 554
epilepsy drugs, 528
inhaled anesthetics, 533
opioids, 534
tricyclic antidepressants, 559
Respiratory distress syndrome, 616
Respiratory drug reactions, 246
Respiratory rate (RR), 646
Respiratory syncytial virus (RSV)
paramyxovirus, 167, 170
pneumonia, 179, 664
prophylaxis, 122
Respiratory system, 642-665
anatomy, 644-645
embryology, 642-643
pathology, 653-663
pharmacology, 667-668
physiology, 646-651
Respiratory system change in elderly,

## 647

Respiratory tract infections
C3 deficiency, 107
Respiratory tree, 644
Respiratory zone, 644
Resting tremor, 503, 674
Restrictive cardiomyopath
hemochromatosis, 389
Restrictive cardiomyopathy, 303
S4 heart sound and, 683
Restrictive lung diseases, 657
flow volume loops, 655
sarcoidosis, 658
Reteplase (rPA), 401, 425
Rete testis, 608
RET gene, 222
carcinoma risks with, 338
Hirschsprung disease, 378
pheochromocytomas, 334
Reticular activating system, 495
Reticular fibrous framework (spleen), 98
Reticulate bodies, 148
Reticulin, 50
Reticulocytes, 396
in aplastic anemia, 409
intravascular hemolysis, 409

Retina
chronic hyperglycemia, 521
embryologic derivation of, 595
normal eye, 518
von Hippel-Lindau disease, 509
Retinal artery, 518
Retinal hemorrhage
child abuse sign, 540
hypertensive emergency, 296
Roth spots, 672
Retinal pathology
degeneration, 520
detachment, 521
hemorrhage, 521
retinitis, 520, 522
vascular occlusions, 521
visual field defects, 526
Retinal vein, 518
Retinal vein occlusion, 521
Retinitis
cidofovir, 202
foscarnet, 202
HIV-positive adults, 177
Retinitis pigmentosa, 522
Retinoblastoma
chromosome association, 64
heterozygosity loss, 56
tumor suppressor genes and, 222
Retinoblastomas
osteosarcomas, 452
Retinoids, 464
Retinopathy
Alport syndrome, 581
chloroquine, 200
diabetes mellitus, 344
hypertension, 296
of prematurity, 216, 643
sorbitol, 81
Retrognathia, 562
Retrograde amnesia, 542
Retroperitoneal fibrosis, 583
Retroperitoneal structures, $\mathbf{3 5 4}$
Retrospective studies, 256
Retroviruses
characteristics, 167
genomes, 162
Rett syndrome, 61
X-linked dominant inheritance, 59
Reverse transcriptase, 175
Reverse transcriptase inhibitors, 201
Reye syndrome, 384
Reynolds pentad, 390
Rhabdomyolysis
daptomycin, 195
hyperkalemia with, 574
Rhabdomyomas, 309
nomenclature for, 220
tuberous sclerosis, 509
Rhabdomyosarcomas dactinomycin for, 428
nomenclature for, 220
Rhabdomyosarcoma variant, 626
Rhabdoviruses
characteristics, 167
negative-stranded, 168
Rhagades, 147
Rh blood classification, 400
newborn hemolysis, 400
Rheumatic fever, 306
chorea with, 503
heart murmur with, 285
Streptococcus pyogenes, 136
streptolysin O, 133
type II hypersensitivity, 112

Rheumatoid arthritis, 454
anemia of chronic disease and, 409
autoantibody, 115
azathioprine for, 427
biliary cirrhosis, 389
carpal tunnel syndrome and, 435
celecoxib for, 471
etanercept for, 472
HLA-DR4 and, 100
immunosuppressants, 120
infliximab/adalimumab for, 472
labs/findings, 677
leflunomide for, 471
methotrexate for, 427
rituximab for, 122, 430
uveitis, 520
Rheumatoid factor, 115
Rhinitis
phenylephrine for, 238
type I hypersensitivity, 112
Rhinophyma, 464
Rhinosinusitis, 653
Rhinovirus
picornavirus, 167, 168
receptors for, 166
Rhizopus spp., 153
presentation, 671
Rhombencephalon, 474
Rhomboid crystals, 677
Ribavirin
contraindicated in pregnancy, 204
hepatitis, 680
hepatitis C, 204
purine synthesis, 36
Rib notching, 675
Ribose, 79
Ribosomes, 46
Rice-water diarrhea
cholera toxin, 132
organisms causing, 179
Vibrio cholerae, 146
Richter transformation, 420
Rickets, 450
Fanconi syndrome, 673
hypophosphatemic, 575, 577
inheritance, 59
lab values in, 451
vitamin D deficiency, 70
Rickettsia spp.
intracellular organism, 128
taxonomy, 125
tetracyclines, 192
Rickettsial diseases, 150
Rickettsia prowazekii, 150
transmission of, 149, 161
Rickettsia rickettsii, 150
animal transmission, 149
chloramphenicol, 192
Rickettsia typhi, 149, 150
Riedel thyroiditis, 336
Rifabutin, 196
Rifamixin, 82
Rifampin, 196
acute interstitial nephritis from, 587
cytochrome P-450 and, 247
Hansen disease, 141
hepatitis, 244
mechanism (diagram), 187
Mycobacterium leprae, 196
Mycobacterium tuberculosis, 196
as prophylaxis, 198
protease inhibitors and, 203
RNA polymerase inhibition, 41
Rifamycins, 196

Rifaximin, 385
Rift Valley fever, 167
Right anterior cardinal vein, 274
Right bundle branch, 288
Right bundle branch block, 283
Right common cardinal vein, 274
Right coronary artery (RCA)
coronary circulation, 277
infarct localization (ECG), 301
occlusions of, 300
Right-dominant coronary circulation, 277
Right heart failure
carcinoid syndrome, 552
Right horn of sinus venosus, 274
Right lower quadrant (RLQ) pain, 378
Right marginal artery, 277
Right-to-left shunts, 294
Right upper quadrant (RUQ) pain, 390
Right ventricular hypertrophy (RVH)
high altitude, 652
pulmonary hypertension, 661
Rigidity in Parkinson disease, 674
Riluzole, 532
Rimantadine, 201
Ringed sideroblasts, 405
Ringworm
griseofulvin, 200
tinea corporis, 152
Risedronate, 471
Risk assessment, 254
Risk quantification, 254
Risperidone, 544, 557
Ristocetin, 403
Risus sardonicus
Clostridium tetani, 138
Ritonavir
HIV therapy, 203
mechanism, 201
Rituximab, 122, 430
Rivaroxaban, 425
as anticoagulant, 401
deep venous thrombosis, 653
Rivastigmine, 236
Alzheimer disease, 532
River blindness, 159
RNA
interference, 56
processing (eukaryotes), 41
RNA polymerases, 41
RNA viruses, 167 genome, 162
Robertsonian translocation, 64
Rocker-bottom feet, 63
Rocky Mountain spotted fever, 150
animal transmission, 149
chloramphenicol, 192
presentation, 671
Rocuronium, 534
Rod bacteria, 125
Romaña sign, 158
Romano-Ward syndrome, 289
Romberg sign, 147, 514
Romiplostim (TPO analog), 121
Root cause analysis, 268
Rooting reflex, 494
Rosacea, 464
Rose gardener's disease, 154
Rosenthal fibers, 512
Roseola
HHV-6/HHV-7, 165
rash, 183

Rosiglitazone, 349
Rosuvastatin, 313
Rotator cuff muscles, 434
Rotavirus, 168
diarrhea, 167
Rotenone, 78
Roth spots, 305, 672
Rotor syndrome, 387, 388
Rough endoplasmic reticulum, 46
Rouleaux formation, 419, 677
Round ligament of uterus, 607
Rovsing sign, 377, 672
"Row of tombstones," 467
Rubella, 169
cardiac defect association, 296
cataracts, 519
heart murmur with, 285
rash, 183
ToRCHeS infection, 182
unvaccinated children, 186
Ruffini corpuscles, 478
Russell sign, 550
"Rusty" sputum, 136
Ryanodine receptor, 446
RYR1 gene, 533

## $\mathbf{S}$

S-100, 225
Saber shins
congenital syphilis, 147
syphilis, 182
Sabin poliovirus vaccine, 167
Sabouraud agar, 127, 153
Saccular aneurysms, 500
Ehlers-Danlos syndrome, 51
renal cyst disorders and, 588
Saccular staged (development), 642
Sacrococcygeal teratomas, 633
Saddle embolus, 654
Saddle nose
congenital syphilis, 147
Laron syndrome, 341
syphilis, 182
Safety culture, 267
Salicylates
metabolic acidosis, 576
respiratory alkalosis, 576
toxicity treatment for, 243
as weak acids, 231
Salivary gland tumors, 370
Salivary stimulation, 236
Salmeterol, 238, 668
Salmonella spp.
animal transmission, 149
bloody diarrhea, 179
encapsulated bacteria, 128
food poisoning, 178
Gram-negative algorithm, 141
immunodeficient patients, 118
intracellular organism, 128
osteomyelitis, 180
penicillins for, 188
reactive arthritis, 457
Shigella spp. vs, 144
splenic dysfunction, 98
taxonomy, 125
TMP-SMX for, 194
type III secretion system, 129
Salmonella typhi, 144
Salpingitis
ectopic pregnancy and, 624
Sampling bias, 256
Sandflies (disease vectors), 158

$$
446
$$

s, 434
, 434
,


46

$\qquad$

$\square$

```
.
```






$\square$


$\qquad$
en
$\qquad$
$\square$
$\square$
$\qquad$
$\qquad$
$\qquad$
43

路



-

$\qquad$ - 129

$$
3
$$

$\square$
$\square$

Sandfly fever, 167
SA node, 287
Saponification, 209
Saprophyticus
urease-positive, 128
Saquinavir, 201, 203
Sarcoidosis, 658
acute interstitial nephritis, 587
cardiomyopathy with, 303
erythema nodosum, 468
as granulomatous disease, 214
hypervitaminosis D, 451
macrophages and, 397
presentation, 675
restrictive lung disease, 657
uveitis, 520
Sarcoma botryoides, 626
Sarcomas
metastases of, 226
methotrexate for, 427
nomenclature of, 220
Sarcoplasmic reticulum, 446
Sargramostim (GM-CSF), 121
SARS (sudden acute respiratory syndrome), 167
Sartorius muscle, 362
"Saturday night palsy," 437
"Saw-tooth" crypt pattern, 381
Saxagliptin, 349
SBLA cancer syndrome, 222
Scabies, 161, 200
Scalded skin syndrome
Staphylococcus aureus, 135
toxic shock syndrome toxin, 133
Scales (skin), 462
basal cell carcinoma, 469
pityriasis rosea, 468
psoriasis, 464
seborrheic dermatitis, 463
squamous cell carcinoma, 469
Scaphoid bone, 435
Scar formation, 216
Scarlet fever
presentation, 136, 671
rash with, 183
Streptococcus pyogenes, 136
S cells, 365
Schiller-Duval bodies, 629
Schilling test, 408
Schistocytes, 405
HELLP syndrome, 625
in intravascular hemolysis, 409
in microangiopathic anemia, 411
Schistosoma spp., 160, 161
Schistosoma haematobium
bladder cancer, 223
disease association, 160, 161
squamous cell carcinoma of bladder, 584
Schistosoma mansoni, 160
Schistosomiasis as granulomatous disease, 214 portal hypertension, 383 pulmonary arterial hypertension, 661
Schizoaffective disorder, 544
Schizoid personality disorder, 549
Schizophrenia, 544
antipsychotics for, 557
atypical antipsychotics for, 557
drug therapy for, 556
neurotransmitters for, 479
readmissions with, 266
Schizophreniform disorder, 544

Schizotypal personality disorder, 549
Schüffner stippling, 157
Schwann cells, 478
Guillain-Barré syndrome, 508
origin of, 474
Schwannomas, 478, 510, 686
Sciatic nerve, 442
SCID (severe combined immunodeficiency disease), 98, 117
adenosine deaminase deficiency as cause, 37
lymphopenia caused by, 412
Sclerae, 518
alkaptonuria, 84
osteogenesis imperfecta, 51

## Scleritis, 454

Sclerodactyly, 460
Scleroderma, 460
labs/findings, 673, 677
Scleroderma (diffuse)
autoantibody, 115
Sclerodermal esophageal dysmotility, 371
Sclerosing adenosis, 631
Sclerosing cholangitis, 387, 389
ulcerative colitis association, 376
Scombroid poisoning, 242
Scopolamine, 237
Scoring of USMLE Step 1 exam, 7, 8-9
Scorpion sting, 391
Scotoma, 526
Scrotal hematoma, 609
Scrotum, 608
female homolog of, 605
lymphatic drainage of, 606
masses in, 634
Scurvy
collagen synthesis and, 50
presentation, 670
vitamin C deficiency, 69
Seafood toxins, 242
Seborrheic dermatitis, 463
Seborrheic keratosis, 464

## Sebum, 464

Secobarbital, 529
Secondary adrenal insufficiency, 332
Secondary amyloidosis, 218
Secondary biliary cholangitis, 389
Secondary disease prevention, 265
Secondary glomerular disease, 578
Secondary hyperaldosteronism, 332
Secondary hyperparathyroidism, 339, 340
Secondary polycythemia, 421
Secondary spontaneous pneumothorax, 663
Secondary syphilis
labs/findings, 671
presentation, 671
2nd branchial arch, 602
2nd branchial pouch, 603
Second-degree AV block, 290
Second-wind phenomenon, 87
Secretin
regulatory substances, 365
secretory cell location, 367
somatostatinomas and, 346
Secretion rate calculation, $\mathbf{5 6 8}$
Secretion system, type III, 129
Secretory vesicles, 47
Segmental artery, 564
Segmented viruses, 168

Seizures, 501
aluminum hydroxide, 393
amphetamines, 554
Angelman syndrome, 58
anti-NMDA receptor encephalitis, 221
barbiturates for, 529
benzodiazepine withdrawal, 554
$\beta$-blockers, 241
bupropion, 560
clozapine use and, 557
cytomegalovirus, 182
as drug reaction, 246
with eclampsia, 625
electrolyte disturbances, 575
enflurane, 246
hyperosmolar hyperglycemia nonketotic syndrome as cause, 346
hyperosmolar hyperglycemic state, 350
imipenem/cilastatin, 246
medium-chain acyl-CoA dehydrogenase deficiency, 89
meropenem, 190
nitrosourea toxicity, 428
PCP, 555
phenylketonuria, 84
psychoactive drug intoxication/ withdrawal, 554-555
Taenia solium, 161
tramadol and, 535
tuberous sclerosis, 509
venous sinus thrombosis, 487
vitamin $\mathrm{B}_{6}$ deficiency, 67
Zellweger syndrome, 47
Selection bias, 256
Selective estrogen receptor modulators (SERMs), 431, 449, 637
Selective IgA deficiency, 116
Selective media, 126
Selective serotonin reuptake inhibitors (SSRIs)
bulimia nervosa, 681
diarrhea, 244
naming convention for, 248
SIADH caused by, 244
Selectivity
$\beta$-blockers, 241
Selegiline, 531, 532, 559
Selenium sulfide, 152
Self-fulfilling prophecies, 256
Self-image of patient, 262
Semimembranosus, 441, 442, 443
Seminal vesicles, 604, 608
Seminiferous tubules, 608, 610, 618
Seminomas, 634, 686
Semitendinosus, 442, 443
Semustine, 428
Sensitivity (diagnostic tests), 253
Sensitivity equation, 687
Sensorineural hearing loss, 517
Sensory cortex, 498
topographic representation, 485
Sensory innervation
lower extremity, $\mathbf{4 4 2}$
receptors for, 478
tongue, 477
upper extremity nerve injury, 437
Sensory loss
conversion disorder and, 550
stroke effects, 498

Sensory modalities/pathways
thalamus in, 482
Sensory receptors, 478
Separation anxiety disorder, 541
Separation anxiety (infants), 616
Sepsis
acute tubular necrosis, 587
ARDS, 660
immunodeficient patients, 118
lymphopenia with, 412
neutropenia with, 412
shock with, 305
Streptococcus agalactiae as cause, 137
Septate uterus, 605
Septation of heart chambers, 274
Septic arthritis, 456
gonococci, 142
Staphylococcus aureus, 135
Septicemia
Listeria monocytogenes, 139
readmissions with, 266
Waterhouse-Friderichsen syndrome, 332
Septic shock
diffuse cortical necrosis (renal), 587
macrophages and, 397
norepinephrine for, 238
Septum primum, 274
Septum secundum, 274
Sequence (morphogenesis error), 595
Serine, 222
Serologic markers
hepatitis, 174
Seronegative spondyloarthritis, 457
Serosa, 356
Serotonin
in carcinoid syndrome, 346
changes with disease, 479
derivatives of, 83
vitamin $\mathrm{B}_{6}$ and, 67
Serotonin-norepinephrine reuptake inhibitors (SNRIs)
fibromyalgia, 458
Serotonin syndrome, 394, 530, 535, 552
dextromethorphan, 667
MAO inhibitors, 559
MDMA, 555
oxazolidinones, 193
Serous cystadenocarcinoma, 628, 629
Serous cystadenoma, 628
Serous papillary cystadenocarcinomas of ovary, 224
Serrated colon polyps, 381
Serratia spp.
catalase-positive organism, 128
Gram-negative algorithm, 141
immunodeficient patients, 118
lactose fermentation by, 144
taxonomy, 125
Serratia marcescens
cephalosporins, 189
pigment production, 129
UTIs, 181
Serratus anterior muscle, 438
Sertoli cells
secretions of, 604, 610
sexual determination, 604
Sertoli cell tumor
tumors of, 634
Sertraline, 559
Serum lactate, 344
Serum markers (liver pathology), 384

Serum osmolarity
antidiuretic hormone regulation of, 325
hyperosmolar hyperglycemia nonketotic syndrome, 346
Serum tumor markers, 224
Sevelamer, $\mathbf{3 5 0}$
$17 \alpha$-hydroxylase, 326
Sevoflurane, 533
Sex chromosome disorders, 620
Sex hormone-binding globulin (SHBG), 330
Sex hormone disorders, 621
Sex hormones
adrenal cortex secretion, 320
Sex pilus (bacterial genetics), 130
Sex steroid replacement, 343
Sexual abuse, 542
Sexual abuse (child), 540
Sexual development stages, 619
Sexual differentiation, 604, 617
Sexual dysfunction, 551
$\beta$-blockers and, 241, 316
cimetidine, 392
Lambert-Eaton myasthenic syndrome, 459
PDE-5 inhibitors for, 639
Peyronie disease and, 633
tuberoinfundibular pathway, 482
Sexually transmitted infections (STIs), 184
associations, 682
parental consent with, 260
sexual dysfunction, 551
Sézary syndrome, 418
Shagreen patches, 509
"Shawl and face" rash, 459
SHBG. See Sex hormone-binding globulin (SHBG)
Sheehan syndrome, 343, 623
Sheep (disease vectors), 160
Shield chest, 620
Shiga-like toxin, 132, 145
Shiga toxin, 130, 132, 144
Shigella spp.
bloody diarrhea, 179
exotoxin production, 132
penicillinase-sensitive penicillins for, 188
reactive arthritis, 457
vs Salmonella spp., 144
taxonomy, 125
TMP-SMX, 194
type III secretion system, 129
Shigella boydii, 144
Shigella dysenteriae, 144
Shigella flexneri, 144
Shigella sonnei, 144
Shingles, 164
Shin splints, 444
Shock, 305
acute tubular necrosis, 587
ARDS, 660
dopamine for, 238
Ebola, 171
endotoxins, 131
norepinephrine for, 238
placental abruption, 623
Waterhouse-Friderichsen syndrome and, 332
Short gastric arteries, 358
Shortness of breath, 547
SIADH, 342
ADH antagonists for, 350
associations, 687
demeclocycline for, 350
as drug reaction, 244
markers in, 575
small cell lung cancer, 665
SIADH (hyponatremia)
paraneoplastic syndrome, 221
Sialadenitis, 370
Sialolithiasis, 370
Sialyl-Lewisx, 213
Sibling studies, 252
Sickle cell anemia, 410
in anemia taxonomy, 406
ESR in, 212
sickle cells in, 405
Sickle cell disease
autosplenectomy, 685
missense mutation, 39
osteonecrosis and, 450
postsplenectomy state in, 98
priapism, 633
renal papillary necrosis, 587
Sickle cells, 405
Sideroblastic anemia, 405, 407
in anemia taxonomy, 406
labs/findings, 676
lead poisoning, 407
vitamin $\mathrm{B}_{6}$ deficiency, 67
Sideroblasts, 405
Sigmoid colon, 377, 379, 684
Sigmoid sinus, 487
Signaling pathways
endocrine hormones, $\mathbf{3 3 0}$
steroid hormones, 330
Signal recognition particle (SRP), 47
Signet cell adenocarcinoma, 629
Signet ring cells, 373
Sign of Leser-Trélat, 221
Sildenafi, 633, 639
Silencer (gene expression), 41
Silent mutations, 39
Silicosis, 657, 659
Silver stain, 126, 143
Simeprevir, 204
hepatitis, 680
Simple pneumothorax, 662
Simple renal cysts, 588
Simvastatin, 313
Single nucleotide polymorphisms (SNPs), 54
Single-stranded binding proteins, 38
Sinusitis
brain abscesses, 180
C3 deficiency and, 107
Kartagener syndrome, 49, 670
Wegener granulomatosis, 308
Sinusoids (spleen), 98
Sinus venosus, 274
Sirenomelia, 596
Sirolimus
immunosuppressant, 120
targets of, 121
Sister Mary Joseph nodules, 373
Sitagliptin, 349
Situs inversus, 49, 670
6 -mercaptopurine, 427
allopurinol and, 472
azathioprine, 120
in cell cycle, 426
purine synthesis, 36
targets of, 426
toxicities of, 431
for ulcerative colitis, 376
ulcerative colitis, 680

6-thioguanine, 426
Sjögren syndrome, 456
acute interstitial nephritis with, 587
autoantibody, 115
biliary cirrhosis and, 389
pilocarpine for, 236
rheumatoid arthritis, 454
Skeletal muscles
ACh receptors in, 233
blood flow regulation in, 292
glycogen metabolism in, 86
Skewed distributions, 257
Skin
blood flow regulation in, 292
collagen in, 50
pigmentation, 56
wrinkles of aging, 52
Skin cancer, 469
albinism and, 463
Lynch syndrome and, 382
sunburn and, 468
Skin (dermatology), 461-471
layers of, 461
macroscopic terms, 462
microscopic terms, 462
morphology, 462
vascular tumors, 465
Skin drug reactions, 245
Skin flora, 178
Skin infections, 466
Skin lesions
acrodermatitis enteropathica, 71
blistering disorders, 467
bulla, 462
café-au-lait spots, 57, 409, 509
cancer, 226
comedones, 464
common disorders, 464
crust, 462
dermatitis herpetiformis, 375
erythema multiforme, 151
Gottron papules, 221
hemangiomas, 465
hyperlipidemia signs, 297
hyperpigmentation, 389
inflammatory bowel disease, 376
Kaposi sarcoma, 165
kwashiorkor, 71
lupus pernio, 658
macule, 462
papule, 462
patch, 462
petechiae, 396
pigmentation disorders, 463
plaque, 462
pustule, 462
scale, 462
scaling, 152
scaly, 66
seborrheic keratoses, 221
splinter hemorrhages, 305
striae, 331
T-cell lymphoma, 418
telangiectasias, 310, 460
ulcers, 158
vasculitides, 308
verrucous, 151
vesicle, 462
wheal, 462
Skinner's operant conditioning
quadrant, 538
Skip lesions, 376, 684
Skull thickening, 450
Slapped cheek rash, 183

Sleep
enuresis during, 350
ghrelin/leptin production, 325
GHRH production, 325
Sleep apnea, 661
pulse pressure in, 278
pulsus paradoxus in, 307
Sleep disturbances
apnea, 661
hypnagogic hallucinations, 543
hypnopompic, 543
paroxysmal nocturnal dyspnea, 304
sleep terror disorder, 551
with menopause, 617
Sleep paralysis, 551
Sleep physiology, 481
changes with depression, 545
Sleep problems
benzodiazepines and, 554
$\beta$-blockers, 241
delirium and, 542
generalized anxiety disorder, 547
in geriatric patients, 264
major depressive disorder, 545
stimulant withdrawal, 554
varenicline, 560
Sleep spindles/K complexes, 481
Sleep terror disorder, 551
Sleepwalking, 529
SLE (systemic lupus erythematosus)
acute interstitial nephritis, 587
autoantibodies, 115
DPGN, 581
HLA subtypes, 100
kidney disease with, $578,581,587$
Sliding hiatal hernia, 364
Slipped capital femoral epiphysis, 444, 450
osteonecrosis, 450
Slow twitch muscle fibers, 447
Slow waves (GI), 356
Small bowel disease, 368
Small cell carcinoma of lung
carcinogens for, 223
immunohistochemical stains for, 225
paraneoplastic syndromes, 221
Small cell lung cancer, 687
Lambert-Eaton myasthenic syndrome, 459
topotecan for, 429
Small cell (oat cell), lung cancer, 665
Small intestine, 365
Small lymphocytic lymphoma (SLL), 420
Smallpox, 164
Smoke inhalation, 658
Smoking
abdominal aortic aneurysms and, 298
atherosclerosis and, 298
Buerger disease and, 308, 680
bupropion for cessation, 560
carcinogenecity of, 223
cataracts, 519
cervical cancer and, 627
colorectal cancer and, 382
emphysema, 656, 675
esophageal cancer and, 372
head and neck cancer, 653
hormonal contraception, 638
Legionnaires' disease, 143
lung cancer, 665
pancreatic cancer and, 391

Smoking (continued)
placental abruption and, 623
renal cell carcinoma, 583
renal tumors, 686
saccular aneurysms, 500
squamous cell carcinoma of bladder, 584
stomach cancer and, 373
teratogenic effects, 596
transitional cell carcinoma, 584
varenicline for cessation, 560
Smooth endoplasmic reticulum, 46
Smooth muscle
BMPR2 gene, 661
contraction of, 447
glomus tumors, 465
nervous system and, 233
respiratory tree, 644
tumor nomenclature in, 220
ureteral wall, 564
Smooth muscle (vascular)
in arteriolosclerosis, 297
atherosclerosis and, 298
calcium channel blocker action, 311
Smudge cells, 420
SNc (substantia nigra pars compacta), 479
SNRIs (serotonin-norepinephrine reuptake inhibitors ), 559
clinical use, 556
generalized anxiety disorder, 547
major depressive disorder, 545
mechanism of, 558
Snuffles, 147
Soap bubble on X-ray, 677
Social anxiety disorder, 547
drug therapy for, 556
SSRIs for, 559
venlafaxine for, 559
Social engagement
infant deprivation effects, 540
Sodium channel blockers, 315
Sodium channels
cystic fibrosis, 60
epilepsy drug effects, 528
glucose and, 322
local anesthetic effects, 533
pacemaker action potential and, 287 permethrin, 200
Sodium-glucose cotransporter 2

$$
\text { (SGLT2), } 568
$$

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, 349
Sodium oxybate, 551
Sodium-potassium channels, 233
Sodium-potassium pump, 49
Sodium stibogluconate, 158, 200
Sofosbuvir, 204, 680
Solifenacin, 237
Solitary functioning kidney, 563
Solitary nucleus, 477
Solitary nucleus of medulla, 291
Somatic hypermutation, 101
Somatic mosiacism, 57
Somatic symptom disorder, $5 \mathbf{5 0}$
Somatic symptoms, 550
Somatosensory cortex (primary), 485
thalamic relays to, 482
Somatostatin
glucagon and, 323
hypothalamic/pituitary drugs, 350
hypothalamic-pituitary hormones, 323
production of, 321
regulatory substances, 365
secretory cell locations, 367
Somatostatinomas, 346
Somatotropin. See Growth hormone (GH)
Sonic hedgehog gene, 594
Sonic hedgehog signaling pathway, 475
Sorbitol metabolism, 81
Sotalol, 316
Southern blot, 53
Southwestern blot, 53
Space of Disse, 361
Spaghetti and meatballs appearance, 152
Spasticity, 529
Spastic paralysis Clostridium tetani, 138
Special senses
ophthalmology, 518-527
otology, 517-518
Specificity equation, 253, 687
Spermatic cord, 363
Spermatocele, 634
Spermatocytes, 610
Spermatogenesis, 610, 618
cryptorchidism and, 633
prolactin effect on, 324
Spermatogonia, 610
Spermiogenesis, 618
Sphenomandibular ligament, 602
Sphenoparietal sinus, 487
Spherical bacteria, 125
Spherocytes, 405
extravascular hemolysis, 409
Sphincter of Oddi, 362, 365
Sphingolipidoses, 88
Sphingomyelin, 88
Sphingomyelinase, 88
Spider angiomas
ataxia-telangiectasia, 117 cirrhosis, 383
Spikes on basement membrane, 678
Spina bifida
Dandy-Walker syndrome, 476
labs/findings, 673
neural tube defect, 475
Spina bifida cystica, 475
Spina bifida occulta, 475
Spinal cord
embryologic derivation, 595
lesions of, 514
lower extent of, 491
spinal nerves, 491
tracts of, 492, 493
Spinal nerves, 491
Spinal tap, bloody/yellow, 677
Spinothalamic tract, 493
thalamic relay for, 482
Spiral bacteria, 125
Spirochetes, 146
Spironolactone, 591, 627, 636, 639 for heart failure, 304 metabolic acidosis, 576
Splay (glucose clearance), 568
Spleen
bacterial clearance by, 128
blood supply and innervation of, 357 embryology, 353
in gastrointestinal anatomy, 355
ischemia susceptibility, 210
structure and function, 98
thrombocytes in, 396

Splenectomy, 410
Splenic artery, 358
Splenic flexure
blood supply to, 357
Splenomegaly
anemia, 157
cirrhosis, 383
hairy cell leukemia, 420
hereditary spherocytosis, 410
histoplasmosis, 151
malaria, 157
myelofibrosis, 421
rheumatoid arthritis, 454
visceral leishmaniases, 158
Splenorenal ligament, 355
Splice site mutations, 39
Splicing of pre-mRNA (diagram), 42
Splinter hemorrhages, 305, 672
Splitting, 539
in borderline personality disorder, 549
Splitting of heart sounds, 283
Spondyloarthritis (seronegative), 457
Spongiosis, 462
Spontaneous abortion
antiphospholipid syndrome, 458
fibroid tumors, 630
Listeria monocytogenes, 139
syphilis, 182
Vitamin A excess, 596
warfarin, 596
Spontaneous bacterial peritonitis, 384
Spontaneous pneumothorax, 663
Sporadic porphyria cutanea tarda, 173
Spore-forming bacteria, 131, 137, 138
Spores, 124
Sporothrix schenckii, 154
Sporotrichosis, 154
Sprain (ankle), 441
Sprue
fat-soluble vitamin deficiencies and, 65
vitamin $\mathrm{B}_{12}$ deficiency, 69
Squalene epoxidase, 198, 199
Squamous cell carcinoma
bladder, $\mathbf{5 8 4}$
cervix, 627
head and neck, 653
lungs, 665
penis, 633
Squamous cell carcinomas
actinic keratoses and, 685
anus and cervix, 177
bladder, 160
carcinogens in, 223
esophagus, $371,372,684$
hypercalcemia and, 221
pectinate line and, 360
of skin, 469
sunburn and, 468
Squamous epithelium, 644
SRY gene, 604
SSRIs (selective serotonin reuptake inhibitors), 559
adjustment disorder, 547
anxiety disorders, 546
atypical depression, 545
binge eating disorder, 550
clinical use, 556
generalized anxiety disorder, 547
major depressive disorder, 545
mechanism of, 558
obsessive-compulsive disorder, 547
panic disorder, 547
phobias, 547
postpartum depression, 546
PTSD, 548
sexual dysfunction from, 551
Stable angina, 299
Stable cells, 46
Stab wounds and winged scapula, 438
Staghorn calculi, 582
Stains (bacterial), 126
Standard deviation, 257
Standard error of the mean, 257
Stapedial artery, 601
Stapedius muscle, 602
Stapes (middle ear), 517
Stapes (ossicles), 602
Staphylococcal scalded skin syndrome, 466
Staphylococcus spp.
antibiotic tests for, 134
catalase-positive organism, 128
Gram-positive algorithm, 134
taxonomy, 125
Staphylococcus aureus, 135
bacterial endocarditis, 305
$\beta$-hemolytic nature of, 135
brain abscesses, 180
cephalosporins, 189
cystic fibrosis, 60, 179
dapsone, 195
exotoxin production, 133
food poisoning, 178
immunocompromised patients, 179
influenza, 169
IV drug use, 179
lung abscess, 666
nosocomial infection, 179, 185
osteomyelitis and, 180
penicillins for, 188
pigment production, 129
pneumonia, 664
postviral infection, 179
prophylaxis for, 198
septic arthritis, 456
skin infections, 466
Staphylococcus epidermidis, 135
Gram-positive testing, 134
in vivo biofilm production, 129
normal flora, 178
nosocomial infection, 185
osteomyelitis, 180
urease-positive, 128
vancomycin for, 190
Staphylococcus gallolyticus, 137
Staphylococcus pneumoniae, 653
Staphylococcus pyogenes
skin infections, 466
Staphylococcus saprophyticus, 136
Gram-positive testing, 134
kidney stones, 582
urinary tract infections, 585, 682
UTIs, 181
Starling curve, 280
Starling forces
in capillaries, 293
"Starry sky" appearance of B cells, 418
Start and stop codons, 40
"Startle myoclonus," 505
Starvation, 91
Statins
for acute coronary syndromes, 302
hepatitis, 244
myopathy, 245
Statistical distribution, 257
Statistical hypotheses, 257, 259

Statistical tests, 259
Status epilepticus, 501
treatment, 528, 529
Stavudine, 201, 203
Steady state, 229
Steatohepatitis, 383
Steatorrhea
chronic pancreatitis, 391
cystic fibrosis, 60
malabsorption syndromes and, 375
octreotide effect, 393
somatostatinomas, 346
Steatosis (hepatic), 384, 385
Steeple sign (X-ray), 170, 675
Stellate cells, 361
Stellate ganglion, 666
"Stellate" infiltration (ductal carcinoma), 632
Stem cells
in aplastic anemia, 409
bone marrow, 108
CD34 protein, 110
myelodysplastic syndromes and, 419
"Steppage gait," 442
Stercobilin, 369
Sterilization/disinfection methods, 204
Steroid hormone signaling pathways, 330
Steroids
acute pancreatitis, 391
berylliosis, 659
multiple sclerosis, 507
osteoporosis and, 449
polymyositis/dermatomyositis, 459
sarcoidosis, 658
Steroids (exogenous)
adrenal insufficiency, 332
CRH levels in, 323
Steroid synthesis, 72
Stevens-Johnson syndrome, 194, 467, 528
as drug reaction, 245
sulfa drug allergies, 247
Stimulants for ADHD, 541
Stimulant use, 554
St. John's wort, 247
St. Louis encephalitis, 167
Stomach
basal electric rhythm, 356
blood supply to, 358
cholecystokinin effect on, 365
in gastrointestinal anatomy, 355
histology of, 356
sclerosis of, 460
secretin effect on, 365
"Stone bone," 449
Straight sinus, 487
Stranger anxiety (infants), 616
Strategies
clinical vignette, 24
test-taking, 22-23
Strawberry cervix, 158, 181, 184
Strawberry hemangiomas, 465, 685
Strawberry tongue, 136
causes of, 671
Kawasaki, 308
scarlet fever, 136
Streak ovaries, 674
Streptococcus spp. antibiotic tests for, 134
Gram-positive algorithm, 134
septic arthritis, 456
taxonomy, 125

Streptococcus agalactiae (Group B strep), 137
$\beta$-hemolytic nature of, 135
encapsulated bacteria, 128
Gram-positive testing, 134
immunodeficient patients, 118
meningitis, 180
in neonates, 182
pneumonia, 179
prophylaxis for, 198
splenic dysfunction, 98
Streptococcus bovis, 137
colon cancer, 675
colorectal cancer and, 382
Streptococcus mutans
biofilm production, 129
normal flora, 178
Streptococcus pneumoniae, 136
$\alpha$-hemolysis, 135
bacterial meningitis, 682
chloramphenicol, 192
cystic fibrosis, 179
encapsulated bacteria, 128
Gram-positive testing, 134
IgA protease and, 129
immunodeficient patients, 118 influenza, 169
IV drug use and, 179
meningitis, 180
penicillin G/V for, 187
pneumonia, 179, 664
postviral infection, 179
splenic dysfunction, 98
transformation in, 130
Streptococcus pyogenes (Group A strep), 136
bacitracin response, 675
$\beta$-hemolysis, 135
clindamycin, 192
exotoxin production, 133
Gram-positive testing, 134
M protein and, 129
penicillin G/V for, 187
rash, 183
skin infections, 466
Streptococcus sanguinis, 129
Streptogramins, 187, 198
Streptokinase, 401, 425
Streptolysin O, 133
Streptomycin, 187, 191, 197
Streptozocin, 428
Stress incontinence, 584
Striated muscle, 220
Striatum, 484, 498
"String sign" (X-ray), 376
Stroke, 496
ADP receptor inhibitors for, 425
atrial fibrillation and, 290
central post-stroke pain syndrome, 499
cilostazol/dipyridamole for, 425
direct factor Xa inhibitors for, 425
eclampsia, 625
effects of, 498-499
homocystinuria, 84
hypertension, 296
hypertensive emergency and, 296
sickle cell anemia, 410
syphilis, 147
thrombolytics for, 425
warfarin for, 424
Stroke volume, 279, 688
Strongyloides spp., 158
Strongyloides stercoralis, 159

Structural quality measurement, 267
ST segment, 288
ST-segment elevation MI (STEMI)
diagnosis of, 299, 301
treatments for, 302
Studies
error types, 252
Studying for USMLE Step 1 exam
timeline for, 17-20
Study materials, 21-22
Study schedule, 17-21
Sturge-Weber syndrome, 509, 674
Stylohyoid ligament, 602
Stylohyoid muscle, 602
Styloid process, 602
Stylopharyngeus, 602
Subacute cerebellar degeneration, 665
Subacute combined degeneration, 69
Subacute endocarditis
enterococci, 137
Staphylococcus gallolyticus, 137
Subacute granulomatous thyroiditis, 336
Subacute sclerosing panencephalitis (SSPE), 170
Subacute thyroiditis, 214
Subarachnoid hemorrhage, 497, 502 labs/findings, 677
nimodipine for, 311
presentation, 674
Subarachnoid space, 491
Subclavian arteries, 487, 601
Subcutaneous emphysema, 371
Subcutaneous fat
erythema nodosum in, 468
skin layers, 461
Subcutis, 461
Subdural hematomas, 497
child abuse sign, 540
Subendocardium, 210
Sublimation, 539
Sublingual gland
stones in, 370
Submandibular gland
stones in, 370
Submucosa, 356
Submucosal glands, 356
Submucosal polyps, 381
Subscapularis muscle, 434
Substance abuse
adult T-cell lymphoma and, 418
Candida albicans, 153
delirium with, 542
dissociative identity disorder and, 542
loss of orientation with, 541
parental consent, 260
stages of change in overcoming, 552
suicide and, 546
torsades de pointes in, 289
tricuspid valve endocarditis and, 305
Substance addiction, 552
Substance P, 534
Substance P antagonist, 394
Substance use disorder, 552
Substantia nigra
Parkinson disease, 674
Substantia nigra pars compacta (SNc), 484
Subthalamic nucleus, 484
lesions in, 495

Succimer
heavy metal toxicity, 243
lead poisoning, 407
Succinate dehydrogenase, 67
Succinylcholine, 534
Succinyl-CoA
gluconeogenesis, 78
TCA cycle, 77
Sucking reflex, 494
Sucralfate, 393
Sudan stain, 375
Sudden cardiac death, 299, 307
cocaine use, 554
Sudden death
cor pulmonale, 661
pulmonary embolism, 654
sleep apnea, 661
Sudden infant death syndome
(SIDS), 616
Suicidal patients, 262
confidentiality exceptions and, 264
elderly, 264
Suicide
bipolar disorder and, 545
borderline personality disorder and, 549
deaths from, 266
major depressive disorder and, 545
physician-assisted, 262
risk factors for, 546
schizophrenia and, 544
Suicide (physician-assisted), 262
Sulbactam, 188
Sulfadiazine, 194
mechanism, 187
Toxoplasma gondii, 156, 680
Sulfa drugs, 247
acute pancreatitis, 391
erythema multiforme, 467
G6PD deficiency from, 410
megaloblastic, 245
rash, 245
Sulfamethoxazole, 187, 194
Sulfapyridine, 393
Sulfasalazine, 247, 393, 454
Sulfatides, 140
Sulfisoxazole, 187, 194
Sulfonamides, 194
acute interstitial nephritis from, 587
cytochrome P-450 and, 247
hemolysis in G6PD deficiency, 245
hypothyroidism, 244
mechanism, 187
Nocardia spp., 139
photosensitivity, 245
pregnancy contraindication, 204
trimethroprim, 194
vitamin $\mathrm{B}_{9}$ deficiency, 68
Sulfonylureas, 348
disulfiram-like reaction, 246
insulin and, 322
"Sulfur granules," 139
Sulfur granules, 129, 139
Sumatriptan, 530
cluster headaches, 502
coronary vasospasm with, 243
Sunburn, 468
sunburst pattern (X-ray), 452
Superficial inguinal nodes, 606
Superficial inguinal ring, 363
Superior cerebellar artery, 487
Superior colliculi, 488
Superior gluteal nerve, 443
Superior mesenteric artery, 357

Superior mesenteric artery (SMA) syndrome, 357
Superior mesenteric vein, 359
Superior oblique muscle, 524
Superior olive (nucleus), 482
Superior ophthalmic vein, 487
Superior orbital fissure, 489
Superior rectal artery, 360
Superior rectal vein, 359
Superior rectus muscle, 524
Superior sagittal sinus, 487
Superior sulcus tumor, 666
Superior vena cava
embryological development of, 274 in fetal circulation, 276
Superior vena cava syndrome, 98, 666 lung cancer, 665
Pancoast tumor, 666
Superoxide dismutase, 109
free radical elimination by, 216
Supination
Erb palsy, 438
forearm, 437
Suppression, 539
Suprachiasmatic nucleus, 480
sleep physiology and, 481
Supraoptic nucleus, 480
Suprarenal arteries, 357
Suprascapular nerve, 434
Supraspinatus muscle, 434, 438
Supratentorial mass, 513
Supraventricular tachycardia adenosine for diagnosing, 317
$\beta$-blockers for, 241, 316
calcium channel blockers for, 317
Suramin, 200
Surface F protein, 170
Surfactant (pulmonary), 643, 647 secretion, 643
Surgical neck of humerus, 445
Surgical procedures
readmissions with, 266
Surrogate decision-maker, 261
Swan-Ganz catheter, 292
Swarming, 181
Sweat glands embryologic derivation, 595
nervous system and, 233
pilocarpine effects, 236
Swiss cheese model, 267
Sydenham chorea, 306, 503
Sylvian fissure, 485
Sympathetic activity
venous return and, 281
Sympathetic nervous system, 233
male sexual response, 609
Sympathetic receptors, 234
Sympatholytic drugs, 239
Sympathomimetic drugs, 238
Symphysis pubis, 608
Symptom duration, 548
Syncope
during exercise, 303
pulsus parvus et tardus, 285
Synctiotrophoblasts, 599, 614
$\beta$-hCG and, 224
choriocarcinoma and, 622
hCG secretion by, 614
Syndrome of apparent mineralocorticoid excess, 570
markers in, 575
Syndrome of inappropriate antidiuretic hormone secretion. See SIADH

Synergistic drug interactions, 229
Syngeneic grafts, 118
Syphilis, 147
as granulomatous disease, 214
presentation, 671
prophylaxis for, 198
STI, 184
tabes dorsalis, 514
testing for, 148
thoracic aortic aneurysms and, 298
ToRCHeS infection, 182
Syphilitic heart disease, $\mathbf{3 0 7}$
Syringomyelia, 476
Horner syndrome, 524
spinal cord lesions, 514
Systemic amyloidosis, 218
Systemic lupus erythematosus, 458
Raynaud phenomenon, 459
Systemic mycoses, 151
Systemic primary carnitine deficiency, 89
Systemic senile amyloidosis, 218
Systole
cardiac cycle, 282
heart murmurs of, 284, 285
heart sounds of, 284
Systolic ejection, 282
Systolic murmur, 303
Systolic pressure, 278

## T

$\mathrm{t}(8 ; 14), 418,422$
$\mathrm{t}(9 ; 22)$ (Philadelphia), 422
$\mathrm{t}(11 ; 14), 418,422$
t(11;18), 418, 422
$\mathrm{t}(11 ; 22), 453$
$\mathrm{t}(14 ; 18), 418$
$\mathrm{t}(15 ; 17), 422$
Tabes dorsalis, 147, 184
spinal cord lesions, 514
Tachyarrhythmia
isoproterenol for evaluating, 238
thyroid storm, 337
Tachycardia
alcohol withdrawal, 555
amphetamines, 554
$\beta$-blockers, 241
drug-induced, 311
MDMA as cause, 555
metronidazole, 195
with myocarditis, 307
PCP, 555
phenoxybenzamine, 240
pulmonary embolism, 654
stimulants and, 554
thyroid hormones, 349
tricyclic antidepressants, 559
Wolff-Parkinson-White syndrome, 289
Tachyphylactic drug interactions, 229
Tachypnea
asthma, 656
pulmonary embolism, 654
Tacrolimus
hyperglycemia, 244
immunosuppression, 120
targets of, 121
Tactile hallucinations, 543
cocaine, 554
Tadalafil, 639
Taenia solium, 160, 161
Takayasu arteritis, 214, 308
Talcosis, 214

Tamoxifen, 431, 637
for breast cancer, 682
hot flashes with, 244
Tamsulosin, 240, 635, 639
Tanner stages (sexual development), 619
Tarasoff decision, 264
Tardive dyskinesia
antipsychotic drugs and, 557
as drug reaction, 246
metoclopramide adverse effect, 394
nigrostriatal pathway, 482
Target cells, 405
postsplenectomy, 98
Tarsal tunnel syndrome, 442
TATA box, 41
Tau proteins, 677
Taxanes, 429
Taxonomy (bacterial), 125
Tay-Sachs disease
frameshift mutation, 39
lysosomal storage disease, 88
presentation, 670
Tazobactam, 188
TBG. See Thyroid-binding globulin (TBG)
TCA cycle, 77
diagram, 74, 77
hyperammonemia, 82
metabolic site, 72
pyruvate metabolism, 77
rate-determining enzyme for, 73
T cells, 398
activation, 103
adaptive immunity, 99
anergy, 110
cell surface proteins, 110
corticosteroid effects, 120
cytokine production, 101, 108
cytotoxic, 102
delayed (type IV) hypersensitivity, 101
differentiation and maturation, 98, 101
disorders of, 116, 117
functions, 101
helper, 102
leflunomide effects, 471
lymph nodes, 96
major functions of, 101
neoplasms, 418
regulatory, 102
sirolimus effect, 120
spleen, 98
thymus, 98
untreated HIV, 176
Tea-colored urine, 413
"Teardrop" RBCs, 404, 421
Tearing stimulation, 236
Teenagers
common causes of death, 266
Teeth
congenital syphilis, 147
demeclocycline and, 350
dentinogenesis imperfecta, 51
discoloration, 192, 204, 245, 596
enamel erosion (bulimia nervosa), 550
Gardner syndrome, 381
osteogenesis imperfecta, 51
retained primary, 116
Sjögren syndrome and, 456
Telangiectasias
basal cell carcinomas, 469
hereditary hemorrhagic, 310
Osler-Weber-Rendu syndrome, 670
Telencephalon, 474
Tellurite agar, 127
Telomerase, 38
Telophase, 46
Temazepam, 529
Temperature receptors, 478
Temperature regulation, 480
Temporal arteritis
associations, 683
polymyalgia rheumatica, 458
Temporalis muscle, 491, 602
Temporal lobe, 485, 498
Temporal lobe encephalitis, 164
Tendinopathy (rotator cuff), 434
Tendinous xanthomas, 297
familial hypercholesterolemia, 94
Tendonitis
as drug reaction, 245
fluoroquinolones, 195
Tendons collagen in, 50
Tenecteplase (TNK-tPA), 401, 425
Teniposide, 429
in cell cycle, 426
Tennis elbow, 434
"Tennis rackets" (Birbeck) granules, 422
Tenofovir, 201, 203
Tenosynovitis, 456
Tension headaches, 502
Tension pneumothorax, 662, 663
Tensor fascia latae muscle, 443
Tensor tympani muscle, 602
Tensor veli palatini muscle, 602
Tentorium cerebelli, 513
Teratogens, 596
ACE inhibitors, 592
aminoglycosides, 191
angiotensin II receptor blockers, 592
in fetal development, 594
griseofulvin, 200, 204
leflunomide, 471
lithium as, 558
methimazole as, 349
PTU in pregnancy, 349
ribavirin, 204
vitamin A, 66
warfarin as, 424
Teratoma, 629, 634
Terazosin, 240, 635
Terbinafine, 198, 199
Terbutaline, 238
Teres minor, 434
Teriparatide, 449, 472
Terminal bronchioles, 642
Terminal deoxynucleotidyl transferase (TdT), 104
Termination of protein synthesis, 45
Tertiary adrenal insufficiency, 332
Tertiary disease prevention, 265
Tertiary hyperparathyroidism, 340
Tertiary syphilis
aortic aneurysms, 683
as granulomatous disease, 214
presentation, 671
Tesamorelin, 323
Testes, 608

## descent of, $\mathbf{6 0 6}$

embryologic derivation, 595
lymphatic drainage of, 606
progesterone production, 611

Testicular atrophy
alcoholism, 555
cirrhosis, 383
muscular dystrophy, 61
Testicular cancer
bleomycin for, 428
cisplatin/carboplatin for, 429
Testicular lymphoma, 634
Testicular/ovarian arteries, 357
Testicular torsion, 633
Testicular tumors, 634
germ cell, 634
non-germ cell, 634
Testing agencies, 25
Testis-determining factor, 604
Testosterone, 617, 639
androgen insensitivity syndrome, 621
cryptorchidism, 633
Klinefelter syndrome, 620
Leydig cell secretion, 610
pharmacologic control, 636
Sertoli cells, 610
SHBG effect on, 330
signaling pathways for, 330
spermatogenesis, 610
Testosterone-secreting tumors, 621
Testosterone synthesis, 199
Test-taking strategy, 22-23
Tetanospasmin, 132, 138
Tetanus
exotoxins, 131
spore-forming bacteria, 131
vaccine, 138
Tetanus toxin, 110, 138
Tetany
hypocalcemia, 575
hypoparathyroidism, 339
thymic aplasia, 116
Tetrabenazine
Tourette syndrome, 541, 556
Tetracaine, 533
Tetracyclines, 192
esophagitis, 244
Fanconi syndrome, 246, 570
mechanism (diagram), 187
photosensitivity, 245
protein synthesis inhibition, 191
pseudotumor cerebri and, 505
teratogenicity, 204, 596
tooth discoloration, 245
Tetrahydrofolic acid, 68, 194
Tetralogy of Fallot, 294
22qll syndromes, 296
cyanosis caused by, 683
fetal alcohol syndrome, 296
lab findings in, 675
outflow tract formation, 275
thymic aplasia, 116
Tetrodotoxin, 242
TGF- $\beta$
regulatory T cells, 102
in wound healing, 217
Thalamus, 474
limbic system and, 482
neuropathic pain, 499
Thalassemia, 406
in anemia taxonomy, 406
target cells in, 405
Thalidomide
teratogenicity, 596
Thayer-Martin agar, 126, 127
Theca interna cells, 611
Theca-lutein cysts, 622, 628

Thecoma, 628
Thenar muscles, 436, 438
Theophylline, 668
cytochrome P-450 and, 247
therapeutic index of, 232
Therapeutic antibodies, 122
Therapeutic index (TI), 232
Thermogenin, 78
Theta rhythm (EEG), 481
Thiazide diuretics
heart failure, 304
hypertension, 310
Thiazides, 591
gout, 245
site of action, 589
Thick ascending loop of Henle
Bartter syndrome and, 570
ethacrynic acid effect on, 590
loop diuretics effect on, 590
nephron physiology, 569
Thin descending loop of Henle, 569
Thionamides, 349
Thiopental, 529
Thioridazine, 557
3rd branchial arch, 602
3rd branchial pouch, 603
Third-degree (complete) AV block, 290
Thirst
hypothalamus and, 480
renin-angiotensin-aldosterone system and, 572
30S inhibitors, 191
Thoracentesis, 662
Thoracic aortic aneurysm, 296, 298
Thoracic outlet syndromes, 438, 665
Threadworms, 159
Threonine, 81
Threonine kinase, 222
Thrombi
atherosclerosis, 298
mural, 302
post-MI, 300
Thrombin, 423
Thromboangiitis obliterans, 308
Thrombocytes
liver markers, 384
in wound healing, 217
Thrombocytes (platelets), 396
aggregation inhibition, 425
chronic myeloproliferative disorders, 421
disorders, 415
function tests of, 414
heparin adverse effects, 423
leukemias, 420
mixed coagulation disorders, 416
platelet plug formation, 403
thrombolytics and, 425
transfusion of, 409, 417
Thrombocythemia (essential), 421
Thrombocytopenia, 396
cirrhosis, 383
Class IA antiarrhythmics, 315
cytarabine, 427
as drug reaction, 245
Escherichia coli, 145
ganciclovir, 202
glycoprotein IIb/IIa inhibitors as cause, 425
heparin adverse effects, 423
immunosuppressants, 120
oxazolidinones, 193
protease inhibitors, 203
recombinant cytokines, 121
sulfa drug allergies, 247
ToRCHeS infections, 182
transfusion for, 417
Wiskott-Aldrich syndrome, 117
Thrombocytosis
postsplenectomy, 98
Thromboembolic event
atrial fibrillation, 290
Thrombogenesis, 403
Thrombolytic drugs, 401, 425
Thrombomodulin
in thrombogenesis, 403
Thrombophlebitis
pancreatic cancer, 391
vancomycin, 190
Thrombopoietin, 121
Thrombopoietin signaling pathways, 330
Thrombosis
celecoxib, 471
essential thrombocythemia, 421
homocystinuria, 84
Thrombotic complications, 245
Thrombotic endocarditis, 683
Thrombotic stroke, 496
Thrombotic thrombocytopenic purpura (TTP), 405, 415
Thromboxane, 470
Thrush
Candida albicans, 153
hairy leukoplakia vs, 466
HIV-positive adults, 177
nystatin, 199
SCID, 117
"Thumb sign" (X-ray), 142, 675
Thymic aplasia, 116, 603
chromosome association, 64
hypoparathyroidism, 339
lymphopenia with, 412
22qll deletion syndromes, 65
Thymic cortex
T cell selection in, 101
Thymic hyperplasia
myasthenia gravis association, 459
Thymic shadow, 117
Thymidine, 194
Thymidine kinase, 201
Thymidylate, 36
Thymomas
myasthenia gravis and, 221, 459
paraneoplastic syndromes, 221
Thymus
benign neoplasm, 98
branchial pouch derivation, 603
fetal development, 320
structure and function, 98
T cell differentiation, 101
T cell origination in, 398
Thymus-dependent antigens, 105
Thymus-independent antigens, 105
Thyroglossal duct cyst, 320
Thyroid adenomas, 337, 338
Thyroid cancer, 338
amyloidosis in, 218
associations, 684
carcinogens in, 223
goiter, 337
metastases to, 226
Psammoma bodies in, 224
Thyroid cartilage, 602
Thyroid cysts, 337

Thyroid development, 320
branchial pouch derivation, 603
Thyroidectomy, 338
Thyroid hormones, 329
signaling pathways for, 330
in toxic multinodular goiter, 337
Thyroiditis, 214, 336
Thyroidization of kidney, 585
Thyroid lymphomas, 338
Thyroid peroxidase thionamide effect on, 349
Thyroid-regulating hormone (TRH) signaling pathways for, 330
Thyroid replacement therapy, 449
Thyroid-stimulating hormone (TSH)
Graves disease and, 337
secretion of, 321
signaling pathways of, 330
Thyroid storm, 337
Thyrotropin-releasing hormone (TRH), 323, 324
Thyroxine, 343
Tiagabine, 528
TIBC
anemia of chronic disease, 409
lab values in anemia, 412
Tibialis anterior, 442
Tibial nerve, 442 neurovascular pairing, 445
Ticagrelor, 425
Ticarcillin, 187
characteristics of, 188
Pseudomonas aeruginosa, 143
Ticks (disease vectors), 149, 150,
157
Ticlopidine, 403, 425
Tics (Tourette syndrome), 541
Tidal volume (TV), 646
Tigecycline, 192, 198
Tight junctions, 461, 480
Timolol, 241, 316
Tinea, 152, 200
Tinea capitis, 152
Tinea corporis, 152
Tinea cruris, 152
Tinea pedis, 152
Tinea unguium, 152
Tinea versicolor, 152
Tinel sign, 437
Tinnitus
streptomycin, 197
Tiotropium, 237, 668
Tirofiban, 403, 425
Tissue factor activation, 133
Tissue factor pathway, 401
Tissue plasminogen activator (tPA) for ischemic stroke, 496
Tizanidine, 239
TMP-SMX, 194 for Pneumocystis jirovecii, 154 prophylaxis, 198
UTI prophylaxis, 680
TNF- $\alpha, 108$
endotoxins and, 133
extrinsic pathway and, 208
in granulomatous diseases, 214
Graves disease and, 337
TNF- $\alpha$ inhibitors, 454, 472
TNF (tumor necrosis factor), 225
TNM staging system, 220
Tobramycin, 187, 191
Tocolytics, 638
Toddler development, 616
Toe-walking, 445

Togaviruses
characteristics of, 167
genomes of, 162
rubella as, 169
Tolbutamide, 348
Tolcapone, 531
Toll-like receptors (TLRs), 99
Tolterodine, 237
Tolvaptan, 342, 350
Tongue
branchial arch derivation, 602
glossoptosis, 602
Tongue development, 477
Tonic-clonic seizures, 501
drug therapy for, 528
treatment, 681
Tonic seizures, 501
Tonsils
agammaglobulinemia, 116
branchial pouch derivation, 603
immune system organ, 96
Tophi in gout, 673
Tophus formation, 455
Topiramate
epilepsy, 528
migraine headaches, 502
pseudotumor cerebri, 505
Topoisomerase inhibitors, 426
Topoisomerases, 195
Topotecan, 426, 429
ToRCHeS infections, 169, 182 cataracts, 519
Torsades de pointes, 289
Class IA antiarrhythmics, 315
as drug reaction, 243
hypomagnesemia, 575
ibutilide, 316
magnesium for, 317
sotalol, 316
Torsemide, 590
Torticollis, 503
Torus (buckle) fracture, 436
Total anomalous pulmonary venous return (TAPVR), 294
Total lung capacity (TLC), 646 in elderly, 647
Total parenteral nutrition (TPN), 390
Total peripheral resistance (TPR), 278, 281
Tourette syndrome, 541
antipsychotics for, 557
atypical antipsychotics for, 557
drug therapy for, 556
obsessive-compulsive disorder and, 547
sympatholytic drugs for, 239
Toxic dose, 232
Toxic epidermal necrolysis, 467
Toxicities and side effects, 243
Toxicity
of immunosuppressants, 120
Toxic multinodular goiter, 337
Toxic shock-like syndrome, 136
Toxic shock syndrome, 133 exotoxin A, 133
presentation, 135
Staphylococcus aureus, 135
Toxic shock syndrome toxin, 133
Toxins

$$
\text { seafoood (ingested), } 242
$$

Toxins (bacterial)
anthrax, 137
endotoxins, 132
enterotoxins, 135
erythrogenic, 136
exfoliative, 133, 135
exotoxins, 132-133
features of, 131
lysogenic phage encoding, 130
toxin-mediated disease, 135
Toxocara spp., 158
Toxocara canis, 159
Toxoplasma spp., 180
Toxoplasma gondii, 156
HIV-positive adults, 177
labs/findings, 675
ToRCHeS infection, 182
treatment, 680
Toxoplasmosis
PCL vs, 418
prophylaxis, 194, 198
pyrimethamine, 200
TP53 gene, 222
Trabecula
lymph node, 96
spleen, 98
Trabecular outflow, 519
Trachea
bifurcation of, 645
fetal development, 320
respiratory tree, 644
Tracheal deviation, 662, 663
Tracheoesophageal fistula/anomalies, 352
Traction apophysitis, 444
Tramadol, 535
seizures, 246
"Tram-track" appearance, 581
Transcortical aphasia, 500
Transcription factor, 222
Transduction (bacterial genetics), 130
Transference, 538
Transferrin, 211
free radical elimination by, 216
lab values in anemia, 412
Transformation (bacterial genetics), 130
Transformation zone (cervix)
dysplasia, 627
histology of, 608
Transfusion reaction, 114
Transient arthritis, 146
Transient ischemic attacks (TIAs), 425, 496
Transitional cell carcinomas, 223, 584
Transition metals and free radical injuries, 216
Transition (mutation), 39
Transjugular intrahepatic portosystemic shunt (TIPS), 359
Transketolase
metabolic pathways, 74
vitamin $\mathrm{B}_{1}$ and, 66
Translocation
Down syndrome, 63
fluorescence in situ hybridization, 55
in protein synthesis, 45
Robertsonian, 64
Transpeptidases, 187
Transplants
immunosuppressants in, 120
rejection, 101, 119
Transposition (bacterial genetics), 131

Transposition of great vessels, 294
cyanosis with, 683
embryologic development, 275
maternal diabetes and, 296
Transsexualism, 551
Transtentorial herniation, 513
Transudate
pleural effusion, 662
Transudate vs exudate, 217
Transversalis fascia, 354, 363
Transverse sinus, 487
Transversion (mutation), 39
Transversus abdominis, 442
Transversus abdominis muscle, 363
Transvestism, 551
Tr antigens, 221
Tranylcypromine, 559
TRAP
immunohistochemical stain, 225
Trapezium bone, 435
Trapezoid bone, 435
TRAP stain, 420
Trastuzumab, 122, 431
toxicities of, 431
Trastuzumab (Herceptin), 431
Trauma
DIC and, 685
pneumothorax, 663
Traumatic aortic rupture, 298
Traumatic pneumothorax, 663
Travelers' diarrhea, 145
Trazodone, 560
mechanism of, 558
priapism, 633
Treacher Collins syndrome, 602
Trematodes, 160
Tremor, 503
immunosuppressants, 120
resting, 674
Trench fever, 161
Trendelenburg sign, 443
Treponema pallidum
granulomatous diseases, 214
penicillin G/V for, 187
STI, 184
syphilis, 147
treatment, 679
Treponema spp., 146
TRH. See Thyrotropin-releasing hormone (TRH)
Triamcinolone, 470
Triamterene, 569, 591
Triazolam, 529
Triceps reflex, 494
Triceps surae, 442
Trichinella spp., 158
Trichinella spiralis, 159, 161
Trichinosis, 159
Trichomonas spp. vaginitis, 181
Trichomonas vaginalis, 158, 184
Trichomoniasis, 184
Trichophyton spp., 152
Tricuspid atresia, 275, 294
Tricuspid insufficiency, 282
Tricuspid regurgitation carcinoid syndrome as cause, 346
Ebstein anomaly and, 294
heart murmurs with, 285
pansystolic murmur in, 284
Tricuspid stenosis, 284
Tricuspid valve endocarditis, 305
Tricyclic antidepressants (TCAs), 559 antimuscarinic reaction, 246
fibromyalgia, 458
generalized anxiety disorder, 547
mechanism of, 558
naming convention for, 248
as noradrenergic drug, 235
torsades de pointes, 243
toxicity of, 553
toxicity treatment for, 243
as weak bases, 231
Trientine, 389
Trifluoperazine, 557
Trigeminal nerve (CN V), 490
branchial arch derivation, 602
lesion of, 516
location in brain stem, 488
migraine headaches, 502
neuralgia, 502
pathway for, 489
thalamic relay for, 482
tongue, 477
Trigeminal neuralgia, 502
treatment, 681
Triglycerides
chylothorax, 662
hepatosteatosis, 72
hypertriglyceridemia, 94
insulin and, 322
Von Gierke disease, 87
Trigone, 564
Trihexyphenidyl, 237
acute dystonia treatment, 237
Trilodothyronine, 349. See also Thyroid hormones
Trimethoprim
folate deficiency with, 408
pyrimidine synthesis and, 36
teratogenicity, 596
Trimethroprim, 187, 194
Trimming (protein synthesis), 45
Trinucleotide repeat expansion diseases, 62
Triose kinase, 80
Triple-blinded studies, 252
Triptans, 530
angina and, 299
for migraine headaches, 502
Triquetrum bone, 435
Trisomy 13, 475
Trisomy 13 (Patau syndrome)
hCG in, 614
Trisomy 18 (Edwards syndrome)
hCG in, 614
Trisomy 21 (Down syndrome)
hCG in, 614
tRNA, 44
Trochanteric bursitis, 441
Trochlea, 524
Trochlear nerve (CN IV), 490
brain stem location, 488
cavernous sinus, 488
ocular motility, 524
palsy of, 525
pathway for, 489
Tropheryma whipplei, 126, 375
Tropical sprue, 375
Tropicamide, 237
Troponins, 299, 301
Trousseau sign, 339, 575
Trousseau syndrome
pancreatic cancer, 391
as paraneoplastic syndrome, 221
True-negative rate, 253
True-positive rate, 253
Truncal ataxia, 483
Truncal obesity, 331

Truncus arteriosus
22qll syndromes, 296
cyanosis with, 683
embryologic development, 274
thymic aplasia, 116
Trypanosoma brucei, 156, 200
Trypanosoma cruzi, 158
achalasia and, 370
nifurtimox for, 200
Trypsin, 367
Trypsinogen, 367
Tryptase, 398
Tryptophan, 81, 83
TSC1/TSC2 genes, 222
Tsetse flies (disease vectors), 156
TSH. See Thyroid-stimulating hormone (TSH)
$t$-tests, 259
T-tubule membrane, 446
Tubal ligation, 628
Tuberculoid Hansen disease, 141
Tuberculosis, 140
Addison disease, 332
corticosteroids and, 327
erythema nodosum, 468
as granulomatous disease, 214
isoniazid, 197
macrophages and, 397
necrosis and, 209
silicosis, 659
$\dot{\mathrm{V}} / \dot{\mathrm{Q}}$ mismatch, 651
Tuberin protein, 222
Tuberoinfundibular pathway, 482
Tuberous sclerosis, 509
tumor suppressor genes and, 222
Tubocurarine, 534
Tubular necrosis, 578, 586, 587
Tubulointerstitial inflammation
WBC casts in, 578
Tularemia, 149
Tumor grade vs stage, 220
Tumor lysis syndrome, 422
hyperkalemia, 574
labs/findings, 677
Tumor markers
acute lymphoblastic leukemia, 420
colorectal cancer, 382
pancreatic adenocarcinomas, 391
Tumor markers (serum), 224
Tumors
benign vs malignant, 220
grade vs stage, $\mathbf{2 2 0}$
immunohistochemical stains for, 225
nomenclature of, 220
TNM staging system, 220
Tumor suppressor genes, 222
Tumor suppressors, 46
Tunica albuginea, 608, 633
Tunica muscularis externa, 356
Tunica serosa, 356
Tunica submucosa, 356
Tunica vaginalis, 606
Turcot syndrome, 381
Turner syndrome, 620
cardiac defect association, 296
coarctation of aorta and, 295
cystic hygromas, 465
GH for, 350
horseshoe kidney, 563
presentation, 674
T wave, in ECG, 288
21-hydroxylase, 326
21-hydroxylase deficiency, 684

22qll deletion syndromes, 65, 296, 603
Twin concordance studies, 252
Twinning, 598
2-naphthylamine, 223
TXA 2
aspirin effects, 471
thrombogenesis, 403
Type 1 muscle fibers, 447
Type 2 muscle fibers, 447
Type I errors (hypothesis testing), 258
Type I hypersensitivity, 112
IgE antibodies and, 105
Type I hypersensitivity reactions mast cells and, 398
Type II errors in hypothesis testing, 258
Type II hypersensitivity, 112
blood transfusions, 114
organ transplants, 119
Type II hypersensitivity reactions rheumatic fever, 306
Type III hypersensitivity, 113 C3 deficiency and, 107 organ transplants, 119
Type III secretion system, 129
Type IV hypersensitivity, 113 graft-versus-host disease, 119
Type IV hypersensitivity reactions contact dermatitis, 464
Typhoid fever, 144
Typhus, 150
transmission of, 149, 161
Tyramine, 240
Tyrosinase, 463
Tyrosine
catabolism, 83
as noradrenergic drug, 235
Tyrosine kinase
endocrine hormone messenger, 330
glycogen regulation, 85
insulin and, 322
as oncogene product, 222
Tyrosine phosphorylation, 322
Tzanck test, 166
$\mathbf{U}$
Ubiquitination, 45
UDP-glucose pyrophosphorylase, 86
UDP-glucuronosyltransferase, 369, 387, 388
Ulcerative colitis, 376
autoantibody, 115
spondyloarthritis, 457
sulfasalazine for, 393
treatment, 680
Ulcers
Helicobacter pylori, 146
Zollinger-Ellison syndrome, 347
Ulcers (gastrointestinal) anterior duodenal ulcers, 358
bismuth/sucralfate for, 393
complications of, $\mathbf{3 7 4}$
Crohn disease, 376
Curling, 373
Cushing, 373
esophageal, 371
peptic, 373
posterior duodenal ulcers, 358
Ulcers (skin)
Raynaud syndrome, 459
Ulipristal, 638
"Ulnar claw," 437, 439

Ulnar nerve, 435, 437
Ulnar nerve injury, 435
Ultrasonography
DVT diagnosis, 653
fetal cardiac activity on, 594
kidney disease/disorder diagnoses, 562, 563
renal cysts on, 588
Umbilical arteries, 599, 600
Umbilical artery, 276
Umbilical cord, 600
Umbilical hernia
congenital, 352
Umbilical vein, 599, 600
blood in, 276
postnatal derivative of, 276
Umbilicus, 359
portosystemic anastomosis, 359
Umbliical cord separation delay, 117
UMP synthase, 408
Unambiguous genetic code, 37
Uncal herniation, 513
Uncinate process, 353
Unconjugated bilirubin, 369
Unconjugated hyperbilirubinemia, 387
Uncoupling agents, 78
Uncus, 513
Undifferentiated thyroid carcinomas, 338
Undulant fever, 149
"Unhappy triad"(knee injuries), 441
Unilateral renal agenesis, 563
Uniparental disomy, 57
Universal electron acceptors, 75
Universal genetic code, 37
Unnecessary procedure requests, 262-263
Unstable angina, 299, 302
Untreated HIV infection timecourse, 176
Unvaccinated children, 186
Upper extremity nerves, 437
Upper motor neuron (UMN) lesions Babinski response, 674
Upper respiratory infections (URIs) asthma trigger, 656
rhinosinusitis, 653
Urachal cysts, 600
Urachus, 276, 600
Urea, 83
Urea cycle, 82
diagram, 74
metabolic site, 72
ornithine transcarbamylase deficiency and, 83
rate-determining enzyme for, 73
Ureaplasma spp.
urease-positive, 128
Urease, 181
Urease-positive organisms, 128
Uremia
acute pericarditis, 306
ARDS, 660
metabolic acidosis, 576
renal failure, 586
Ureter, 564, 604, 607, 608
bifid, 563
constrictions in, 564, 567
course of, 564
embryology, 562
horseshoe kidney, 563
obstruction of, 563, 583
transitional cell carcinoma in, 584

Ureteral orifice, 564
Ureteric bud, 563
Ureteropelvic junction, 563
constriction at, 564
development of, 562
obstruction, 563
Ureterovesical junction, 564
Urethra
BPH, 635
orifice, 564
posterior valves in, 563
Urethral injury, 609
Urethritis
chlamydia, 148, 184
Chlamydia trachomatis, 149
gonorrhea, 184
reactive arthritis, 457, 671
Urge incontinence, 584
drug therapy for, 237
Uric acid
gout, 472
Lesch-Nyhan syndrome, 37
Von Gierke disease, 87
Uric acid (kidney stones), 582
Urinary incontinence, 584
drug therapy for, 237
ephedrine for, 238
hydrocephalus, 506
multiple sclerosis, 507
Urinary retention
atropine, 237
bethanechol for, 236
delirium, 542
neostigmine for, 236
post-void residual, 584
tricyclic antidepressants, 559
Urinary tract infections (UTIs), 181,

## 585

antimicrobial prophylaxis for, 198
BPH, 635
duplex collecting system and, 563
enterococci as cause, 137
Klebsiella as cause, 145
pyelonephritis, 585
Staphylococcus saprophyticus as cause, 136
sulfa drugs for, 247
sulfonamides for, 194
TMP-SMX for, 194
Urinary tract obstruction, 583
Urine
bilirubin and, 369
casts in, 578
concentration of, 569
diuretic effects on, 591
leaks with uretheral injury, 609
pregnancy test, 614
Urine pH and drug elimination, 231
Urine reflux, 564
Urobilin, 369
Urobilinogen
extravascular hemolysis, 409
intravascular hemolysis, 409
Urogenital fold, 605
Urogenital sinus, 562
Uroporphyrinogen decarboxylase, 413
Urosepsis, 585
Urticaria, 462, 464
ethosuxamide, 528
scombroid poisoning, 242
serum sickness, 113
sulfa drug allergies, 247
as type I hypersensitivity, 112

USMLE Step 1 exam
check-in process, 8
clinical vignette strategies, 24
content areas covered in, 3
failing, 24-25
goal-setting for, 12
leaving exam early, 8
overview of, 2
passing rates for, 10
practice exams for, 11, 22-23
registering for, 5-6
rescheduling, 6
score notifications for, 7
scoring of, 8-9
testing agencies, 25
testing locations, 7
test-taking strategies, 22-23
time budgeting during, 7-8
types of questions on, 8
Ustekinumab, 122
Uterine artery, 564, 607
Uterine (Müllerian duct) anomalies, 605
Uteropelvic junction, 562
Uterovaginal agenesis, 621
Uterus
anomalies of, 605
collagen in, 50
epithelial histology, 608
genital embryology, 604
zygote implantation, 614
Uterus didelphys, 605
Uveitis, 520
inflammatory bowel disease, 376
sarcoidosis, 658, 675
seronegative spondyloarthritis, 457
Uveoscleral outflow, 519
U wave in ECG, 288
V
Vaccination
B- and T-cell disorders, 117
B-cell disorders, 116
splenectomy and, 98
thymus-independent antigens, 105
Vaccines, 111
Bordetella pertussis, 143
diphtheria, 139
encapsulated bacteria, 128
Haemophilus influenzae, 142, 180
Poliovirus, 167
rabies, 171
rotavirus, 168
Salmonella typhi, 144
tetanus, 138
toxoids as, 131
Vagal nuclei, 490
Vagina
anatomy of, 607
drainage of, 606
epithelial histology of, 608
genital embryology, 604
Vaginal atrophy
hormone replacement therapy, 637 menopause, 617
Vaginal bleeding
cervical cancer, 627
endometrial disease, 630
endometriosis, 630
granulosa cell tumors, 629
hydatidiform moles, 622
thecomas, 628
Vaginal candidiasis
nystatin, 199

Vaginal clear cell adenocarcinomas, 596
Vaginal infections, 181
Vaginal squamous cell carcinoma, 626
Vaginal tumors, 626
Vaginismus, 551
Vaginitis
treatment, 679
Trichomonas spp., 158, 181
trichomoniasis, 184
Vagus nerve (10th cranial nerve) baroreceptors/chemoreceptors and, 291
cardiac glycoside effects, 314
Curling ulcers and, 373
structures innervated, 367
Vagus nerve (CN X), 490
branchial arch derivation, 602
diaphragm innervation, 645
lesions of, 516
location, 488
pathway for, 489
tongue, 477
Valacyclovir, 201
Validity, 255
Valine
classification of, 81
maple syrup urine disease, 84
sickle cell disease, 39
Valproate
migraine headaches, 502
teratogenicity, 596
tonic-clonic seizures, 681
Valproic acid
bipolar disorder, 545, 681
epilepsy, 528
Valproic acid/sodium valproate
cytochrome P-450, 247
hepatic necrosis, 244
pancreatitis, 244
Valsalva maneuver, 284
Valsartan, 592
Valvular dysfunction, 305
Vancomycin, 190
Clostridium difficile, 138
cutaneous flushing, 243
functioning of, 187
meningitis, 180
MRSA, 198
thrombocytopenia, 245
toxicity of, 246
Vanillylmandelic acid (VMA)
in neuroblastomas, 333
tyrosine catabolism, 83
Vanishing bile duct syndrome, 119
Vardenafil, 639
Varenicline, 554, 560
Variable expressivity, 56
Variance, 257
Variant angina, 299
Variceal bleeding, 241
Varicella zoster virus (VZV), 164, 462, 466
guanosine analogs, 201
immunodeficient patients, 118
meningitis, 180
rash, 183
Reye syndrome, 384
vaccine, 110
Varices
Budd-Chiari syndrome, 386
portal-systemic anastomoses, 359
Varicocelectomy, 633

Varicocele (scrotal), 610, 633
Vasa previa, 624
Vasa vasorum
syphilis, 147
Vascular dementia, 505
Vascular function curves, 281
Vascular tumors of skin, 465
Vasculitides, 308-309
Vasculitis
intraparenchymal hemorrhage, 497
methotrexate for, 427
Vasculopathy
noninflammatory, 460
Vas deferens, 564, 604, 608
Vasoactive intestinal polypeptide (VIP), 365
Vasoconstriction, 573
Vasoconstrictors, 533
Vasodilation
cilostazol/dipyridamole for, 425
sympathetic receptors, 234
Vasodilators
afterload effects, 279
aortic dissections, 299
atrial natriuretic peptide as, 291
coronary steal syndrome, 299
nitrates as, 311
Vasogenic edema, 480
Vasopressin. See Antidiuretic hormone (ADH)
Vasopressin receptors, 234
Vasopressors, 281
V(D)J recombination, 99
VDRL false positives, 148
Vecuronium, 534
Veganism and $\mathrm{B}_{12}$ deficiency, 408
Vegetative state
axonal injury and, 499
VEGF (vascular endothelial growth factor), 217
Velocardiofacial syndrome, 65
Vemurafenib, 431, 469
Venlafaxine, 559
clinical use, 556
panic disorder, 547
phobias, 547
PTSD, 548
Venodilators, 279
Venous gonadal drainage, 606
Venous return, 281
Venous sinus thrombosis, 487
Venous thromboembolism, 424
Venous thrombosis, 410
heparin for, 423
paroxysmal nocturnal hemoglobinuria, 410
Ventilation, 646
high altitude, 652
perfusion and, 651
Ventilation/perfusion (V/Q) defects, 646
Ventilation/perfusion ( $\dot{\mathrm{V}} / \dot{\mathrm{Q}}$ ) mismatch, 651, 654
in elderly, 647
Ventilation/perfusion ( $\dot{\mathrm{V}} / \dot{\mathrm{Q}})$ ratio, 652 exercise response, 652
Ventral lateral (VL) nucleus, 482
Ventral pancreatic bud, 353
Ventral posterolateral (VPL) nucleus, 482
Ventral posteromedial (VPM) nucleus, 482
Ventral tegmentum, 479

Ventricles
embryology, 274
morphogenesis of, 275
Ventricular action potential, 287
Ventricular aneurysm
pseudoaneurysm, 302
true, 300, 302
Ventricular arrhythmia, 300
Ventricular fibrillation
ECG tracing, 290
torsades de pointes, 289
Ventricular filling
early diastole, 282
ECG and, 288
Ventricular free wall rupture, 302
Ventricular noncompliance, 282
Ventricular septal defect (VSD), 295, 683
congenital rubella, 296
cri-du-chat syndrome, 64
Down syndrome, 296
fetal alcohol syndrome, 296
heart murmurs, 285
outflow tract formation, 275
pansystolic murmur in, 284
Ventricular system, 488
holoprosencephaly, 475
Ventriculomegaly, 504, 506, 544
in schizophrenia, 544
Ventromedial, hypothalamus, 480
Verapamil, 303, 311, 312, 314, 317, 502
Vermal cortex lesions, 483
Verrucae, 464
Vertebral artery, 487
Vertebral compression fractures, 449, 685
Vertebral disc herniation, 491
Vertebral landmarks
diaphragm, 645
Vertigo, 518
Meniere disease as cause, 674
posterior circulation stroke, 498
streptomycin, 197
Vesamicol, 235
Vesicles (skin), 462
dermatitis herpetiformis, 467
erythema multiforme, 467
varaicella zoster virus, 466
Vesicourachal diverticulum, 600
Vesicoureteral reflux, 563
hydronephrosis, 583
pyelonephritis, 585
Vesicular trafficking proteins, 47
Vestibular bulbs, 605
Vestibular schwannomas, 510
Vestibulocochlear nerve (CN VIII), 490
acoustic neuromas, 478
brain stem location, 488
pathway for, 489
VHL gene, 222
pheochromocytomas and, 334
Vibrio spp., 125
Vibrio cholerae, 146
exotoxin production, 132
Gram-negative algorithm, 141
watery diarrhea, 179
Vibrio parahaemolyticus, 178
Vibrio vulnificus, 178
Vigabatrin, 528
Vimentin, 48, 225
Vinblastine, 429
in cell cycle, 426
microtubules and, 48

Vinca alkaloids, 426
Vincristine, 429
in cell cycle, 426
microtubules and, 48
toxicities of, 431
Vinyl chloride
angiosarcomas, 386, 465
as carcinogen, 223
VIPomas
MEN 1 syndrome, 347
octreotide for, 393
regulatory substances, 365
Viral encephalitis, 686
Viral envelopes, 163
Viral infection
Bordetella pertussis misdiagnosis, 143
Viral skin infections, 466
Virchow nodes, 373
Virchow triad, 653
Viridans streptococci, 136
$\alpha$-hemolysis, 135
bacterial endocarditis, 305
biofilm production, 129
brain abscesses, 180
Gram-positive algorithm, 134
normal flora, 178
Virilization, 326
Virology, 162-177
Virulence factors
bacterial, 129
Bordetella pertussis, 143
Escherichia coli, 145
Salmonella/Shigella, 144
Staphylococcus aureus, 135
Streptococcus pneumoniae, 136
Viruses
diarrhea with, 179
enveloped, 162
genetics, 162
immunocompromised patients, 179
infections in immunodeficiency, 118
interferon defense against, 109
negative-stranded, 168
pneumonia, 179
receptors for, 166
segmented, 168
structure of, 162
Visceral larva migrans, 159
Visceral leishmaniasis, 158
Visceral pericardium, 277
Viscosity (blood), 280
Vision change/loss digoxin, 314
Vision loss
hyperammonemia, 82
Visual cortex, 485, 499
Visual dysfunction cortical watershed zones and, 486 retinal disease, 521-522
Visual field defects, 526
saccular aneurysms and, 500
with stroke, 498, 499
Visual hallucinations, 543
Vital capacity (VC), 646
Vitamin A (retinol), 65, 66
free radical elimination by, 216
pseudotumor cerebri, 505
teratogenicity, 596
Vitamin $\mathrm{B}_{1}$ deficiency
brain lesions and, 495
Korsakoff syndrome, 542
Wernicke-Korsakoff syndrome, 555

Vitamin $\mathrm{B}_{1}$ (thiamine)
functions of, 66, 74
maple syrup urine disease, 84 pyruvate dehydrogenase complex, 76
solubility of, 65
Vitamin $\mathrm{B}_{2}$ (riboflavin)
functions, 67
pyruvate dehydrogenase complex and, 76
solubility of, 65
Vitamin $\mathrm{B}_{3}$ (niacin)
derivatives of, 83
functions, 67
lipid-lowering agent, 313
pyruvate dehydrogenase complex and, 76
solubility of, 65
vitamin $\mathrm{B}_{6}$ and, 67
Vitamin $\mathrm{B}_{5}$ (pantothenic acid)
functions, 67
pyruvate dehydrogenase complex and, 76
solubility of, 65
Vitamin $\mathrm{B}_{6}$ deficiency, 407
isoniazid, 197
Vitamin $\mathrm{B}_{6}$ (pyridoxine) solubility of, 65
Vitamin $B_{7}$ (biotin)
activated carriers, 75
functions of, 73
pyruvate metabolism, 77, 78
solubility of, 65
Vitamin $\mathrm{B}_{9}$ deficiency, 408
in anemia taxonomy, 406
neutrophils in, 396
Vitamin $\mathrm{B}_{9}$ (folate)
absorption of, 368
deficiency, 682
functions, 68
solubility of, 65
Vitamin $\mathrm{B}_{12}$ (cobalamin)
absorption of, 368
functions, 69
solubility of, 65
veganism, 69
Vitamin $\mathrm{B}_{12}$ deficiency, 408
amnesia with, 542
in anemia taxonomy, 406
Diphyllobothrium latum, 160, 161
neutrophils in, 396
spinal cord lesions in, 514
Vitamin $\mathrm{B}_{6}$
isoniazid, 197
sideroblastic anemia, 407
Vitamin C (ascorbic acid) free radical elimination by, 216
functions, 69
methemoglobinemia, 648
methemoglobin treatment, 243 solubility of, 65
Vitamin D. See also Cholecalciferol functions, 70
hypervitaminosis lab values, 451
osteoporosis prophylaxis, 449
PTH and, 328
signaling pathways for, 330 solubility of, 65
Vitamin D (calciferol)
calcitriol production, 573
Vitamin D deficiency, 339
hyperparathyroidism, 451
osteomalacia/rickets, 450, 451
Vitamin deficiencies, 682

Vitamin E
free radical elimination by, 216
solubility of, 65
Vitamin K
coagulation cascade, 402
solubility of, 65
warfarin reversal, 681
for warfarin toxicity, 243, 424
Vitamin K deficiency, 402, 414 cephalosporins, 189
Vitamin/mineral absorption, 368
Vitamins, 65-71
fat-soluble, 65
water-soluble, 65
Vitelline duct/fistula, 600
Vitiligo, 463
Vitreous body
collagen in, 50
Vitreous chamber, 518
VLDL (very low-density lipoprotein), 94
Volume contraction
alkalemia from diuretics, 591
Volume of distribution, 229, 687
Volumetric flow rate (Q), 280
Volvulus, 379
Meckel diverticulum, 378
Vomiting
annular pancreas, 353
area postrema and, 480
biliary colic, 390
bilious, 353, 378
chemotherapy-induced, 394
diabetic ketoacidosis, 345
with eating disorders, 550
Ebola virus, 171
food poisoning, 138
fructose intolerance, 80
glycylcyclines, 192
Histoplasma capsulatum, 177
hyperammonemia, 82
intestinal atresia, 353
iron poisoning, 414
with L-DOPA, 531
Legionella spp., 185
lithium toxicity, 553
Mallory-Weiss syndrome, 371
maple syrup urine disease, 84
metabolic alkalosis from, 576
metoclopramide for, 394
MI and, 300
ondansetron for, 394
posttussive, 143
pyloric stenosis, 353
Reye syndrome, 384
Salmonella spp., 149
in stroke, 498
toxic shock syndrome, 135
treatment of, 394
trichinosis, 159
vitamin C toxicity, 69
with opioid analgesics, 534
Von Gierke disease, 87
Von Hippel-Lindau disease, 509
chromosome association, 64
presentation, 674
renal cell carcinoma and, 583
tumor suppressor genes and, 222
Von Willebrand disease, 380, 403,

## 416

Voriconazole, 198, 199
VRE (vancomycin-resistant enterococci)
daptomycin, 195
enterococci, 137
highly resistant, 198
oxazolidinones, 193
$V_{\text {max }}, 228$
Vulnerable child syndrome, 540
Vulvar carcinoma, 626
Vulvar, lymphatic drainage, 606
Vulvar pathology, 626
Vulvovaginitis, 153, 181
vWF
receptor for, 396
in thrombocytes, 396
in thrombogenesis, 403

## W

WAGR complex, 584
"Waiter's tip" (Erb palsy), 438
Waiving right to confidentiality, 264
Waldenström macroglobulinemia
multiple myeloma vs, 419
"Walking" pneumonia, 150
Walking milestone, 616
Wallenberg syndrome, 498
Wallerian degeneration (neurons), 477, 479
Wall tension, 279
Warfarin, 424
adverse effects of, 416
coagulation cascade, 402
cytochrome P-450 and, 247
for DVT, 653
griseofulvin and, 200
heparin vs, 424
PT measurement, 414
reversal of, 681
teratogenicity, 596
therapeutic index of, 232
toxicity treatment, 243, 417
vitamin K antagonist, 71
Warm autoimmune hemolytic anemia, 411
Warthin-Finkeldey giant cells, 170
Warthin tumors, 370
WAS gene, 117
Waterhouse-Friderichsen syndrome, 332
meningococci, 142
presentation, 671
Watershed zones, 210, 486
Water-soluble vitamins, 65
Waxy casts, 678
Waxy casts (urine), 578
WBC casts (urine), 578, 585
Weakness, 513
"Wear and tear" pigment, 215
Wegener granulomatosis, 214, 308
autoantibody, 115
kidney effects of, 581
labs/findings, 676, 678
restrictive lung disease, 657
RPGN and, 581
Weight gain
atypical antipsychotics, 557
Cushing syndrome, 331
danazol, 638
duodenal ulcers, 374
major depressive disorder, 545
mirtazapine, 560
valproic acid, 528
Weight loss
adrenal insufficiency, 332
celiac disease, 676
cholelithiasis and, 390
chronic mesenteric ischemia, 380

Weight loss (continued) colorectal cancer, 382 diabetes mellitus, 344 esophageal cancer, 372 gastric ulcers, 374 Histoplasma capsulatum, 177 major depressive disorder, 545 malabsorption syndromes, 375 Mycobacterium aviumintracellulare, 177
orlistat for, 394
pancreatic cancer, 391
for PCOS, 627
polyarteritis nodosa, 308 polymyalgia rheumatica, 458 pseudotumor cerebri treatment, 505
renal cell carcinoma, 583
sleep apnea, 661
stomach cancer, 373
for stress incontinence, 584
tuberculosis, 140
Whipple disease, 672
Weil disease, 147
Well-patient care, 264-265
Wenckebach AV block, 290
Werdnig-Hoffmann disease, 514
Wernicke aphasia, 498, 500
Wernicke area, 485
stroke effects, 498
Wernicke encephalopathy, 66, 555
Wernicke-Korsakoff syndrome, 495, 555
vitamin $\mathrm{B}_{1}$ deficiency, 66
Western blot, 53
Western equine encephalitis, 167
West Nile virus, 167, 180
Wet beriberi, 66
Wharton duct, 370
Wharton jelly, 600
Wheal
urticaria, 464
Wheals, 462

Wheezing
bronchial carcinoid tumor, 665
lung cancer, 665
obstructive lung diseases, 656
Whipple disease, 375
periodic acid-Schiff stain for, 126
presentation, 672
Whipple procedure
for pancreatic cancer, 391
Whispered pectoriloquy, 662
White matter
axonal injury, 499
demyelinating disorders, $\mathbf{5 0 8}$
glial cells in, 478
multiple sclerosis, $\mathbf{5 0 7}$
White muscle fibers, 447
White pulp (spleen), 98
Whooping cough
Bordetella pertussis, 143
pertussis toxin, 132
Wickham striae, 468
Wide splitting, 283
Williams syndrome, 64
cardiac defect association, 296
Wilms tumor
dactinomycin for, 428
neuroblastomas vs, 333
tumor suppressor genes and, 222
Wilson disease, 389
chromosome association, 64
Fanconi syndrome, 570
free radical injury and, 216
Winged scapula, 438
Winters formula, 576, 688
"Wire looping" of capillaries, 581
"Wire lupus," 581
Wiskott-Aldrich syndrome, 117
labs/findings, 675
X-linked recessive disorder, 60
Withdrawal (psychoactive drugs), 554
Wnt-7 gene, 594
Wobble, 37, 39

Wolff-Chaikoff effect, 336. See also Jod-Basedow phenomenon
Wolffian duct, 604
Wolff-Parkinson-White syndrome, 289
Wound healing
phases of, $\mathbf{2 1 7}$
scar/keloid formation, 216
Woven bone, 447
Wright-Giemsa stain, 396
Wright stain, 146
Wrinkles of aging, 52
Wrist bones, 435
Wrist drop
lead poisoning, 407
Written advance directives, 261
WTl/WT2 genes, 222
Wuchereria bancrofti, 158, 159

## X

Xanthine, 472
Xanthine oxidase, 472
Xanthine oxidase inhibitors, 455, 681
Xanthochromia, 677
Xanthochromic spinal tap, 497
Xanthogranulomatous pyelonephritis, 585
Xanthomas
familial dyslipidemias, 94
hyperlipidemia and, 297
Xenografts, 118
Xeroderma pigmentosum, 40
Xerosis cutis, 66
Xerostomia, 236, 239, 456
X-linked agammaglobulinemia, 116
X-linked dominant inheritance, 59
X-linked recessive disorders agammaglobulinemia, 116 hyper-IgM syndrome, 117
NADPH osidase defect, 117
Wiskott-Aldrich syndrome, 117
X-linked recessive inheritance, 59
X-ray teratogenicity, 596

## Y

Yellow cerebrospinal fluid, 677
Yellow fever, 167, 168
liver anatomy and, 361
Yersinia spp.
Gram-negative algorithm, 141
reactive arthritis, 457
taxonomy, 125
Yersinia enterocolitica, 144, 179
Yersinia pestis
animal transmission, 149
intracellular organism, 128
Yo antigens, 221
Yolk sac tumor, 629, 634

## Z

Zafirlukast, 668
arachidonic acid pathway, 470
Zaleplon, 529
Zanamivir, 201
Zellweger syndrome, 47
Zenker diverticulum, 378, 684
Zero-order elimination, 230
Zidovudine, 201, 203
Ziehl-Neelsen stain, 126
Zika virus, 171
Zileuton, 470, 668
Zinc, 71
Wilson disease, 389
Ziprasidone, 557
Zoledronic acid, 471
Zollinger-Ellison syndrome, 347
duodenal ulcers, 374
gastrin in, 365
MEN 1 syndrome, 347
proton pump inhibitors for, 392
Zolpidem, 529
Zona fasciculata, 320, 327
Zona glomerulosa, 320
Zona reticularis, 320
Zonular fibers, 518
Zoonotic bacteria, 149
Zymogens, 367

## About the Editors



## Tao Le, MD, MHS

Tao developed a passion for medical education as a medical student. He currently edits more than 15 titles in the First Aid series. In addition, he is Founder and Chief Education Officer of USMLE-Rx for exam preparation and ScholarRx for undergraduate medical education. As a medical student, he was editor-in-chief of the University of California, San Francisco (UCSF) Synapse, a university newspaper with a weekly circulation of 9000. Tao earned his medical degree from UCSF in 1996 and completed his residency training in internal medicine at Yale University and fellowship training at Johns Hopkins University. Tao subsequently went on to cofound Medsn, a medical education technology venture, and served as its chief medical officer. He is currently chief of adult allergy and immunology at the University of Louisville.


## Matthew Sochat, MD

Matthew is a first-year hematology/oncology fellow at St. Louis University in St. Louis, Missouri. He completed his internal medicine residency training at Temple University Hospital in Philadelphia. He completed medical school in 2013 at Brown University and is a 2008 graduate of the University of Massachusetts, Amherst, where he studied biochemistry and the classics. Pastimes include skiing, cooking/baking, traveling, the company of friends/loved ones (especially his wonderful wife), the Spanish language, and computer/video gaming. Be warned: Matt also loves to come up with corny jokes at (in)opportune moments.


## Mehboob Kalani, MD

Mehboob is a third-year internal medicine resident at Allegheny Health Network Medical Education Consortium in Pittsburgh. He was born in Karachi, Pakistan, grew up in Toronto, Canada, and pursued medicine upon completing high school. He earned his bachelor's and medical degrees at American University of Integrative Sciences in 2015. After residency, his interests lie in pulmonary critical care medicine, and he is researching COPD exacerbation treatment and readmission rates. In his limited leisure time, Mehboob enjoys playing or watching soccer, long drives, and family gatherings.


## Andrew Zureick

Andrew is a fourth-year medical student at the University of Michigan who hopes to pursue residency training in radiation oncology. He earned his bachelor's degree at Dartmouth College in 2013, graduating Phi Beta Kappa and summa cum laude with high honors in Chemistry. He is a coauthor of What Every Science Student Should Know, a guidebook for undergraduate STEM majors published in 2016 by the University of Chicago Press. His interests include medical education and health policy. In his spare time, he enjoys playing the piano, golf, tennis, and creative writing.


## Vikas Bhushan, MD

Vikas is a writer, editor, entrepreneur, and teleradiologist on extended sabbatical. In 1990 he conceived and authored the original First Aid for the USMLE Step 1. His entrepreneurial endeavors include a student-focused medical publisher (S2S), an e-learning company, and an ER teleradiology practice (24/7 Radiology). Trained on the Left Coast, Vikas completed a bachelor's degree at the University of California Berkeley; an MD with thesis at UCSF; and a diagnostic radiology residency at UCLA. His eclectic interests include technology, information design, photography, South Asian diasporic culture, and avoiding a day job. Always finding the long shortcut, Vikas is an adventurer, knowledge seeker, and occasional innovator. He enjoys novice status as a kiteboarder and single father, and strives to raise his children as global citizens.


## Yash Chavda, DO

Yash is an emergency medicine resident at St. Barnabas Hospital in the Bronx. He earned his medical degree from NYIT College of Osteopathic Medicine, and completed his undergraduate degrees in biology and psychology at CUNY Baruch College in 2010. Yash has many interests outside of medicine and enjoys spending time with his loved ones. He is a developing photographer, former web/graphic designer (who still dabbles), video gamer, foodie, and avid explorer who wants to travel the world (whenever he actually gets a chance). He hopes to always keep improving at everything he does.


## Kimberly Kallianos, MD

Originally from Atlanta, Kimberly graduated from the University of North Carolina at Chapel Hill in 2006 and from Harvard Medical School in 2011. She completed her radiology residency at the University of California, San Francisco (UCSF) in 2016 and is currently an Assistant Professor of Clinical Radiology at UCSF.


[^0]:    - If you know the format, you can skip the tutorial and add up to 15 minutes to your break time!

[^1]:    - Be sure to test your headphones during the tutorial.

[^2]:    - Practice questions may be easier than the actual exam.

[^3]:    - Some competitive residency programs place more weight on Step 1 scores when choosing candidates to interview.

[^4]:    - Fourth-year medical students have the best feel for how Step 1 scores factor into the residency application process.

[^5]:    - In the final two weeks, focus on review, practice questions, and endurance. Stay confident!

[^6]:    - No notes, books, calculators, pagers, cell phones, recording devices, or watches of any kind are allowed in the testing area, but they are allowed in lockers.

[^7]:    - Use practice tests to identify concepts and areas of weakness, not just facts that you missed.

[^8]:    - National Board of Medical Examiners (NBME) / USMLE Secretariat Department of Licensing Examination Services 3750 Market Street Philadelphia, PA 19104-3102
    (215) 590-9500 (operator) or
    (215) 590-9700 (automated information line)

    Fax: (215) 590-9457
    Email: webmail@nbme.org www.nbme.org

[^9]:    Nucleotides $\quad$ NucleoSide $=$ base $+($ deoxy $)$ ribose (Sugar).
    NucleoTide $=$ base $+($ deoxy $)$ ribose + phosphaTe; linked by $3^{\prime}-5^{\prime}$ phosphodiester bond.

    PURines (A,G)-2 rings.
    PYrimidines (C,U,T) -1 ring.

    Deamination of cytosine forms uracil. Deamination of adenine forms hypoxanthine. Deamination of guanine forms xanthine. Deamination of 5-methylcytosine forms thymine.
    Uracil found in RNA; thymine in DNA. Methylation of uracil makes thymine.

    Purine ( $\mathrm{A}, \mathrm{G}$ )
    

    Pyrimidine $(C, U, T)$
    

    5 ' end of incoming nucleotide bears the triphosphate (energy source for the bond). Triphosphate bond is target of $3^{\prime}$ hydroxyl attack.
    PURe As Gold.
    CUT the PY (pie).
    Thymine has a methyl.
    G-C bond ( 3 H bonds) stronger than A-T bond
    ( 2 H bonds). $\uparrow \mathrm{G}$-C content $\rightarrow \uparrow$ melting temperature of DNA. "C-G bonds are like Crazy Glue."

    Amino acids necessary for purine synthesis (Cats purr until they GAG):
    Glycine Aspartate Glutamine

[^10]:    $\square=$ unaffected male; $\square=$ affected male; $\bigcirc=$ unaffected female; $\bigcirc=$ affected female.

[^11]:    Hormone replacement Used for relief or prevention of menopausal symptoms (eg, hot flashes, vaginal atrophy), therapy osteoporosis ( $\uparrow$ estrogen, $\downarrow$ osteoclast activity).

    Unopposed estrogen replacement therapy $\uparrow$ risk of endometrial cancer, progesterone/progestin is added. Possible increased cardiovascular risk.

[^12]:    2

